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10 years ago, Shmuel organized a very nice discrete
optimization (and hummus) day at Haifa
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Introduction Motivation

Motivation

Most Mixed-Integer Nonlinear Optimization (MINLO) software,
aiming at global optimization of factorable mathematical-optimization
formulations, apply spatial branch-and-bound or a variant (e.g., SCIP,
Baron, Couenne, Antigone. . . )
As a first step, problem functions are “factored” (i.e., fully
decomposed) via a small library of low-dimensional nonlinear
functions (e.g., sin(x), log(x), ax , x/y , xy , xyz , xp (0 < p < 1). . . )
together with affine functions.
It is helpful, for robustness, if the library functions are sufficiently
smooth over their domains, i.e., typically twice continuously
differentiable, so that typical nonlinear-optimization algorithms may
be reliably applied (e.g., Wächter and Biegler [2006]).
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Introduction Motivation

Motivation

The issue can also be grappled with algorithmically by (purely continuous)
nonlinear-optimization solvers through parameter setting. For example,
Wächter explains:

“Problem modification: Ipopt seems to perform better if the
feasible set of the problem has a nonempty relative interior.
Therefore, by default, Ipopt relaxes all bounds (including bounds
on inequality constraints) by a very small amount (on the order
of 10−8) before the optimization is started. In some cases, this
can lead to problems, and this features can be disabled by setting
bound relax factor to 0.”
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Introduction Motivation

Motivation
Consider f (w) :=

√
w on the domain [0,+∞). Notice how in this case

Ipopt’s default value for this parameter bound relax factor is not
robust for even function evaluation, on the modified domain
[−10−8,+∞). And for the suggested nondefault parameter setting (0),√

w is not differentiable at 0 (in the actual domain). So, we are led back
to modeling advice:

“Therefore, it can be useful to replace the argument of a
function with a limited range of definition by a variable with
appropriate bounds. For example, instead of “log(h(x))”, use
“log(y)” with a new variable y ≥ ε (with a small constant ε > 0)
and a new constraint h(x)− y = 0.”

We note that this kind of advice might be problematic in the context of
integer variables, where precise zero may be important in constraints
implementing some logic, and for this reason, our study is particularly
relevant to MINLO.
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Introduction Motivation

Example, ESTP

Lemma (simple)

Among triangles with edge lengths a, b, c and corresponding (opposite)
angles x,y ,z, with c and z fixed, the one maximizing a + b is isosceles
(that is a = b, x = y).

Theorem ([D’Ambrosio, Fampa, Lee, and Vigerske, 2015, Theorem 9])

For all n ≥ 2, we have

yikyjk
(
‖xk − ai‖+ ‖xk − aj‖

)
≤ 2√

3‖a
i − aj‖, ∀ i , j ∈ P, i < j , k ∈ S.
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Introduction Motivation

Motivation
The motivating application for our work is root functions f (w) := wp,
with 0 < p < 1, which are smooth everywhere on their domains [0,+∞),
except at w = 0.

Figure: given function f := wp, Linear extrapolation, Shift:
√

w + λ−
√
λ,

our smoothing g
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Introduction Motivation

Motivation

Linear extrapolation is bad because it is far from wp when w is near
0, and it is not twice differentible at δ;
Shift smoothing is twice differentiable everywhere, follows the general
trends of f (i.e., concave, increasing), but it is bad because it is not
close to wp when w is not near 0;
Our Smoothing has the nice properties of the shift, but aims to find a
better lower bound.
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Introduction Prior Work

Prior Work

The inception of this approach is from D’Ambrosio, Fampa, Lee, and
Vigerske [2014], which grappled with handling square-root functions
(p = 1/2) arising in formulations of the Euclidean Steiner Problem.
That successful approach was to replace the part of the root function
on [0, δ], for some small (but not extremely small) δ > 0, with a
homogeneous cubic, matching the function and its first two
derivatives at δ.
We showed that the new piecewise function g is (i) increasing and
concave, (ii) underestimates the square root, and (iii) dominates the
simple shift smoothing h(w) :=

√
w + λ−

√
λ, when the parameters δ

(for g) and λ (for h) are chosen “fairly” — i.e., so that g ′(0) = h′(0),
and hence both smoothing have the same numerical stability.
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Introduction Prior Work

Prior Work

Lee and Skipper [2017] extended this idea of D’Ambrosio et al. [2014,
2015], with the following main results:

(i) a rather general sufficient condition on f (which includes all root
functions and more) so that our smoothing g is increasing and concave;

(ii) for root functions of the form f (w) = w 1/q, with integer q ≥ 2, our
smoothing g underestimates f ;

(iii) for root functions of the form f (w) = w 1/q, with integer
2 ≤ q ≤ 10, 000, our smoothing g ‘fairly dominates’ the shift
smoothing h; i.e., when g and h are chosen so that g ′(0) = h′(0).

We generalize all of these results, using very different techniques:
algebra analysis
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Introduction Definition of δ-smoothing

Definition

Let f be a univariate function having a domain I = [0,U), where
U ∈ R+ ∪ {+∞}. Suppose that δ > 0 is in the domain of f .

We say that such an f satisfies the minimal δ-smoothing requirements if
f (0) = 0, and f is twice differentiable at δ.

Suppose that such an f satisfies the minimal δ-smoothing requirements.
Then the δ-smoothing of f is the piecewise-defined function

g(w) :=
{

g1w + 1
2 g2w2 + 1

6 g3w3, 0 ≤ w ≤ δ;
f (w), δ < w < U,

having

g(0) = f (0); g(δ) = f (δ); g ′(δ) = f ′(δ); g ′′(δ) = f ′′(δ).
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Introduction Definition of δ-smoothing

Definition

Suppose that such an f satisfies the minimal δ-smoothing requirements.
Then the δ-smoothing of f is the piecewise-defined function

g(w) :=
{

g1w + 1
2 g2w2 + 1

6 g3w3, 0 ≤ w ≤ δ;
f (w), δ < w < U,

with

g1 = 3f (δ)
δ
− 2f ′(δ) + δf ′′(δ)

2 (= g ′(0));

g2 = −6f (δ)
δ2 + 6f ′(δ)

δ
− 2f ′′(δ) (= g ′′(0));

g3 = 6f (δ)
δ3 − 6f ′(δ)

δ2 + 3f ′′(δ)
δ

(= g ′′′(w), for w ∈ [0, δ]).
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Introduction Definition of δ-smoothing

Preliminary

g(w) :=
{

g1w + 1
2 g2w2 + 1

6 g3w3, 0 ≤ w ≤ δ;
f (w), δ < w < U,

First, we will show that under certain conditions, g is increasing and
concave when f is.
This is useful in global optimization because we can use tangents to
overestimate g and secants to underestimate g .
SCIP has a new feature to allow user (through AMPL suffixes) to tell
SCIP that such a g is, for example, increasing and concave.

We will show that under certain conditions, the first and second
derivatives of g is controlled when f is increasing and concave.
This is useful for robustness of the nonlinear-optimization algorithms.
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General behaviors of δ-smoothing
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General behaviors of δ-smoothing Increasing and concave

Increasing and concave

Necessary and sufficient condition

Let f be a univariate function having a domain I = [0,U), where
U ∈ {w ∈ R : w > 0} ∪ {+∞}. Suppose that δ > 0 is in the domain of
f . Assume that f satisfies the minimal δ-smoothing requirements.
Suppose further that

f is increasing and differentiable on [δ,U);
f ′ is nonincreasing (resp., decreasing) on [δ,U).

Then g is increasing and concave (strictly concave) on [0,U) if and only if

f ′′(δ) ≥ 3
δ

(
f ′(δ)− f (δ)

δ

) (
⇔ g2 ≤ 0

)
. (T ∗δ )
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General behaviors of δ-smoothing Controlled derivative at 0

Controlled derivative at 0

Properties
Let f be a univariate function having a domain I = [0,U), where
U ∈ R+ ∪ {+∞}. Suppose that δ > 0 is in the domain of f . Assume that
f satisfies the minimal δ-smoothing requirements. Suppose further that

f is continuous on [0, δ] and thrice differentiable on (0, δ],
f ′′′ is decreasing on (0, δ].

Then f has the following properties:
1 lim

w→0+
f ′(w) > g1 = g ′(0);

2 lim
w→0+

f ′′(w) < g2 = g ′′(0);

3 lim
w→0+

f ′′′(w) > g3 = g ′′′(0);

4 f ′′′(δ) < g3.
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General behaviors of δ-smoothing Controlled derivative at 0

Controlled derivative at 0

1 lim
w→0+

f ′(w) > g1 = g ′(0);

2 lim
w→0+

f ′′(w) < g2 = g ′′(0);

When f is increasing and concave and g2 ≤ 0, g is increasing and concave.
In this case, property (1) implies that g ′ is more controlled near 0 than f ′,
and property (2) implies that g ′′ is more controlled near 0 than f ′′.

Useful later:
3 lim

w→0+
f ′′′(w) > g3 = g ′′′(0);

4 f ′′′(δ) < g3.
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General behaviors of δ-smoothing Monotonicity of g1 = g′(0) in δ

Monotonicity of g1 = g ′(0) in δ

Decreasing in δ

Let f be a univariate function having a domain I = [0,U), where
U ∈ R+ ∪ {+∞}. Assume that f satisfies the minimal δ-smoothing
requirements for all δ > 0 in the domain of f . Suppose further that

f is continuous on [0,U) and thrice differentiable on (0,U);
f ′′′ is decreasing on (0,U).

Then g1(δ) is decreasing on (0,U).

This is a very useful property, because we can then easily find a value for δ
to achieve a target value for g1 = g ′(0) using a simple univariate search.
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General behaviors of δ-smoothing Monotonicity of g1 = g′(0) in δ

Monotonicity of g1 = g ′(0) in δ

Proof.
It is easy to check that

dg1(δ)
dδ = δ

2(f ′′′(δ)− g3(δ)).

We want f ′′′(δ)− g3(δ) < 0 on (0,U), so we can conclude that g1(δ) is
decreasing on (0,U). For a fixed δ ∈ (0,U), by the property (4), we have
f ′′′(δ)− g3(δ) < 0, which gives us g ′1(δ) < 0 on (0,U). �
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General behaviors of δ-smoothing Monotonicity of g1 = g′(0) in δ

Examples

Example

Let f (w) := wp, for some 0 < p < 1. Then g1(δ) is decreasing for
δ ∈ (0,+∞).

Proof.
We have:

f ′(w) = pwp−1;
f ′′(w) = p(p − 1)wp−2;
f ′′′(w) = p(p − 1)(p − 2)wp−3;

f (4)(w) = p(p − 1)(p − 2)(p − 3)wp−4.

Because 0 < p < 1, f (4)(w) < 0 on (0,+∞), which implies f ′′′ is
decreasing on (0,+∞), thus the monotonicity theorem applies. �
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General behaviors of δ-smoothing Monotonicity of g1 = g′(0) in δ

Examples

Example

Let f (w) := ArcSinh(
√

w) = log
(√

w +
√

1 + w
)

, for w ≥ 0.

Proof.
Calculate the following derivatives of f on (0,+∞):

f ′(w) = 1
2
√

w(w + 1)
; f ′′(w) = − 2w + 1

4 (w(w + 1))
3
2

;

f ′′′(w) = 8w2 + 8w + 3
8 (w(w + 1))

5
2

; f (4)(w) = −48w3 + 72w2 + 54w + 15
16 (w(w + 1))

7
2

.

For w ∈ (0,+∞), clearly f (4)(w) < 0, which implies f ′′′ is decreasing on
(0,+∞), thus the monotonicity theorem applies. �
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Lower bound for f Lower bounding

Lower Bound

Lower bound theorem

Let f be a univariate function having a domain I = [0,U), where
U ∈ R+ ∪ {+∞}. Suppose that δ > 0 is in the domain of f . Assume that
f satisfies the minimal δ-smoothing requirements. Assume further that

f is continuous on [0, δ];
f ′′′ exists and is decreasing on (0, δ].

Then g(w) < f (w) for all w ∈ (0, δ).
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Lower bound for f Lower bounding

Lower Bound Examples

Example

Let f (w) := wp, for some 0 < p < 1. For all δ > 0, the δ-smoothing g
lower bounds f on [0,+∞). This generalizes the result in Lee and Skipper
[2017] that states that g is a lower bound for root functions of the form
f (w) = w1/q, for integer q ≥ 2.

Example

Consider f (w) := ArcSinh(
√

w) = log
(√

w +
√

1 + w
)

, for w ≥ 0. For
all δ > 0, the δ-smoothing g lower bounds f on [0,+∞).
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Lower bound for f Lower bounding

Proof for the Lower Bound

I Use the technique of error estimation for “osculating interpolation” to
prove that

K (w) = f (w)− g(w)
w(w − δ)3 < 0, for w ∈ (0, δ).

I For some fixed w ∈ (0, δ), denote K := K (w) for simplicity, and
introduce a new function F :

F (x) := f (x)− g(x)− Kx(x − δ)3.

I By the definition of K , we have F (w) = 0. Also from the relationships
between f and g , we have F (0) = F (δ) = F ′(δ) = F ′′(δ) = 0. It is
easy to see that 0,w , δ are three zeros for F (x).

I Because F (x) is continuous on [0, δ] and differentiable on (0, δ),
applying Rolle’s Theorem (twice), there exists 0 < w1 < w < η1 < δ
such that F ′(w1) = F ′(η1) = 0.
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Lower bound for f Lower bounding

Proof for the Lower Bound

F (x) := f (x)− g(x)− Kx(x − δ)3.

I Noting that F ′(δ) = 0 and that F ′(x) is differentiable on [w1, δ], we
apply Rolle’s Theorem (twice more, now to F ′) to get
w1 < w2 < η1 < η2 < δ such that F ′′(w2) = F ′′(η2) = 0.

I Using Rolle’s Theorem (twice again, now on F ′′; we have F ′′(δ) = 0
and F ′′(x) is differentiable on [w2, δ]), we get w2 < w3 < η2 < η3 < δ
such that F ′′′(w3) = F ′′′(η3) = 0.

I Now, F ′′′(x) = f ′′′(x)− g3 − K (24x − 18δ). Applying
F ′′′(w3) = F ′′′(η3) and f ′′′(w3) > f ′′′(η3), we can conclude that
K (24w3 − 18δ) > K (24η3 − 18δ). But this last inequality holds only
when K < 0. �
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K (24w3 − 18δ) > K (24η3 − 18δ). But this last inequality holds only
when K < 0. �

Xu, Lee (UMICH), Skipper (USNA) More Virtuous Smoothing Tel Aviv, April 2018 28 / 45



Lower bound for f Lower bounding

Proof for the Lower Bound

F (x) := f (x)− g(x)− Kx(x − δ)3.

I Noting that F ′(δ) = 0 and that F ′(x) is differentiable on [w1, δ], we
apply Rolle’s Theorem (twice more, now to F ′) to get
w1 < w2 < η1 < η2 < δ such that F ′′(w2) = F ′′(η2) = 0.

I Using Rolle’s Theorem (twice again, now on F ′′; we have F ′′(δ) = 0
and F ′′(x) is differentiable on [w2, δ]), we get w2 < w3 < η2 < η3 < δ
such that F ′′′(w3) = F ′′′(η3) = 0.

I Now, F ′′′(x) = f ′′′(x)− g3 − K (24x − 18δ). Applying
F ′′′(w3) = F ′′′(η3) and f ′′′(w3) > f ′′′(η3), we can conclude that
K (24w3 − 18δ) > K (24η3 − 18δ). But this last inequality holds only
when K < 0. �

Xu, Lee (UMICH), Skipper (USNA) More Virtuous Smoothing Tel Aviv, April 2018 28 / 45



Lower bound for f Role of increasing and concave

Increasing and concave

Our lower bound theorem suggests that there could be f that are not
increasing and concave for which the δ-smoothing of f is a lower bound
for f .
So we have the natural question: do we automatically satisfy (T ∗δ ) when
the lower bound theorem applies to functions that are increasing and
concave?

Observation

For an increasing concave function f , the hypotheses of our lower bound
theorem do not imply that the smoothing g is increasing and concave, i.e.,
(T ∗δ ) is not implied by the hypotheses of our lower bound theorem, even
for increasing concave f .
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Lower bound for f Role of increasing and concave

Example

I Consider the function

f (w) :=
{

a5w5 + a4w4 + a3w3 + a2w2 + a1w , 0 ≤ w ≤ w0;
a
√

w − c + b, w > w0.

I After fixing the values of the parameters δ, w0, a2, a3, a4, and a5 so
that f ′′(w0)

f ′′′(w0) ≤ 0, we ensure continuity and thrice differentiability of f
at w0 by calculating the remaining parameters as follows:

c = w0 + 3f ′′(w0)
2f ′′′(w0) ;

a1 = −2f ′′(w0)(w0 − c)− (5a5w4
0 + 4a4w3

0 + 3a3w2
0 + 2a2w0);

a = 8f ′′′(w0)(w0 − c) 5
2

3 ;

b = f (w0)− a
√

w0 − c.
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Lower bound for f Role of increasing and concave

Example

For δ ≤ w0, we have the δ-smoothing g(w) = g1w + 1
2 g2w2 + 1

6 g3w3,
where

g1 = 3a5δ
4 + a4δ

3 + a1;
g2 = −16a5δ

3 − 6a4δ
2 + 2a2;

g3 = 36a5δ
2 + 18a4δ + 6a3.
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Lower bound for f Role of increasing and concave

Example
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(a) f (w) − g(w)
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(b) f ′′′(w) − g3

Figure: a5 = 1, a4 = −5, a3 = 0, w0 = 3, a2 = −3
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Lower bound for f Role of increasing and concave

Example
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Figure: a5 = 1, a4 = −5, a3 = 0, w0 = 3, a2 = −3
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Lower bound for f Role of increasing and concave

Observations on the example

f is increasing and concave
g2 6≤ 0, so the necessary and sufficient condition for g to be
increasing and concave fails (g is not concave near 0)
But the condition for g to lower bound f holds
Note that f ′′′ is decreasing on (0, δ], which, as we have seen, implies
that lim

w→0+
f ′′(w) < g2 = g ′′(0) (g has more controlled second

derivative than f near 0). In the graph we see that we need the limit.
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Better Bound

Better Bound

g is defined based on δ, and h is
defined based on λ, a fair
comparison is achieved by
making h′(0) = g ′(0). (the
same maximum derivative at 0)

Let h′(0) = f ′(λ) = g ′(0) = g1

= 3f (δ)/δ − 2f ′(δ) + δf ′′(δ)/2.

Then we have

λ̂ := (f ′)−1 (3f (δ)/δ − 2f ′(δ) + δf ′′(δ)/2
)
.

Figure: Blue: Shift smoothing
h(w) = f (w + λ)− f (λ),
Green: our smoothing g(w)

Xu, Lee (UMICH), Skipper (USNA) More Virtuous Smoothing Tel Aviv, April 2018 36 / 45



Better Bound

Better Bound

Better Bound Theorem

Let f be a univariate function having a domain I = [0,U), where
U ∈ R+ ∪ {+∞}. Suppose that U ≥ δ/2 > 0. Assume that f satisfies the
minimal δ-smoothing requirements. Assume further that

f is continuous, increasing, and strictly concave on its domain;
f is thrice differentiable on (0,U).

Moreover, suppose that
(I) f ′′′ is decreasing on (0, 2δ);

(II) f ′′′(w) ≥ 0, for w ∈ (0, 2δ).
Then

h(w) := f (w + λ̂)− f (λ̂) ≤ g(w),

for w in the domain of f .
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Better Bound

Examples

Example
Let f (w) := wp, for some 0 < p < 1. For all δ > 0, the δ-smoothing g
upper bounds the shift smoothing h on [0,+∞). This generalizes the
result in Lee and Skipper [2017], which states that our smoothing g ‘fairly
dominates’ the shift smoothing h for root functions of the form
f (w) = w1/q, with integer 2 ≤ q ≤ 10, 000.

Example

Consider f (w) := ArcSinh(
√

w) = log
(√

w +
√

1 + w
)

, for w ≥ 0. For
all δ > 0, the δ-smoothing g upper bounds the shift smoothing h on
[0,+∞).
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Better Bound

Proof for the Better Bound

I With condition (I), f ′′′ is decreasing, so we have all the properties of
controlled derivatives. First, we consider the existence and uniqueness
of λ̂. Condition (II) and property 4 imply that g3 > f ′′′(δ) ≥ 0, and
so g1 − f ′(δ) = 1

2 g3δ
2 − δf ′′(δ) > 0. Therefore,
limw→0+ f ′(w) > g1 > f ′(δ),

and because f ′(w) is decreasing, there exists exactly one λ̂ in (0, δ)
such that f ′(λ̂) = g1.

I Now consider the function H := g − h, which has

H(w) = g1w + 1
2 g2w 2 + 1

6 g3w 3 − f (w + λ̂) + f (λ̂);

H ′(w) = g1 + g2w + 1
2 g3w 2 − f ′(w + λ̂);

H ′′(w) = g2 + g3w − f ′′(w + λ̂);
H ′′′(w) = g3 − f ′′′(w + λ̂),

where the coefficients of the associated function g are as usual.
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Proof for the Better Bound

H(w) = g1w + 1
2g2w2 + 1

6g3w3 − f (w + λ̂) + f (λ̂);

H ′(w) = g1 + g2w + 1
2g3w2 − f ′(w + λ̂);

H ′′(w) = g2 + g3w − f ′′(w + λ̂);
H ′′′(w) = g3 − f ′′′(w + λ̂),

I It is now straightforward to verify that H(0) = H ′(0) = 0,
H(δ) = f (δ)− h(δ) ≥ 0, and H ′(δ) = f ′(δ)− f ′(δ + λ̂) > 0.

I Noting that 0 < λ̂ < δ, we also have
H ′′(δ) = f ′′(δ)− f ′′(δ + λ̂) < 0, (by condition (I)),
H ′′′ is increasing on (0, δ], (by condition (II)),

and by condition (I) and property 4 together,
H ′′′(δ) = g3 − f ′′′(δ + λ̂) > f ′′′(δ)− f ′′′(δ + λ̂) > 0.
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Better Bound

Proof for the Better Bound

I Finally, we assert that H ′′′(0) < 0 and H ′′(0) > 0, which we prove
below.

I Because H ′′′ is increasing on [0, δ] with H ′′′(0) < 0 and H ′′′(δ) > 0,
we see that H ′′(w) is first decreasing and then increasing on [0, δ].
Because H ′′(0) > 0 and H ′′(δ) < 0, there exists exactly one zero of
H ′′ on (0, δ), which we label v1. Thus H ′(w) is increasing on [0, v1]
and decreasing on [v1, δ]. Because H ′(0) = 0 and H ′(δ) > 0, we see
that H(w) is increasing on [0, δ], and so for w ∈ [0, δ],
H(w) ≥ H(0) = 0; i.e., h(w) ≤ g(w), for w ≥ 0.
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Proof for the Better Bound

I Now we turn our attention to proving that H ′′′(0) < 0 and
H ′′(0) > 0. As the conditions of this theorem are a restriction of
those of lower bound theorem, we can find the roots of the derivatives
of the function F := f − g , 0 < w2 < w1 < w0 < δ, where w0 is the
root of F ′′′, w1 is the root of F ′′, and w2 is the root of F ′ as in the
previous remark.

I From the remark, F ′′′ is decreasing on (0, δ). Therefore, to prove that
H ′′′(0) = g3 − f ′′′(λ̂) = g ′′′(λ̂)− f ′′′(λ̂) < 0, it suffices to show that
λ̂ < w0.

I Function f satisfies condition (T ∗δ ), so g is concave on (0, δ], and
f ′(λ̂)− g ′(λ̂) = g ′(0)− g ′(λ̂) > 0. Because F ′ is positive only to the
left of w2, we have λ̂ < w2 (< w0).
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Proof for the Better Bound

I To prove that H ′′(0) = g2 − f ′′(λ̂) > 0, we demonstrate that
g2 > f ′′(λ̂), which we accomplish via an inequality that arises as lower
and upper bounds on g ′(w2)− g ′(0).
For the lower bound, because F ′′′(w) = f ′′′(w)− g3 > 0 on
[0,w2] ⊂ [0,w0), we have

f ′′(w) > f ′′(λ̂) + g3(w − λ̂), for w ∈ [λ̂,w2].

Therefore, the slope of the secant to f ′′ between the points at w = λ̂
and w = w2 is at least g3; i.e.,

g ′(w2)− g ′(0) = f ′(w2)− f ′(λ̂) > 1
2g3(w2 − λ̂)2 + f ′′(λ̂)(w2 − λ̂).

I For the upper bound on g ′(w2)− g ′(0), we require two observations.
First, by condition (I) and property 4, we have g3 > f ′′′(δ) ≥ 0.
Second, applying g2 + g3δ = f ′′(δ) ≤ 0, we have w2 < δ ≤ −g2/g3.
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Proof for the Better Bound

I Now we can obtain the upper bound

g ′(w2)− g ′(0) = 1
2g3w2

2 + g2w2

≤ 1
2g3(w2 − λ̂)2 + g2(w2 − λ̂),

because this inequality is equivalent to

0 ≤ −g3w2 − g2 + g3λ̂/2,

which we verify by applying g3 > 0 and w2 ≤ −g2/g3.
Combining these bounds, we have
1
2 g3(w2−λ̂)2+f ′′(λ̂)(w2−λ̂) < g ′(w2)−g ′(0) ≤ 1

2 g3(w2−λ̂)2+g2(w2−λ̂),

which reduces to the desired g2 > f ′′(λ̂).
�
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