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m Given n items or activities, each item i € [n] with integer profit
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ses =7 H P
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where S C 21" defines the sets that are feasible (not given as
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m Given n items or activities, each item i € [n] with integer profit
¢;i > 1 and success probability p;, our “generic” probabilistic
all-or-nothing problem is

max C; ;
ses =7 H P
jES i€eS

where S C 21" defines the sets that are feasible (not given as
input).
m Probabilistic All-or-Nothing Subset: S is the power set of [n].

m Constrained problems:

m Extension to S that is a downward closed set system, e.g., S is
the set of all matchings in a graph.
m S is the set of all paths in a DAG.



Subsets
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Probabilistic All-or-Nothing Subset - Complexity

Theorem
This problem is NP-hard.

The proof is by a (nontrivial) reduction from subset
sum: Is there a set S such that ), s ¢; = M?

Useful is the observation that

mys2_alle ':Xé?sﬁnZ%HP'
n n n
max Z CjXj H P & max Z log(pi)xi + log Z CjXj
j=1 i=1 i=1 j=1




Complexity - Cont'd

: . . , _Si
Consider a reduction of subset sum with |same ¢;'s and p; = e ™.

There exists an x € {0,1}" such that >, cix; = M if and only

n n
if max lo x| — & cixi = logM — 1.
x€{0,1}" s <I§l I I) M i:zjl o s

For integer M > 1 and y > 0, f(y) = log(y) — 7 is concave,

with a unique maximum at f(M) = log(M) — 1. Further, for any
positive integer N # M, f(M) — f(N) > o1




Subsets
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Max Probabilistic All-or-Nothing Subset -
Pseudo-Polynomial Algorithm

Fori=1,...,nlet P(i, C) denote the maximum probability of a
subset of {1,...,/} with a profit of exactly C. Consider the DP given
by

max{P(i—1,C),pi-P(i—1,C—¢)} i>landc <C

P(i, C) = P(i—1,C) i>land ¢ > C
’ 1 i>0,C=0
—00 otherwise.

Using a straight-forward upper bound C = S ci,

i=1,...,

n
MaXye{0,1}7 pr" Z cixj = mgx{C -P(n,C) | C= min n{c,-}, ey C} .

J=1

The running time of this algorithm is O(nC).



Subsets
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All-or-Nothing Subset Lemma

Lemma

Suppose S* is (the support of a solution that is) optimal for
all-or-nothing subset with |S*| > 2. Then, for all Q C S*, with

1 1
[licopi <3 IlicsnqPi > 3

Corollary
Suppose S* is (the support of a solution that is) optimal. Then

{ieS*

1
Pi<§}‘§1-




Subsets
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Omitting Small Probability Items?

Consider the instance p = (0.99,0.8,0.18) and ¢ = (110, 120, 1000).

Here, S* = {1, 3} with value
z* =10.99 x 0.18 x (110 4 1000) ~ 197.80 is optimal.

Restricted to large probability items then S = {1,2} would be optimal
with value 182.16.

S =1{1,2,3} has a value ~ 47.05



Maximum Probabilistic All-or-Nothing Subset - FPTAS

Let
N1/2:{I| p12%}2{1a7h}1

2(i,j) = max  (C+&)-P(i, C)-p;.

C:minke[,-]{ék},‘..,C

Input: ¢,¢,p

1: Zpmax & —O0

€ maX;eN. {p,'C,'}
2 ke ——2

3: forj:h+’21l,...,n+1
do
4 z <+ k- 2(h,j)
5 if znax < z then
6: Zmax < Z
7 end if
8: end for
Output: z,ax

This algorithm is an FPTAS with a runtime complexity bound of

O(n*/e).



Extension to Downward Closed Set Systems

The previous all-or-nothing lemma also
implies lower bounds on P* — the
following corollary.

Letting F C {0,1}" denote
the set of indicator vectors
corresponding to S, consider
the constrained linear Corollary

problem: Let x* be an optimal solution. Then
P* =1lece pet > min{1/8, pmin/2}.

" sf e meeen]
st - Zln(pe)xe < —In(P) Y| |

1 [

P

01 02 03 04 05 06
P



Input: ¢,p,0<e<1
1! Zmax <& — 00
2. forj=h+1,...,n+1do

3: Xe; < 1
4. for Pe{(l—¢€/2)" | k=1,...,[1—1In(8)/In(1—¢/2)]} do

5: Compute €/2-approximate solution x with value z for
budgeted problem on ground set N% U {ej} (having fixed
Xe; = 1).

6: if znax < z then

T: Zmax < Z

8: end if

9: end for

10: end for

Output: z,ax

11 /40



Downward Closed Set Systems & Graph Matching

Example: Probabilistic All-or-Nothing Matching

CS1 t1 P51 t1

Now let E be edges of a graph.

T (z cfxf)

ecE feE Csatz) Psate
subject to Z xj <1 ieV

Jj€d(i)

xe € {0,1} ecE.

. CS3 t3 p S3t3

12/40



Probabilistic All-or-Nothing Matching - cont'd

Proposition

Suppose F that is downward closed, a given e > 0, and that t is a
running time complexity bound of a (1 — €/2)-approximation
algorithm for the budgeted problem. Then, our outputs a

(1 — €)-approximation with an O (2t) complexity bound.

Lemma (Berger, Bonifaci, Grandoni, Schafer, 2009)

For each € > 0 budgeted maximum matching can be solved to within
(1 — €) of the optimum with a runtime complexity bound of

O(mz/e-i-O(l))_

These results imply a PTAS for maximum probabilistic all-or-nothing
graph matching.



Network Paths

Probabilistic All-or-Nothing Network Path

Let G = (V, E) be a directed graph, s,t € V, and let
st(y={j€eV:(ij)eE}and o~ (i)={jeV:(ji) e E}

For each edge e = (/,j) € E, we are given a positive (integer) profit
Ce = ¢jj > 0 and a probability of success p. = pj; € [0, 1].

The probabilistic all-or-nothing shortest path problem is to find a path
7 from s to t maximizing a similar objective

z(m) = Z Ce H pf.

ecm fer

14 /40



Network Paths

Example Application — Project Critical Path Procurement

0, ps,v;

e g TP L 2P g 2P gy
W Cazys Paz Cayys Pay Casy 5 Pas;

C322 9 P ano

Ca11 9 pa11

C32k7 p32k

15 /40



Network Paths

Pseudo-polynomial DP Method for All-or-Nothing Path

Z(C—gjij) ieV\ot
J'Enga)((i){iji i } a2
Z(C,i) = { p.- C . Z(C—gjii) } e ot C = c.
max cs,ps,,jeém(?)><{s}{ Pii—c=¢; } i (s), Csi
—00 Cc<o.

To determine z* using the DP method given an upper bound
C > .cnu Ca Z must be evaluated for C =1,. . So,

z"= max _Z(C,t).
c=1,..,C

16 /40



Network Paths
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FPTAS I: Profit Scaling and Rounding

Profit Rounding and Scaling Approximation Schemes

Input: G=(V,E),p,c,e,l,u
1: a* < argmax,cg R(a)
2: while ¢ =0,...,[logu—logl] —1 do
3: K+ Z{qf
_ —00 Ce > 2911y
¢ |ce/K| otherwise
b: Zq — KmaxC:() l-z(nfl)J Z(C, t, E), let Mg = 7T(C, t) be the
corresponding path. ’
6: end while
7: Select g* € argmax{zq}
Output: z(7g)

4:

17 /40



Network Paths
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Profit Scaling and Rounding Result

The profit scaling and rounding algorithm outputs a solution with

*

objective z > (1 — €)z*.
O(Xmnlog(u/t))

The complexity of the algorithm is

18 /40



Network Paths
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Profit Scaling and Rounding Result

Proposition

The profit scaling and rounding algorithm outputs a solution with
objective z > (1 — €)z*. The complexity of the algorithm is
O(Xmnlog(u/t))

Corollary

The profit rounding and scaling algorithm invoked with
£ = Cmin, U = NCmax outputs a solution with objective z > (1 — €)z*.
The complexity of the algorithm is O(Xmnlog(ncmax/Cmin))

€

18 /40



Network Paths
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Profit Scaling and Rounding Result

Proposition

The profit scaling and rounding algorithm outputs a solution with
objective z > (1 — €)z*. The complexity of the algorithm is
O(Xmnlog(u/t))

Corollary

The profit rounding and scaling algorithm invoked with
£ = Cmin, U = NCmax outputs a solution with objective z > (1 — €)z*.
The complexity of the algorithm is O( Lmn log(nCmax/ Cmin))

€

Proposition

The profit rounding and scaling algorithm can be invoked repeatedly
to output a solution with objective z > (1 — €)z* with a complexity
bound of O(m?nlog n).

€

18 /40



Network Paths
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FPTAS IlI: Probability Rounding

Considering an alternative DP:
.gga?.){pﬁzp(/’/nﬁ) +P-g} i#s,P<1
Jeo—(i
Zy(P.i) =10 i=s,P=1
—00 | = S, P 75 1.

Probability Rounding Scheme

Input: G =(V,E),p,c,e
1: Foreach e € E let p, =
20 Zy = maxg—;

(1 _ E)ﬂog(l’e)l/" Pe]/".

seees (108, 11/ Prnin Ly ((1 - E)k/”, t). Let 7 be the

corresponding path.
Output: z(7)

19 /40



Network Paths
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Probability Rounding Result

Proposition

If there exist a > 0 and ke € Z, for each e € E, such that pe = ale,
then the probability-based DP solves the probabilistic all-or-nothing
path problem in polynomial time.

Proposition

Our probability rounding algorithm computes a solution with objective
at least (1 — €)z* in time O(—2Xmn? log(pmin))-

20 /40



Network Paths
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MINLP Method

m The log-transformed objective is used to formulate a convex
MINLP.
m It is linearized using gradient based cuts.

The linearized subproblem given C C MU {1}.

max u+ Z In(pe)xe (1a)
ecE

. ZeeE CeXe - _

subject to v — 27_ —In Z CeXe | +1<0 xe€ C (1b)
ecE CeXe ecE
x el (1c)
x € {0,1}™, (1d)
where
— m | 2d.neeXi=>ee Xi>  i€V\{s,t} }
n= {X € R } (s,i) eEXsr—l Z(J eEXJ't:1 ’

21 /40



Instances with “Non-correlated Probabilities”
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AoN vs. Partial Success

Partially Successful Path Model

Now suppose that the value of a partially executed project depends on
the value of tasks performed up to the point where the first failure
occures. The problem becomes:

a2 i 1] er
(ij)em  fen(j)

where 7(/) is the subpath from s to i.

A similar objective applies to chains of kidney transplant donations
with an altruistic donor. For example Dickerson, Procaccia and
Sandholm (2013).

FPTAS based on probability rounding can be extended to apply for
this problem (in DAGs).

23 /40



Conclusion

Conclusions

m Maximum probabilistic all-or-nothing problems are NP-hard.

m FPTAS for subsets with running time O(n*/e).

m FPTAS or PTAS for probabilistic all-or-nothing with downward
closed systems depending on the complexity of the constrained
linear problem (PTAS for probabilistic all-or-nothing graph
matchings).

m FPTAS methods for probabilistic all-or-nothing paths with
running times: O(2m?nlog n).

m Partial success problem: FPTAS. Ongoing and future work:
complexity of this problem and exact solution techniques.

24 /40



Conclusion

Thank you!

Questions?

For more information you can also reach me at:
noam.goldberg®@biu.ac.il

Online:

N. Goldberg and G. Rudolf. On the complexity and approximation of
the maximum expected value all-or-nothing subset. arXiv preprint
arXiv:1706.07406, 2017.

Submitted:
N. Goldberg and M. Poss. FPTAS for Acyclic Discounted Utility and
Probabilistic Critical Path Problems. Submitted 2018.

25 /40



Network Path Interdiction

m A two player game between an interdictor and a smuggler.
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Network Path Interdiction

A two player game between an interdictor and a smuggler.

The smuggler is a network user who attempts to traverse it from
designated source(s) to destination(s) with highest reliability or
profit.

m The interdictor is typically an enforcement agency who would like
to prevent (interdict) the use of the network by the smuggler.

Interdiction efforts are subject to a budget constraint.

Simultaneous moves or Stackelberg.
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Application

The Game Setting and Actions Sets

m Given a graph G = (V/, A) with n vertices and m arcs.
m Sources S C V and destinations T C V.
m P is an index set of all paths from nodes S to nodes T.

m The interdictor continuously allocates a resource subject to a
budget constraint (single resource case) to the arcs

X={x€R" | Y, x.<B}.

m The smuggler selects a probability distribution on paths

P
Y:{YERU | Yiepyvi=1 }

28 /40



Application

Nonlinear Arc Evasion Probability

For each arc a the probability of evasion p,(x,) depends on the
inspection resource X;:

m p,:[0,B] —[0,1].

m We need to assume that it is logarithmically convex.

m We will also assume p, < 0.

Examples of log-convex evasion probability functions:

(b) pa(z) = ﬁﬁz, a>1,8>0
29 /40



Application

The Nonzero-Sum Game

m ¢(i) and d(i) are path i's payoffs, to the smuggler and
interdictor, respectively, and that depend on i's source s(i) and
destination (/).

m The utility of the smuggler for (x,y) € X x Y is:

us(x,y) = yic(i) T pa(xa)

ieP acP;

m The interdictor's utility is given by

u(x,y) ==Y yid(i) [] palxs).

ieP acP;

30/40



Application

Best Responses

m Given x* the best response of the smuggler is

max ZYiC(i) H pa(x3) ¢ = max c(i) H Pa(x5)
y ieP acP; ' acP;

This is a (multiple-pair) most reliable path problem.
m Given y* the interdictor's best response is

min Zy;kd(i) H Pa(xa)
i€P acP;

subject to Zxa <B
acA
x > 0.

31/40



Application

Nash Equilibria

We say that (x*,y*) € X x Y is a Nash equilibrium if
x* € argmax,cx ux(x,y™) y" € argmax,cy uw(x*,y)
By an early result for convex-concave games (Rosen 1965), since

ux(x,y*) and uy(x*,y) are concave in x and y, respectively, and X
and Y are convex, a Nash equilibrium exists.

32/40



Application

Computing Nash Equilbiria Inspection Allocations

m The smuggler selecting the most profitable paths in expectation,
and the interdictor’s payoff increasing in the resource allocated to
this paths, suggests that the minmax allocation yields a NE
(formally proved in paper).

min 0
subject to c(7) H pa(xs) <6 ieP
acP;
> <8
acA
x>0

33/40



Nash Equilibrium Allocation Intuition
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Nash Equilibrium Allocation Intuition

m increase x; for a € Py,
m increase x; forae€ PiUP> ,
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Nash Equilibrium Allocation Intuition

m increase x;, for a € Py,
B increase x; forae PLUP, ,
m increase x, for a € P; U P> U P3 until the budget is exhausted.

damage c(1) [ep, Pa(0)
m (/)] [.ep, Pa(0)
m c(I)(1 - [.ep, Pa(xa))




Solving for y* given x*

. o (XA

0" Z @y; = %, acA:x;>0
iepaep, 1) Ps(x3)

0" Z @y; < M, acA:x;=0
jepaep, €U Ps(x3)

Z Yi = 1

iep*

Yi = 0, c(N ] pa(x3) <6

ac)
y,A=>0.

m Inspect a only if 3i: P;  a and ¢(/) Ha€> pa(x) = 6*.
m For an inspected arc a € A used by a single path i:
c(i) pa(x3)A

YT p(x)0



Application

Solving for y* given x*

Suppose that (x*,0%) is optimal for the minmax formulation, and
P C P* is a given support and values of Lagrange multipliers V|| of
the path constraints. Then y* given by

d,l/,‘ . =
’ —d07 g [ €P.

0 ieP\P

together with x* forms a Nash equilibrium (x*, y*).

36

40



Application

Efficient Solution for x*

The minmax problem has an exponential number of constraints.

m The Ellipsoid method (Shor; Nemirovski & Yudin; Kachiyan)
solves convex optimization /feasibility problems.

m Does not require writing down all the constraints.

m Polynomial time as long as the separation problem is solved in
polynomial time.
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Application

The Separation, (Multi-Pair) Most Reliable Path Problem

Input: Graph G = (V, A), arc probabilities p,(x}) for a € A
1. if |T| < |S| then
2:  Reorient the graph from T to S and swap the two.
3: end if
4. Compute an MRPP tree from each s € S in G with arc
probabilities pa(xZ).
Let P denote the union of these paths over all s € S’ and t € T.
5. {i*} < min {argmaxieﬁ {c(i) [Lep, pa(xj)}}
Output: Path i* € P

The overall running time is determined by the invocation of
min{|S|,|T|} runs of a variant of Dijkstra's algorithm, which overall
is O(min{|S|,|T|}(m+ nlogn)) C O(n(m + nlog n)).

38 /40



Application

Complexity of determining x* with general log-convex p,

Proposition

The minmax problem can be solved to within an additive error of
e € (0,1) in polynomial time in m, log B, |loge|. In particular, the
e-solution can be determined in

N(e) < [2m2 [2 + log(m + 1) + log (#)H +1

iterations of the Ellipsoid algorithm with a total runtime complexity
bound of O (m*(log n + log (£))).

39 /40



Application

Nonlinear Matching Interdiction

m In a matching setting a smuggler would like to match each s € S
withate T.

m Under separate pair interdiction the smuggler’s utility becomes
= E Vi E c(s, max l_Ipa
: PeP(s t)
ieEM  (s,t)eM;

where M is the index set of all matchings and M; is the set of pairs
associated with matching /.

® In an “all-or-nothing” setting, the smuggler’s utility function is

= ¥ >, cst) I max T pa(x)
7 aeP

ieM (s,t)eM; (s,t)eM;
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N=>yn | X2 s ] Pefggaﬁtha
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