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l,u: lower/upper bounds in Zn w: objective in Zn

A: integer m x n matrix b: right-hand side in Zm

The bit size of the data is denoted by [A,w,b,l,u]

Integer Programming

IP:      max { wx  :  Ax = b,   l ≤ x ≤ u,   x in Zn }
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  :Background in my Book

Theory of Graver bases 
for integer programming

(and more)

Available electronically 
from my homepage

(with kind permission of EMS)
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Graver Bases

x is conformal to y if xiyi ≥ 0 (same orthant) and |xi| ≤ |yi| for all i

The Graver basis of an integer matrix A is the finite set G(A) of 
conformal-minimal nonzero integer vectors x satisfying Ax = 0. 
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Graver-Best Oracle
Let x be a feasible point of the integer program

A Graver-best step for x is a vector h such that x+h is feasible
and at least as good as any feasible x+cg with c in Z and g in G(A). 

A Graver-best oracle for an integer matrix A is one that queried
on w,b,l,u and feasible x returns a Graver-best step h for x. 

IP:      max { wx  :  Ax = b,   l ≤ x ≤ u,   x in Zn }
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Weakly Polynomial Solution 

Lemma: IP is solvable with Graver-best oracle for A in time O(n [A,w,b,l,u])

IP:      max { wx  :  Ax = b,   l ≤ x ≤ u,   x in Zn }
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Lemma: IP is solvable with Graver-best oracle for A in time O(n [A,w,b,l,u])

IP:      max { wx  :  Ax = b,   l ≤ x ≤ u,   x in Zn }

Weakly Polynomial Solution 

The algorithm iteratively adds Graver-best steps till optimum is reached

(Hemmecke, Onn, Weismantel and my book Theorem 3.12) 
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Strongly Polynomial Solution 

Lemma: IP is solvable with Graver-best oracle for A in time O(n [A,w,b,l,u])
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Theorem 1: IP is solvable with Graver-best oracle for A in time poly(n[A])
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Lemma: IP is solvable with Graver-best oracle for A in time O(n [A,w,b,l,u])

(our postdoc Koutecký, Levin, Onn, coming ICALP)

IP:      max { wx  :  Ax = b,   l ≤ x ≤ u,   x in Zn }

Theorem 1: IP is solvable with Graver-best oracle for A in time poly(n[A])
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Talk Wednesday morning by Martin Koutecký:
breakthroughs in computational social choice
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Lemma: IP is solvable with Graver-best oracle for A in time O(n [A,w,b,l,u])

Theorem 1: IP is solvable with Graver-best oracle for A in time poly(n[A])

IP:      max { wx  :  Ax = b,   l ≤ x ≤ u,   x in Zn }

Strongly Polynomial Solution 

1. Solve the LP-relaxation and get real optimal y* (Tardos)

Proof: 

2. By proximity lemma (HS,HKW) can search for integer optimal
]A] polynomial in [u,l,bwith [u ,l,bto y* and reduce data to closex* 

) Tardos-Frank] (A] polynomial in [wwith [w. Reduce data to 3

])A[n])=poly(u,l,b,wA,[nto solve the reduced program in O(lemma. Use 4
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Realization of Graver-Best Oracles

The primal graph of A has columns as vertices and two columns
form an edge if some row has nonzero entries in both columns.

The dual graph of A is the primal graph of its transpose AT

Primal Lemma (KLO): If the primal graph of A has bounded tree-width and



.is bounded then get an effective Graver-best oracle for A by DP

Dual Lemma (KLO): If the dual graph of A has bounded tree-width and



.is bounded then get an effective Graver-best oracle for A by DP
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N-Fold Integer Programming

A =

n

The n-fold product of rxt block A1 and sxt block A2 is
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Parameterization of N-Fold IP

Consider n-fold integer programming over r x t block A1 and s xt block A2

A =
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max {wx : Ax = b,  l ≤ x ≤ u,  x in Znt}.

A =

n

The parameters are r,s,t,a=max A

Consider n-fold integer programming over r x t block A1 and s xt block A2



The input is n and the bit size [w,b,l,u]

Parameterization of N-Fold IP
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The parameters are r,s,t,a=max A

max {wx : Ax = b,  l ≤ x ≤ u,  x in Znt}.

A =

n

Consider n-fold integer programming over r x t block A1 and s xt block A2
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Complexity of N-Fold Integer Programming

-- Polynomial time  nf(r,s,t,a)[w,b,l,u] (De Loera, Hemmecke, Onn, Weismantel)

-- Parameter tractable  f(r,s,t,a)n3[w,b,l,u] (Hemmecke, Onn, Romanchuk)

Led to several recent breakthroughs in 
the theory of parameterized complexity
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Complexity of N-Fold Integer Programming

Theorem 2 (Koutecký, Levin, Onn) :

Parameter tractable and strongly polynomial  f(r,s,a) poly(n,t) 

-- Strongly polynomial  nf(r,s,t,a) (De Loera, Hemmecke, Lee)

-- Polynomial time  nf(r,s,t,a)[w,b,l,u] (De Loera, Hemmecke, Onn, Weismantel)

-- Parameter tractable  f(r,s,t,a)n3[w,b,l,u] (Hemmecke, Onn, Romanchuk)

Proof:  Use dual lemma to get parameter tractable  Graver-best oracle 

and use Theorem 1 to get parameter tractable strongly polynomial time.
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Optimization over l X m X n tables with given line sums:

  Corollary: Parameter tractable and strongly polynomial  f(l,m) poly(n) 

Example - Multiway Tables
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Tree-Fold Integer Programming
(Chen, Marx, SODA 2018): Tree-fold integer programs have a matrix 
with several blocks in tree structure, parameterized by si,t,a=max A
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Tree-Fold Integer Programming

Improves on Chen, Marx, SODA 2018 - strongly polynomial and t variable

Theorem 3 (Koutecký, Levin, Onn) :

Parameter tractable and strongly polynomial  f(r,si,a) poly(n,t) 
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Proof: Use dual lemma to get parameter tractable  Graver-best oracle 

and use Theorem 1 to get parameter tractable strongly polynomial time.



Multistage Stochastic Integer Programming
These programs have a matrix the transpose AT of a tree-fold matrix 
with several blocks in tree structure, parameterized by si,t,a=max Ai
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Multistage Stochastic Integer Programming

Theorem 4 (Koutecký, Levin, Onn) :

Parameter tractable and strongly polynomial  f(r,si,a) poly(n,t) 

Proof: Use primal lemma to get parameter tractable  Graver-best oracle 

and use Theorem 1 to get parameter tractable strongly polynomial time.
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Theorem 5 (Koutecký, Levin, Onn) :
Integer programs with matrix A parameterized by a=max A
and by the tree-depth d of the dual graph of A can be solved in 
parameter tractable and strongly polynomial time f(a,d) poly(n) 
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Proof: Embed such programs in tree-fold programs and use Theorem 3
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