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Abstract. We show that the largest possible diameter δ(d, k) of a d-dimen-
sional polytope whose vertices have integer coordinates ranging between 0 and k is
at most kd− ⌈2d/3⌉ − (k − 3) when k ≥ 3. In addition, we show that δ(4, 3) = 8.
This substantiates the conjecture whereby δ(d, k) is at most ⌊(k + 1)d/2⌋ and is
achieved by a Minkowski sum of lattice vectors.

1. Introduction

The convex hull of a set of points with integer coordinates is called a
lattice polytope. If all the vertices of a lattice polytope are drawn from
{0, 1, . . . , k}d, it is referred to as a lattice (d, k)-polytope. The diameter of
a polytope P , denoted by δ(P ), is the diameter of its graph. The quan-
tity we are interested in is the largest possible diameter δ(d, k) of a lattice
(d, k)-polytope.

At the end of the 1980’s, Naddef [12] showed that δ(d, 1) = d. A con-
sequence of this result is that all lattice (d, 1)-polytopes satisfy the Hirsch
bound: their diameter is at most the number of their facets minus their
dimension. While polytopes violating the Hirsch bound have been found
by Santos [14], many questions related with the diameter of polytopes, and
more generally with the combinatorial, geometric, and algorithmic aspects
of linear optimization remain open. Related recent results include the suc-
cessive tightening by Todd [17] and Sukegawa [15] of the upper bound on the
diameter of polytopes due to Kalai and Kleitman [10], a counterexample to
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a continuous analogue of the polynomial Hirsch conjecture by Allamigeon,
Benchimol, Gaubert, and Joswig [2], and the validation that transportation
polytopes satisfy the Hirsch bound by Borgwardt, De Loera, and Finhold [5].
For additional related results, we refer the reader to [2,4,5,14,15,17] and ref-
erences therein.

The result of Naddef was generalized in the beginning of the 1990’s by
Kleinschmidt and Onn [11] who proved that δ(d, k) ≤ kd. In a recent arti-
cle, Del Pia and Michini [7] strengthened this bound to δ(d, k) ≤ kd− ⌈d/2⌉
when k ≥ 2, and showed that δ(d, 2) = ⌊3d/2⌋.

Pursuing the approach introduced in [7,11,12], we further improve this
upper bound, provided k ≥ 3.

Theorem 1.1. The following inequalities hold :
(i) δ(d, 3) ≤ ⌊7d/3⌋ when d ≡ 2mod 3,
(ii) δ(d, 3) ≤ ⌊7d/3⌋ − 1 when d �≡ 2mod 3,
(iii) δ(d, k) ≤ kd− ⌈2d/3⌉ − (k − 2) when k ≥ 4.

Investigating the lower bound on δ(d, k), Deza, Manoussakis, and Onn [8]
introduced the primitive lattice polytope H1(d, p) as the Minkowski sum of
the following set of lattice vectors:

{v ∈ Z
d : �v�1 ≤ p , gcd(v) = 1 , v ≻ 0},

where gcd(v) is the largest integer dividing all the coordinates of v, and
where v ≻ 0 means that the first non-zero coordinate of v is positive. They
showed that, for any k ≤ 2d− 1, there exists a subset of the generators of
H1(d, 2) whose Minkowski sum is, up to translation, a lattice (d, k)-polytope
with diameter ⌊(k+1)d/2⌋. As a consequence, they obtain the lower bound

δ(d, k) ≥ ⌊(k + 1)d/2⌋

whenever k ≤ 2d− 1, and propose the following conjecture:

Conjecture 1.2 [8]. δ(d, k) is at most ⌊(k + 1)d/2⌋, and is achieved,
up to translation, by a Minkowski sum of lattice vectors.

The 2-dimensional case had been previously studied in the early 1990’s
independently by Thiele [16], Balog and Bárány [3], and Acketa and
Žunić [1]. It can also be found in Ziegler’s book [18] as Exercise 4.15.
These results on δ(2, k) can be summarized as follows:

Theorem 1.3 [1,3,8,16]. For any k, there exists a value of p such that
δ(2, k) is achieved, up to translation, by the Minkowski sum of a subset of the

generators of H1(2, p). Moreover, for any p, and for k =
∑p

i=1 iφ(i), δ(2, k)
is uniquely achieved, up to translation, by H1(2, p), where φ denotes Euler’s

totient function. Thus, δ(2, k) = 6( k
2π )

2/3 +O(k1/3 log k).
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Chadder and Deza [6] showed using a computer-assisted proof that
δ(3, 4) = 7 and δ(3, 5) = 9. We obtain a previously unknown value of δ(d, k)
as a consequence of Theorem 1.1 and of the lower bound on δ(d, k) provided
in [8]:

Corollary 1.4. δ(4, 3) = 8.

All the values of δ(d, k) known so far are reported in Table 1.

k

d

1 2 3 4 5 6 7 8 9 10

1 1 1 1 1 1 1 1 1 1 . . .

2 2 3 4 4 5 6 6 7 8 . . .

3 3 4 6 7 9

4 4 6 8

...
...

...

d d ⌊ 3

2
d⌋

Table 1: The largest possible diameter δ(d, k) of a lattice (d, k)-polytope

This paper is organized as follows. In Section 2, we prove slightly more
general versions of two lemmas from [7]. Theorem 1.1 is proven by induction
on the dimension in Section 3. We discuss the limitations of the approach
and provide some perspectives for possible extensions of our results in Sec-
tion 4.

2. Preliminary lemmas

Given two vertices u and v of a polytope P , we call d(u, v) their distance
in the graph of P . If F is a face of P , we further call

d(u, F ) = min{d(u, v) : v ∈ F}.

The coordinates of a vector x ∈ R
d will be denoted by x1 to xd, and

its scalar product with a vector y ∈ R
d by x · y. We first recall a lemma

introduced by Del Pia and Michini, see Lemma 2 in [7]:

Lemma 2.1 [7]. Consider a lattice (d, k)-polytope P . If u is a vertex of P
and c ∈ R

d a vector with integer coordinates, then d(u, F ) ≤ c · u− γ where

γ = min{c · x : x ∈ P} and F = {x ∈ P : c · x = γ}.

Lemma 2.2 is a generalization of Lemma 4 from [7]:

Acta Mathematica Hungarica

IMPROVED BOUNDS ON THE DIAMETER OF LATTICE POLYTOPES 3



Acta Mathematica Hungarica

4 A. DEZA and L. POURNIN

Lemma 2.2. Consider a lattice (d, k)-polytope P . If I is a subset of
{1, . . . d} such that li ≤ xi ≤ hi for all x ∈ P and all i ∈ I , then

δ(P ) ≤ δ(d− |I|, k) +
∑

i∈I

(hi − li).

Proof. We use an induction on |I|. The statement is obviously true
when I is empty, and simplifies to that of Lemma 4 from [7] when |I| = 1.

Assume that, for some integer n ≥ 1, the statement holds when |I| = n.
Further assume that |I| = n+ 1. Consider an index j ∈ I and respectively
denote by Lj and by Hj the intersections of P with {x ∈ R

d : xj = lj} and
with {x ∈ R

d : xj = hj}. We can assume without loss of generality that Lj

and Hj are both non-empty. Note that Lj and Hj are faces of P and,
possibly up to an affine transformation, lattice (d− 1, k)-polytopes. By as-
sumption, if x belongs to either Lj or Hj , then li ≤ xi ≤ hi for all i ∈ I \ {j}.
Therefore, by induction, the following inequality holds:

(1) max{δ(Lj), δ(Hj)} ≤ δ(d− |I|, k) +
∑

i∈I\{j}

(hi − li).

Since P is a lattice polytope, d(x,Lj) ≤ xj − lj and d(x,Hj) ≤ hj − xj
for any vertex x of P . Thus, for any two vertices u and v of P , we either
have the inequality d(u,Lj) + d(v, Lj) ≤ hj − lj (when uj + vj ≤ hj + lj) or
the inequality d(u,Hj) + d(v,Hj) ≤ hj − lj (when uj + vj > hj + lj). As a
consequence,

(2) δ(P ) ≤ max{δ(Lj), δ(Hj)}+ hj − lj.

Combining inequalities (1) and (2) completes the proof. �

The following result is obtained by invoking Lemma 2.1 for two vertices
u and v of a lattice (d, k)-polytope P , with the same, well-chosen vector c.

Lemma 2.3. Consider two vertices u and v of a lattice (d, k)-polytope P .
If I is a subset of {1, . . . , d} with cardinality at most 3 such that ui + vi ≤ k
when i ∈ I , then the following inequality holds:

d(u, v) ≤ δ(d− |I|, k) +
∑

i∈I

(ui + vi).

Proof. The statement is obviously true when I is empty. Therefore,
we assume that 1 ≤ |I| ≤ 3 in the remainder of the proof.

Consider the vector c of Rd such that ci is equal to 1 if i ∈ I and to 0
otherwise. By Lemma 2.1, any vertex x of P satisfies

d(x, F ) ≤ c · x− γ,
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where γ = min{c · x : x ∈ P} and F = {x ∈ P : c · x = γ}.
Hence, if u and v are two vertices of P , then

(3) d(u, v) ≤ δ(F ) + c · (u+ v)− 2γ.

Observe that, for any x ∈ F and any i ∈ I , the following double inequal-
ity holds since the coordinates of x are non-negative and since c · x = γ:

(4) 0 ≤ xi ≤ γ.

According to [13, Theorem 3.3], there exists an index j ∈ {1, . . . , d} such
that the orthogonal projection F̄ of F on the hyperplane {x ∈ R

d : xj = 0}
satisfies δ(F̄ ) = δ(F ). Note that F̄ is a lattice (d− 1, k)-polytope and that
(4) still holds for any x ∈ F̄ and any i ∈ I . Hence, applying Lemma 2.2 to F̄
and to the set of indices I \ {j} results in the following upper bound:

δ(F̄ ) ≤ δ(d− 1− |I \ {j}|, k) + (|I| − 1)γ.

Observe that |I \ {j}| is either |I| − 1 (if j ∈ I), or |I| (if j �∈ I). In both
cases, δ(d− 1− |I \ {j}|, k) ≤ δ(d− |I|, k). As in addition, F and F̄ have
the same diameter, the above upper bound on δ(F̄ ) yields

δ(F ) ≤ δ(d− |I|, k) + (|I| − 1)γ,

which, combined with (3), results in the following inequality:

(5) d(u, v) ≤ δ(d− |I|, k) +
∑

i∈I

(ui + vi) + (|I| − 3)γ.

As γ ≥ 0 and |I| ≤ 3, this completes the proof. �

A key ingredient for the inductive step of our main proof is the following.

Remark 2.4. Note that the term (|I| − 3)γ in the right-hand side of
(5) is negative if both 1 ≤ |I| ≤ 2 and the sum

∑
i∈I xi is non-zero for all

x ∈ P . As a consequence, the inequality provided by Lemma 2.3 is strict in
this case.

We now state a technical lemma that will be invoked twice in Section 3.

Lemma 2.5. Let u0, . . . , up be the vertices of a lattice (2, k)-polytope,
labeled clockwise or counter-clockwise. If up = (0, 0) and u0 − u1 is either

(1, 0), (0, 1), or (1, 1), then uj1 + uj2 + 2 ≤ uj−1
1 + uj−1

2 whenever 2 ≤ j < p.

Proof. By the definition of lattice (d, k)-polytopes, the considered poly-
gon is contained in the positive orthant. Assuming that u0 − u1 is either
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(u01; u
0
2)(0; u02)

(u01; 0)

up¡1

(0; 0)

)

u1

up

u2

Fig. 1: A sketch of the lattice polygon with vertices u0, . . . , up

(1, 0), (0, 1), or (1, 1), this polygon is also necessarily contained in a transla-
tion of the negative orthant. More precisely, a point x that belongs to this
polygon must satisfy x1 ≤ u01 and x2 ≤ u02.

As a consequence, the polygon is inscribed in the rectangle [0, u01]× [0, u02].
This situation is illustrated by Fig. 1 when the vertices are labeled clockwise
and u0 − u1 is equal to (0, 1).

Now observe that, by convexity, the only edges of the polygon that are
possibly horizontal or vertical are incident to u0 or to up. Hence, uj1 + 1

≤ uj−1
1 and uj2 + 1 ≤ uj−1

2 for all i ∈ {2, . . . , p− 1}. �

3. The inductive step and the proof of Theorem 1.1

The proof of Theorem 1.1 is done by induction on the dimension. The
inductive step is split into two main cases, addressed by Lemmas 3.1 and 3.2.

Lemma 3.1. Let P be a lattice (d, k)-polytope such that d ≥ 3 and k ≥ 3.
Let u and v be two vertices of P such that ui + vi = k for all i ∈ {1, . . . , d}.
If there exists a vertex w adjacent to u in the graph of P such that w − u
has at least two non-zero coordinates, then one of the following inequalities
holds:

(i) d(u, v) ≤ δ(d− 1, k) + k − 1,
(ii) d(u, v) ≤ δ(d− 2, k) + 2k − 2,
(iii) d(u, v) ≤ δ(d− 3, k) + 3k − 2.

Proof. Assume that there exists a vertex w adjacent to u in the graph
of P such that w − u has at least two non-zero coordinates. For any index
j ∈ {1, . . . , d} such that uj �= wj , we can require that wj < uj by if needed,
replacing P by its symmetric with respect to the hyperplane {x ∈ R

d : xj =
k/2}.

First assume that uj −wj ≥ 2 for some index j ∈ {1, . . . , d}. In this case,
vj + wj ≤ k − 2, and invoking Lemma 2.3 with I = {j} yields

d(v,w) ≤ δ(d− 1, k) + k − 2.
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As u and w are adjacent in the graph of P , one then obtains (i) from
the triangle inequality. We therefore assume in the remainder of the proof
that 0 ≤ uj − wj ≤ 1 for all j ∈ {1, . . . , d}.

Let i1 and i2 be distinct indices such that ui1 = wi1 +1 and ui2 = wi2 +1.
Invoking Lemma 2.3 with I = {i1, i2} yields

(6) d(v,w) ≤ δ(d− 2, k) + 2k − 2.

According to Remark 2.4, if

F = {x ∈ P : xi1 + xi2 = 0}

is empty, then (6) is strict. In this case, one obtains (ii) from the triangle
inequality because u is adjacent to w in the graph of P . In the sequel, we
will further assume that F is non-empty. In particular, F is a non-empty
face of P of dimension at most d− 2. Consider a sequence u0, . . . , up of
vertices of P that forms a path from u to F in the graph of P . In other
words, u0 = u, up ∈ F , and uj−1 is adjacent to uj in the graph of P when-
ever 0 < j ≤ p. It can be assumed that for all j ∈ {1, . . . , p}, the following
inequality holds:

(7) uji1 + uji2 ≤ uj−1
i1

+ uj−1
i2

− 1.

For instance, such a path is provided by the simplex algorithm when
minimizing xi1 + xi2 from vertex u under the constraint x ∈ P . It can also
be required that u1 = w. Note that, because of this requirement, inequality
(7) is strict when j = 1. Denote by Su the square made up of the points
x ∈ [0, kd] such that xi = u0i whenever i ∈ {1, . . . , d} \ {i1, i2}. We will now
review two cases depending on whether the path u0 ,. . . , up remains in Su

or not. In each case, we will prove that (i), (ii) or (iii) holds.
Assume that the path u0, . . . , up does not remain within Su. In this case,

there exists an index i3 ∈ {1, . . . , d} \ {i1, i2} such that uri3 �= u0i3 for some in-
dex r ∈ {1, . . . , p}. Assume that r is the smallest such index, or equivalently
that vertices u0 to ur−1 all belong to Su. As above, we can require that
uri3 < u0i3 by if needed, replacing P by its symmetric with respect to the

hyperplane {x ∈ R
d : xi3 = k/2}. Recall that inequality (7) holds whenever

1 ≤ j ≤ r, and is strict when j = 1. As in addition, uri3 < u0i3 , we have

∑

i∈I

(uri + vi) ≤ 3k − r − 2,

where I = {i1, i2, i3}. Hence, by Lemma 2.3,

d(ur, v) ≤ δ(d− 3, k) + 3k − r − 2.

As d(u, ur) is at most r, one obtains (iii) from the triangle inequality.
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Now assume that the path u0, . . . , up remains within Su. In this case,
u0 to up are, up to an affine transformation, the vertices of a lattice (2, k)-
polygon satisfying the requirements of Lemma 2.5. In particular, if p ≥ 3,
then Lemma 2.5 yields u2i1 + u2i2 + 2 ≤ u1i1 + u1i2 . As a consequence,

∑

i∈I

(u2i + vi) ≤ 2k − 4,

where I = {i1, i2}, and by Lemma 2.3,

d(u2, v) ≤ δ(d− 2, k) + 2k − 4.

As d(u, u2) ≤ 2, one obtains (ii) from the triangle inequality. We there-
fore assume that p ≤ 2 from now on.

Consider a sequence v0, . . . , vq of vertices of P that forms a path from v
to F in the graph of P . In other words, v0 = v, vq ∈ F , and vj−1 is adjacent
to vj in the graph of P whenever 0 < j ≤ q. It can be required that for all
j ∈ {1, . . . , p}, the following inequality holds:

(8) vji1 + vji2 ≤ vj−1
i1

+ vj−1
i2

− 1,

by assuming, for instance, that this path is provided by the simplex algo-
rithm when minimizing xi1 + xi2 from vertex v under the constraint x ∈ P .
Denote by Sv the square made up of the points x ∈ [0, kd] such that xi = v0i
whenever i ∈ {1, . . . , d} \ {i1, i2}. We proceed as with sequence u0, . . . , up

and review two sub-cases depending on whether v0, . . . , vq all belong to Sv

or not.
Assume that vertices v0, . . . , vq do not all belong to Sv . In this case,

there exists i3 ∈ {1, . . . , d} \ {i1, i2} such that vri3 �= v0i3 for some index r ∈
{1, . . . , q}. Assume that r is the smallest such index. In particular, vertices
v0 to vr−1 all belong to Sv. We can again require that vri3 < v0i3 by if needed,

replacing P by its symmetric with respect to the hyperplane {x ∈ R
d : xi3 =

k/2}.
As inequality (8) holds whenever 1 ≤ j ≤ r, as wi1 +wi2 ≤ k − 2, and as

vri3 < v0i3 , we obtain the following:

∑

i∈I

(vri + wi) ≤ 3k − r − 3,

where I = {i1, i2, i3}. Therefore, Lemma 2.3 yields:

d(vr, w) ≤ δ(d− 3, k) + 3k − r − 3.

Since d(v, vr) is at most r, and since w is adjacent to u in the graph
of P , one obtains (iii) from the triangle inequality.
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Now assume that all the vertices v0, . . . , vq belong to Sv . Observe
that if v0i1 ≥ v1i1 + 2 or v0i2 ≥ v1i2 + 2, then using I = {i1} in the former case
and I = {i2} in the latter, Lemma 2.3 immediately provides inequality (i).
We therefore assume that the differences v0i1 − v1i1 and v0i2 − v1i2 are both
at most 1. By (8), the sum of these differences is at least 1, and each of
them must therefore be non-negative. In this case, v0 to vq are, up to an
affine transformation, the vertices of a lattice (2, k)-polygon satisfying the
requirements of Lemma 2.5. In particular, if q ≥ 3, then Lemma 2.5 yields
v2i1 + v2i2 + 2 ≤ v1i1 + v1i2 . As a consequence,

∑

i∈I

(v2i + wi) ≤ 2k − 5,

where I = {i1, i2}, and by Lemma 2.3,

d(v2, w) ≤ δ(d− 2, k) + 2k − 5.

As d(v, v2) ≤ 2 and d(u,w) = 1, inequality (ii) is again obtained by using
the triangle inequality, and we assume that q ≤ 2.

We have narrowed the possibilities to p ≤ 2 and q ≤ 2. Hence,

d(u, v) ≤ δ(F ) + 4.

As F is a lattice (d− 2, k)-polytope and as k ≥ 3, the right-hand side
of this inequality is bounded above by δ(d− 2, k) + 2k − 2. Therefore, (ii)
holds. �

Lemma 3.2. Let P be a lattice (d, k)-polytope with d ≥ 3 and k ≥ 3.
Let u and v be two vertices of P . If both u and v belong to {0, k}d, and
ui + vi = k for all i ∈ {1, . . . , d}, then one of the following inequalities holds:

(i) d(u, v) ≤ δ(d− 1, k) + k − 1,
(ii) d(u, v) ≤ δ(d− 2, k) + 2k − 2,
(iii) d(u, v) ≤ δ(d− 3, k) + 3k − 2.

Proof. Assume that u ∈ {0, k}d, v ∈ {0, k}d, and ui + vi = k whenever
1 ≤ i ≤ d. Consider an index j ∈ {1, . . . , d}. We can assume without loss
of generality that uj = 0 and vj = k by, if needed, replacing P by its sym-
metric with respect the the hyperplane {x ∈ R

d : xj = k/2}. Repeating this
for all coordinates, we can therefore require that ui = 0 and vi = k for all
i ∈ {1, . . . , d}.

Let F = {x ∈ P : x1 = 0}. Observe that d(v, F ) ≤ k. This inequality is
obtained, for instance, by invoking Lemma 2.1 with the vector c such that
ci is equal to 1 when i = 1 and to 0 otherwise. We will review three cases,
depending on which vertices of F are at distance at most k from v in the
graph of P .
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First assume that there exists a vertex w of F such that d(v,w) ≤ k
and w has at least two coordinates distinct from k other than w1. Let i1
and i2 be two distinct indices in {2, . . . , d} such that wi1 < k and wi2 < k.
Let G = {x ∈ F : xi1 + xi2 = 0}. In this case,

∑

i∈I

(ui + wi) ≤ 2k − 2,

where I = {1, i1, i2}. Hence, by Lemma 2.3,

d(u,w) ≤ δ(d− 3, k) + 2k − 2.

As d(v,w) ≤ k, using the triangle inequality provides (iii).
Now assume that there exists a vertex w of F such that d(v,w) ≤ k and w

has exactly one coordinate distinct from k other than w1. Let j ∈ {2, . . . , d}
be an index such that wj < k. We consider two sub-cases depending on the
value of wj . First assume that wj ≤ k − 2. In this case, one obtains the
following inequality by invoking Lemma 2.3 with I = {j}:

d(u,w) ≤ δ(d− 2, k) + k − 2,

As d(v,w) ≤ k, the triangle inequality then provides (ii) because d(v,w)
≤ k. Now assume that wj = k − 1. In this case, consider face G of P made
up of all the points x ∈ P such that xi = k when i ∈ {2, . . . , d} \ {j}. Note
that G is at most 2-dimensional and at least 1-dimensional because it con-
tains both v and w. In other words, G is either an edge of P , or one of its
polygonal faces.

Since vj = k and wj = k− 1, v and w necessarily have distance at most 2
in the graph of G. Indeed, either they are adjacent in this graph, or there
exists a unique vertex x of G, such that xj = k and 1 ≤ x1 < k. There can-
not be another such vertex because it would be collinear with x and v. The
vertices of G adjacent to x are then v and w, and their distance is at most 2.
As a consequence,

d(u, v) ≤ δ(d− 1, k) + 2.

Since k ≥ 3, inequality (i) follows.
Finally, assume that the unique vertex w of F such that d(v,w) ≤ k satis-

fies w1 = 0 and wi = k when 2 ≤ i ≤ d. In this case, the segment with vertices
v and w is an edge of P . Hence, d(v, F ) = 1 and d(u, v) ≤ δ(d− 1, k) + 1.
As k ≥ 3, inequality (i) holds, which completes the proof. �

Combining Lemmas 3.1 and 3.2, one obtains Theorem 3.3 that provides
the inductive step for the proof of Theorem 1.1:

Theorem 3.3. Assume that d ≥ 3 and k ≥ 3. If u and v are two vertices
of a lattice (d, k)-polytope P , then one of the following inequalities holds:
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(i) d(u, v) ≤ δ(d− 1, k) + k − 1,
(ii) d(u, v) ≤ δ(d− 2, k) + 2k − 2,
(iii) d(u, v) ≤ δ(d− 3, k) + 3k − 2.

Proof. Consider two vertices u and v of a lattice (d, k)-polytope P .
Note that, if uj + vj �= k for some index j ∈ {1, . . . , d}, then we can assume
without loss of generality that uj + vj < k by, if needed, replacing P by its
symmetric with respect to the hyperplane {x ∈ R

d : xj = k/2}. In this case,
invoking Lemma 2.3 with I = {j} provides inequality (i). In the remainder
of the proof we will assume that ui + vi = k whenever 1 ≤ i ≤ d.

Assume that 0 < ui < k for some index i ∈ {0, . . . , d}. If xi ≥ ui for all
x ∈ P , then, invoking Lemma 2.2 with I = {i}, provides (i). By Lemma 2.2,
(i) also holds when xi ≤ ui for all x ∈ P . Hence we can assume that there
exist two vertices adjacent to u in the graph of P whose i-th coordinates are
respectively less and greater than ui. As argued by Del Pia and Michini in
the proof of [7, Claim 4], there exists an index j ∈ {1, . . . , d} distinct from i
such that the j-th coordinate of one of these two vertices is distinct from uj .
Indeed, u would otherwise be contained in the segment bounded by these
vertices. In this case, the result follows from Lemma 3.1.

By the same argument, the desired result also holds when 0 < vi < k for
some index i ∈ {0, . . . , d}. Finally, if u and v both belong to {0, k}d, then
Theorem 3.3 is a direct consequence of Lemma 3.2. �

We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1. We first prove assertion (iii), that is

δ(d, k) ≤ kd− ⌈2d/3⌉ − (k − 2) when k ≥ 4.

Theorem 3.3 provides the inductive step, and we only need to prove the
base case, that consists in checking (iii) when 1 ≤ d ≤ 3. Since δ(1, k) = 1,
the desired inequality holds when d = 1. Now observe that, by Theorem 1.3,

δ(2, k) ≤ k when k ≥ 4.

In other words, (iii) also holds when d = 2. According to Lemma 2.2,

δ(3, k) ≤ δ(2, k) + k.

It follows that δ(3, k) ≤ 2k when k ≥ 4, and (iii) holds when d = 3.
Now assume that k = 3 and note that δ(1, 3) = 1, δ(2, 3) = 4, and

δ(3, 3) = 6 (see Table 1). Consider two vertices u and v of a lattice (4, 3)-
polytope P such that d(u, v) = δ(4, 3). Invoking Theorem 3.3 with d = 4
and k = 3 yields δ(4, 3) ≤ 8. Thus, the assertions (i) and (ii) in the state-
ment of Theorem 1.1 both hold when d ≤ 4. Theorem 3.3 can then be used
inductively again in order to prove these assertions for any d. �
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4. Discussion

We first remark that our proofs and the ones by Del Pia and Michini
hold in general for lattice polytopes inscribed in rectangular boxes.

Remark 4.1. Let δ(k1, . . . , kd) denote the largest possible diameter of
a polytope whose vertices have their i-th coordinate in {0, . . . , ki} for all
i ∈ {1, . . . , d} and, up to relabeling, k1 ≤ k2 ≤ . . . ≤ kd. The following in-
equalities hold:

(i) δ(k1, . . . , kd) ≤ k1 + k2 + · · · + kd−1 − ⌈d/2⌉+ 2 when k1 ≥ 2,
(ii) δ(k1, . . . , kd) ≤ k1 + k2 + · · · + kd−1 − ⌈2d/3⌉+ 3 when k1 ≥ 3.

Similarly, Conjecture 1.2 can be stated for lattice polytopes inscribed
in rectangular boxes; that is, δ(k1, . . . , kd) is at most ⌊(k1 + k2 + · · · +
kd + d)/2⌋, and is achieved, up to translation, by a Minkowski sum of lattice
vectors. Note that the generalization of Conjecture 1.2 holds for d = 2 and
for (k1, k2, k3) = (2, 3, 3). Moreover, δ(k1, k2) = δ(k1, k1), and δ(2, 3, 3) = 5.

Observe that the term d/2 in the bound by Del Pia and Michini, and the
term 2d/3 in our bound are both derived from the expression (|I| − 1)d/|I|,
where I is the set in the statement of Lemma 2.3. The former bound is
obtained with |I| = 2 and the latter with |I| = 3. A first limitation of the
approach is that Lemma 2.3 can only be used up to |I| = 3. Another limi-
tation comes from Lemma 2.5 that only deals with lattice polygons.

Table 1 suggests that the next values of δ(d, k) to determine could be
δ(d, 3) when d ≥ 5 and δ(3, k) when k ≥ 6. For instance, one may be able
to compute δ(5, 3) for which the known lower and upper bounds differ by
only one as 10 ≤ δ(5, 3) ≤ 11. The computational search space can be sig-
nificantly reduced by using the following necessary conditions for a given
lattice (d, k)-polytope P to achieve a diameter of δ(d− 1, k) + k:

(i) if u and v are two vertices of P such that δ(u, v) = δ(P ), then
ui + vi = k whenever 1 ≤ i ≤ d, and the differences between these vertices
and their neighbors in the graph of P belong to {−1, 0, 1}d,

(ii) the intersection of P with any facet of the cube [0, k]d is, up to an
affine transformation, a lattice (d− 1, k)-polytope of diameter δ(d− 1, k).
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determinants and the diameter of polyhedra, Discrete Comput. Geom., 52

(2014), 102–115.
[5] S. Borgwardt, J. De Loera and E. Finhold, The diameters of transportation polytopes

satisfy the Hirsch conjecture, Math. Programming, to appear.
[6] N. Chadder and A. Deza, Computational determination of the largest lattice polytope

diameter, in: Proceedings of the IX Latin and American Algorithms, Graphs,
and Optimization Symposium, Electronic Notes in Discrete Mathematics, 62
(2017), 105–110.

[7] A. Del Pia and C. Michini, On the diameter of lattice polytopes, Discrete Comput.
Geom., 55 (2016), 681–687.

[8] A. Deza, G. Manoussakis and S. Onn, Primitive zonotopes, Discrete Comput. Geom.,
to appear.

[9] M. Grötschel, L. Lovász and A. Schrijver, Geometric Algorithms and Combinatorial
Optimization, Springer (1993).

[10] G. Kalai and D. Kleitman, A quasi-polynomial bound for the diameter of graphs of
polyhedra, Bull. Amer. Math. Soc., 26 (1992), 315–316.

[11] P. Kleinschmidt and S. Onn, On the diameter of convex polytopes, Discrete Math.,
102 (1992), 75–77.

[12] D. Naddef, The Hirsch conjecture is true for (0, 1)-polytopes, Math. Programming, 45
(1989), 109–110.

[13] D. Naddef and W. Pulleyblank, Hamiltonicity in (0, 1)-polyhedra, J. Combin. Theory
B, 37 (1984), 41–52.

[14] F. Santos, A counterexample to the Hirsch conjecture, Ann. of Math., 176 (2012),
383–412.

[15] N. Sukegawa, Improving bounds on the diameter of a polyhedron in high dimensions,
Discrete Math., 340 (2017), 2134–2142.

[16] T. Thiele, Extremalprobleme für Punktmengen, Diplomarbeit, Freie Universität Berlin
(1991).

[17] M. Todd, An improved Kalai–Kleitman bound for the diameter of a polyhedron, SIAM
J. Discrete Math., 28 (2014), 1944–1947.

[18] G. Ziegler, Lectures on Polytopes, Graduate Texts in Mathematics, Springer (1995).

Acta Mathematica Hungarica

IMPROVED BOUNDS ON THE DIAMETER OF LATTICE POLYTOPES 13


	IMPROVED BOUNDS ON THE DIAMETER OF
LATTICE POLYTOPES
	Abstract
	1. Introduction
	2. Preliminary lemmas
	3. The inductive step and the proof of Theorem 1.1
	4. Discussion
	References




