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Given n items or activities, each item i ∈ [n] with integer profit
ci ≥ 1 and success probability pi , our “generic” probabilistic
all-or-nothing problem is

max
S∈S

∑
j∈S

cj
∏
i∈S

pi

where S ⊆ 2[n] defines the sets that are feasible (not given as
input).

Probabilistic All-or-Nothing Subset: S is the power set of [n].

Constrained problems:

Extension to S that is a downward closed set system, e.g., S is
the set of all matchings in a graph.
S is the set of all paths in a DAG.
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Probabilistic All-or-Nothing Subset - Complexity

Theorem

This problem is NP-hard.

The proof is by a (nontrivial) reduction from subset
sum: Is there a set S such that

∑
i∈S ci = M?

Useful is the observation that

max
S⊆[n]

n∑
j=1

cj

n∏
i=1

pi = max
x∈{0,1}n

n∑
j=1

cjxj

n∏
i=1

pxii

max
x

n∑
j=1

cjxj

n∏
i=1

pxii ⇔ max
x

∑
i=1

log(pi )xi + log

 n∑
j=1

cjxj



c1

c2

...

cn
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Complexity - Cont’d

Consider a reduction of subset sum with same ci ’s and pi = e−
ci
M .

Lemma

1 There exists an x ∈ {0, 1}n such that
∑n

i=1 cixi = M if and only

if max
x∈{0,1}n

log

(
n∑

i=1
cixi

)
− 1

M

n∑
i=1

cixi = logM − 1.

2 For integer M > 1 and y > 0, f (y) = log(y)− y
M is concave,

with a unique maximum at f (M) = log(M)− 1. Further, for any
positive integer N 6= M, f (M)− f (N) ≥ 1

5M2 .
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Max Probabilistic All-or-Nothing Subset -
Pseudo-Polynomial Algorithm

For i = 1, . . . , n let P(i ,C ) denote the maximum probability of a
subset of {1, . . . , i} with a profit of exactly C . Consider the DP given
by

P(i ,C ) =


max{P(i − 1,C ), pi · P(i − 1,C − ci )} i ≥ 1 and ci ≤ C

P(i − 1,C ) i ≥ 1 and ci > C

1 i ≥ 0,C = 0

−∞ otherwise.

Using a straight-forward upper bound C̄ =
∑n

i=1 ci ,

maxx∈{0,1}n
∏

pxii

n∑
j=1

cjxj = max
C

{
C · P(n,C )

∣∣∣∣ C = min
i=1,...,n

{ci}, . . . , C̄
}
.

The running time of this algorithm is O(nC̄ ).
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All-or-Nothing Subset Lemma

Lemma

Suppose S∗ is (the support of a solution that is) optimal for
all-or-nothing subset with |S∗| ≥ 2. Then, for all Q ⊂ S∗, with∏

i∈Q pi <
1
2 ,
∏

i∈S∗\Q pi >
1
2 .

Corollary

Suppose S∗ is (the support of a solution that is) optimal. Then∣∣∣∣{i ∈ S∗
∣∣∣∣ pi <

1

2

}∣∣∣∣ ≤ 1.
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Omitting Small Probability Items?

Consider the instance p = (0.99, 0.8, 0.18) and c = (110, 120, 1000).

Here, S∗ = {1, 3} with value
z∗ = 0.99× 0.18× (110 + 1000) ≈ 197.80 is optimal.

Restricted to large probability items then S = {1, 2} would be optimal
with value 182.16.

S = {1, 2, 3} has a value ≈ 47.05
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Maximum Probabilistic All-or-Nothing Subset - FPTAS

Let
N1/2 =

{
i
∣∣ pi ≥ 1

2

}
= {1, . . . , h},

ẑ(i , j) = max
C=mink∈[i ]{ĉk},...,Ĉ

(C+ĉj)·P̂(i ,C )·pj .

Input: ε, c , p
1: zmax ← −∞
2: κ←

εmaxi∈N1/2
{pici}

n
3: for j = h + 1, . . . , n + 1

do
4: z ← κ · ẑ(h, j)
5: if zmax < z then
6: zmax ← z
7: end if
8: end for

Output: zmax

Proposition

This algorithm is an FPTAS with a runtime complexity bound of
O(n4/ε).



Extension to Downward Closed Set Systems

Letting F ⊆ {0, 1}n denote
the set of indicator vectors
corresponding to S, consider
the constrained linear
problem:

max
∑
e

cexe

st −
∑
e

ln(pe)xe ≤ − ln(P)

x ∈ F

The previous all-or-nothing lemma also
implies lower bounds on P∗ – the
following corollary.

Corollary

Let x∗ be an optimal solution. Then
P∗ ≡

∏
e∈E p

x∗e
e ≥ min{1/8, pmin/2}.
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Input: c , p, 0 < ε < 1
1: zmax ← −∞
2: for j = h + 1, . . . , n + 1 do

3: xej ← 1

4: for P ∈
{

(1− ε/2)k | k = 1, . . . , d1− ln(8)/ ln(1− ε/2)e
}

do

5: Compute ε/2-approximate solution x with value z for
budgeted problem on ground set N 1

2
∪ {ej} (having fixed

xej = 1).
6: if zmax < z then
7: zmax ← z
8: end if
9: end for

10: end for
Output: zmax
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Example: Probabilistic All-or-Nothing Matching

Now let E be edges of a graph.

max
∏
e∈E

pxee

(∑
f ∈E

cf xf

)
subject to

∑
j∈δ(i)

xij ≤ 1 i ∈ V

xe ∈ {0, 1} e ∈ E .

s1

s2

s3

t1

t2

t3

cs1t1 , ps1t1

cs2t2 , ps2t2

cs3t3 , ps3t3

cs1t2 , ps1t2

cs3t1 , ps3t1

cs2t3 , ps2t3
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Probabilistic All-or-Nothing Matching - cont’d

Proposition

Suppose F that is downward closed, a given ε > 0, and that t is a
running time complexity bound of a (1− ε/2)-approximation
algorithm for the budgeted problem. Then, our outputs a
(1− ε)-approximation with an O

(
n
ε t
)

complexity bound.

Lemma (Berger, Bonifaci, Grandoni, Schäfer, 2009)

For each ε > 0 budgeted maximum matching can be solved to within
(1− ε) of the optimum with a runtime complexity bound of
O(m2/ε+O(1)).

These results imply a PTAS for maximum probabilistic all-or-nothing
graph matching.
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Probabilistic All-or-Nothing Network Path

Let G = (V ,E ) be a directed graph, s, t ∈ V , and let
δ+(i) = {j ∈ V : (i , j) ∈ E} and δ−(i) = {j ∈ V : (j , i) ∈ E}.
For each edge e = (i , j) ∈ E , we are given a positive (integer) profit
ce = cij ≥ 0 and a probability of success pe = pij ∈ [0, 1].

The probabilistic all-or-nothing shortest path problem is to find a path
π from s to t maximizing a similar objective

z(π) =
∑
e∈π

ce
∏
f ∈π

pf .
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Example Application – Project Critical Path Procurement

s v1 v2 · · · vn t
0, ps,v1 0, pv1,v2 0, pv2,v3 0, pv3,v4 0, pvn,t

ca11 , pa11 ca21 , pa21 ca31 , pa31 ca41 , pa41
ca51 , pa51

ca22 , pa22...
ca2k

, pa2k
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Pseudo-polynomial DP Method for All-or-Nothing Path

Z (C , i) =


max

j∈δ−(i)

{
Cpji

Z(C−cji ,j)
C−cji

}
i∈V \δ+(s) or

csi<C

max

{
csipsi , max

j∈δ−(i)\{s}

{
Cpji

Z(C−cji ,j)
C−cji

}}
i ∈ δ+(s),C = csi

−∞ C < 0.

To determine z∗ using the DP method given an upper bound
C̄ ≥

∑
a∈π∗ ca, Z must be evaluated for C = 1, . . . , C̄ . So,

z∗ = max
C=1,...,C̄

Z (C , t).
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FPTAS I: Profit Scaling and Rounding

Profit Rounding and Scaling Approximation Schemes

Input: G = (V ,E ), p, c , ε, `, u
1: a∗ ← argmaxa∈E R(a)
2: while q = 0, . . . , dlog u − log `e − 1 do

3: K ← ε2q`
n−1

4: c̄e ←

{
−∞ ce > 2q+1`

bce/Kc otherwise

5: z̄q ← K max
C=0,...,b 2(n−1)

ε
c Z (C , t, c̄), let πq = π(C , t) be the

corresponding path.
6: end while
7: Select q∗ ∈ argmax{zq}

Output: z(πq)
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Profit Scaling and Rounding Result

Proposition

The profit scaling and rounding algorithm outputs a solution with
objective z ≥ (1− ε)z∗. The complexity of the algorithm is
O( 1

εmn log(u/`))

Corollary

The profit rounding and scaling algorithm invoked with
` = cmin, u = ncmax outputs a solution with objective z ≥ (1− ε)z∗.
The complexity of the algorithm is O( 1

εmn log(ncmax/cmin))

Proposition

The profit rounding and scaling algorithm can be invoked repeatedly
to output a solution with objective z ≥ (1− ε)z∗ with a complexity
bound of O( 1

εm
2n log n).

18 / 40



Subsets Downward Closed Set Systems & Graph Matching Network Paths AoN vs. Partial Success Conclusion Application

Profit Scaling and Rounding Result

Proposition

The profit scaling and rounding algorithm outputs a solution with
objective z ≥ (1− ε)z∗. The complexity of the algorithm is
O( 1

εmn log(u/`))

Corollary

The profit rounding and scaling algorithm invoked with
` = cmin, u = ncmax outputs a solution with objective z ≥ (1− ε)z∗.
The complexity of the algorithm is O( 1

εmn log(ncmax/cmin))

Proposition

The profit rounding and scaling algorithm can be invoked repeatedly
to output a solution with objective z ≥ (1− ε)z∗ with a complexity
bound of O( 1

εm
2n log n).

18 / 40



Subsets Downward Closed Set Systems & Graph Matching Network Paths AoN vs. Partial Success Conclusion Application

Profit Scaling and Rounding Result

Proposition

The profit scaling and rounding algorithm outputs a solution with
objective z ≥ (1− ε)z∗. The complexity of the algorithm is
O( 1

εmn log(u/`))

Corollary

The profit rounding and scaling algorithm invoked with
` = cmin, u = ncmax outputs a solution with objective z ≥ (1− ε)z∗.
The complexity of the algorithm is O( 1

εmn log(ncmax/cmin))

Proposition

The profit rounding and scaling algorithm can be invoked repeatedly
to output a solution with objective z ≥ (1− ε)z∗ with a complexity
bound of O( 1

εm
2n log n).

18 / 40



Subsets Downward Closed Set Systems & Graph Matching Network Paths AoN vs. Partial Success Conclusion Application

FPTAS II: Probability Rounding

Considering an alternative DP:

Zp(P, i) =


max

j∈δ−(i)
{pjiZp(P/pji ) + P · cji} i 6= s,P ≤ 1

0 i = s,P = 1

−∞ i = s,P 6= 1.

Probability Rounding Scheme

Input: G = (V ,E ), p, c , ε

1: For each e ∈ E let p′e = (1− ε)dlog
(1−ε)1/n pee/n

.
2: zp′ = maxk=1,...,ndlog

(1−ε)1/n pmine Zp′
(
(1− ε)k/n, t

)
. Let π be the

corresponding path.
Output: z(π)
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Probability Rounding Result

Proposition

If there exist a > 0 and ke ∈ Z, for each e ∈ E, such that pe = ake ,
then the probability-based DP solves the probabilistic all-or-nothing
path problem in polynomial time.

Proposition

Our probability rounding algorithm computes a solution with objective
at least (1− ε)z∗ in time O(−1

εmn2 log(pmin)).
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MINLP Method

The log-transformed objective is used to formulate a convex
MINLP.

It is linearized using gradient based cuts.

The linearized subproblem given C ⊂ Π ∪ {1}.

max
x ,u

u +
∑
e∈E

ln(pe)xe (1a)

subject to u −
∑

e∈E cexe∑
e∈E ce x̄e

− ln

(∑
e∈E

ce x̄e

)
+ 1 ≤ 0 x̄ ∈ C (1b)

x ∈ Π (1c)

x ∈ {0, 1}m, (1d)

where

Π ≡
{
x ∈ Rm

+

∣∣∣ ∑
(j,i)∈E xji=

∑
(ij)∈E xij , i∈V \{s,t}∑

(s,i)∈E xsi=1,
∑

(j,t)∈E xjt=1

}
.
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Instances with “Non-correlated Probabilities”
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Partially Successful Path Model

Now suppose that the value of a partially executed project depends on
the value of tasks performed up to the point where the first failure
occures. The problem becomes:

max
π∈P(t)

∑
(i ,j)∈π

cij
∏

f ∈π(j)

pf

where π(i) is the subpath from s to i .

A similar objective applies to chains of kidney transplant donations
with an altruistic donor. For example Dickerson, Procaccia and
Sandholm (2013).

FPTAS based on probability rounding can be extended to apply for
this problem (in DAGs).
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Conclusions

Maximum probabilistic all-or-nothing problems are NP-hard.

FPTAS for subsets with running time O(n4/ε).

FPTAS or PTAS for probabilistic all-or-nothing with downward
closed systems depending on the complexity of the constrained
linear problem (PTAS for probabilistic all-or-nothing graph
matchings).

FPTAS methods for probabilistic all-or-nothing paths with
running times: O( 1

εm
2n log n).

Partial success problem: FPTAS. Ongoing and future work:
complexity of this problem and exact solution techniques.
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Thank you!

Questions?

For more information you can also reach me at:
noam.goldberg@biu.ac.il

Online:
N. Goldberg and G. Rudolf. On the complexity and approximation of
the maximum expected value all-or-nothing subset. arXiv preprint
arXiv:1706.07406, 2017.

Submitted:
N. Goldberg and M. Poss. FPTAS for Acyclic Discounted Utility and
Probabilistic Critical Path Problems. Submitted 2018.
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Network Path Interdiction

A two player game between an interdictor and a smuggler.

The smuggler is a network user who attempts to traverse it from
designated source(s) to destination(s) with highest reliability or
profit.

The interdictor is typically an enforcement agency who would like
to prevent (interdict) the use of the network by the smuggler.

Interdiction efforts are subject to a budget constraint.

Simultaneous moves or Stackelberg.
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Terrorist Funding Example
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The Game Setting and Actions Sets

Given a graph G = (V ,A) with n vertices and m arcs.

Sources S ⊆ V and destinations T ⊆ V .

P is an index set of all paths from nodes S to nodes T .

The interdictor continuously allocates a resource subject to a
budget constraint (single resource case) to the arcs

X =
{
x ∈ Rm

+

∣∣ ∑
a∈A xa ≤ B

}
.

The smuggler selects a probability distribution on paths

Y =
{
y ∈ R|P|+

∣∣ ∑
i∈P yi = 1

}
.
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Nonlinear Arc Evasion Probability

For each arc a the probability of evasion pa(xa) depends on the
inspection resource xa:

pa : [0,B]→ [0, 1].
We need to assume that it is logarithmically convex.
We will also assume p′a < 0.

Examples of log-convex evasion probability functions:
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The Nonzero-Sum Game

c(i) and d(i) are path i ’s payoffs, to the smuggler and
interdictor, respectively, and that depend on i ’s source s(i) and
destination t(i).

The utility of the smuggler for (x , y) ∈ X × Y is:

uS(x , y) =
∑
i∈P

yic(i)
∏
a∈Pi

pa(xa)

The interdictor’s utility is given by

uI (x , y) = −
∑
i∈P

yid(i)
∏
a∈Pi

pa(xa).
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Best Responses

Given x∗ the best response of the smuggler is

max
y∈Y

∑
i∈P

yic(i)
∏
a∈Pi

pa(x∗a )

 = max
i∈P

c(i)
∏
a∈Pi

pa(x∗a )

 .

This is a (multiple-pair) most reliable path problem.

Given y∗ the interdictor’s best response is

min
∑
i∈P

y∗i d(i)
∏
a∈Pi

pa(xa)

subject to
∑
a∈A

xa ≤ B

x ≥ 0.
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Nash Equilibria

We say that (x∗, y∗) ∈ X × Y is a Nash equilibrium if

x∗ ∈ argmaxx∈X uX (x , y∗) y∗ ∈ argmaxy∈Y uW (x∗, y)

By an early result for convex-concave games (Rosen 1965), since

uX (x , y∗) and uY (x∗, y) are concave in x and y , respectively, and X
and Y are convex, a Nash equilibrium exists.
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Computing Nash Equilbiria Inspection Allocations

The smuggler selecting the most profitable paths in expectation,
and the interdictor’s payoff increasing in the resource allocated to
this paths, suggests that the minmax allocation yields a NE
(formally proved in paper).

min θ

subject to c(i)
∏
a∈Pi

pa(xa) ≤ θ i ∈ P

∑
a∈A

xa ≤ B

x ≥ 0
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Nash Equilibrium Allocation Intuition

increase xa for a ∈ P1,

increase xa for a ∈ P1 ∪ P2 ,
increase xa for a ∈ P1 ∪ P2 ∪ P3 until the budget is exhausted.

damage

i

c(i)
∏

a∈P1
pa(0)

c(i)(1−
∏

a∈P1
pa(xa))

1

c(1)
∏

a∈P1
pa(0)

2 3 4 5

θ
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Solving for y ∗ given x∗

θ∗
∑

i∈P∗:a∈Pi

d(i)

c(i)
yi =

−pa(x∗a )λ

p′a(x∗a )
, a ∈ A : x∗a > 0

θ∗
∑

i∈P∗:a∈Pi

d(i)

c(i)
yi ≤ −pa(x∗a )λ

p′a(x∗a )
, a ∈ A : x∗a = 0

∑
i∈P∗

yi = 1

yi = 0, c(i)
∏
a∈〉

pa(x∗a ) < θ∗

y , λ ≥ 0.

Inspect a only if ∃i : Pi 3 a and c(i)
∏

a∈〉 pa(x∗a ) = θ∗.
For an inspected arc a ∈ A used by a single path i :

yi = − c(i)

d(i)

pa(x∗a )λ

p′a(x∗a )θ∗
.
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Solving for y∗ given x∗

Proposition

Suppose that (x∗, θ∗) is optimal for the minmax formulation, and
P̂ ⊆ P∗ is a given support and values of Lagrange multipliers ν|P| of
the path constraints. Then y∗ given by

y∗i =


c(i)
d(i)

νi∑
k∈P̂ νk

c(k)
d(k)

i ∈ P̂.

0 i ∈ P \ P̂

together with x∗ forms a Nash equilibrium (x∗, y∗).
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Efficient Solution for x∗

The minmax problem has an exponential number of constraints.

The Ellipsoid method (Shor; Nemirovski & Yudin; Kachiyan)
solves convex optimization/feasibility problems.

Does not require writing down all the constraints.

Polynomial time as long as the separation problem is solved in
polynomial time.

.x
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The Separation, (Multi-Pair) Most Reliable Path Problem

Input: Graph G = (V ,A), arc probabilities pa(x∗a ) for a ∈ A
1: if |T | < |S | then
2: Reorient the graph from T to S and swap the two.
3: end if
4: Compute an MRPP tree from each s ∈ S in G with arc

probabilities pa(x∗a ).
Let P̄ denote the union of these paths over all s ∈ S ′ and t ∈ T .

5: {i∗} ← min
{

argmaxi∈P̄

{
c(i)

∏
a∈Pi

pa(x∗a )
}}

Output: Path i∗ ∈ P

The overall running time is determined by the invocation of
min{|S | , |T |} runs of a variant of Dijkstra’s algorithm, which overall
is O(min{|S | , |T |}(m + n log n)) ⊆ O(n(m + n log n)).
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Complexity of determining x∗ with general log-convex pa

Proposition

The minmax problem can be solved to within an additive error of
ε ∈ (0, 1) in polynomial time in m, logB, |log ε|. In particular, the
ε-solution can be determined in

N(ε) ≤
⌈

2m2

[
2 + log(m + 1) + log

(
ε+ B

ε

)]⌉
+ 1

iterations of the Ellipsoid algorithm with a total runtime complexity
bound of O

(
m4(log n + log

(
B
ε

)
)
)
.
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Nonlinear Matching Interdiction

In a matching setting a smuggler would like to match each s ∈ S
with a t ∈ T .

Under separate pair interdiction the smuggler’s utility becomes

uS(x , y) =
∑
i∈M

yi
∑

(s,t)∈Mi

c(s, t) max
P∈P(s,t)

∏
a∈P

pa(x),

where M is the index set of all matchings and Mi is the set of pairs
associated with matching i .

In an “all-or-nothing” setting, the smuggler’s utility function is

uS(x , y) =
∑
i∈M

yi

 ∑
(s,t)∈Mi

c(s, t))
∏

(s,t)∈Mi

max
P∈P(s,t)

∏
a∈P

pa(x)

 .
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