
Chapter 7

Central Path Curvature and
Iteration-Complexity for Redundant
Klee—Minty Cubes

Antoine Deza, Tamás Terlaky, and Yuriy Zinchenko

Summary. We consider a family of linear optimization problems over the
n-dimensional Klee—Minty cube and show that the central path may visit
all of its vertices in the same order as simplex methods do. This is achieved
by carefully adding an exponential number of redundant constraints that
forces the central path to take at least 2n − 2 sharp turns. This fact sug-
gests that any feasible path-following interior-point method will take at least
O(2n) iterations to solve this problem, whereas in practice typically only a
few iterations (e.g., 50) suffices to obtain a high-quality solution. Thus, the
construction potentially exhibits the worst-case iteration-complexity known
to date which almost matches the theoretical iteration-complexity bound for
this type of methods. In addition, this construction gives a counterexample
to a conjecture that the total central path curvature is O(n).

Key words: Linear programming, central path, interior-point methods, to-
tal curvature

7.1 Introduction

Consider the following linear programming problem: min cTx such that Ax ≥
b where A ∈ Rm×n, b ∈ Rm, and c, x ∈ Rn.
In theory, the so-called feasible path-following interior-point methods ex-

hibit polynomial iteration-complexity: starting at a point on the central path
they take at most O(

√
m ln ν) iterations to attain a ν-relative decrease in

the duality gap. Moreover, if L is the bit-length of the input data, it takes
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at most O(
√
mL) iterations to solve the problem exactly; see, for instance,

[11]. However, in practice typically only a few iterations, usually less than 50,
suffices to obtain a high-quality solution. This remarkable difference stands
behind the tremendous success of interior-point methods in applications.
Let ψ : [α, β] → Rn be a C2 map with nonzero derivative ∀t ∈ [α, β].

Denote its arc length by

l(t) :=

Z t

α

kψ̇(τ)kdτ,

its parametrization by the arc length by ψarc(l) : [0, l(β)] → Rn, and its
curvature at the point l,

κ(l) :=
d

dl
ψ̈arc(l).

The total curvature K is defined as

K :=

Z l(β)

0

kκ(l)kdl.

Intuitively, the total curvature is a measure of how far off a certain curve
is from being a straight line. Thus, it has been hypothesized that the total
curvature of the central path is positively correlated with the number of
iterations that any Newton-like path following method will take to traverse
this curve, in particular, the number of iterations for feasible path-following
interior-point methods, for example, long-step or predictor-corrector.
The worst-case behavior for path-following interior-point methods has al-

ready been under investigation, for example, Todd and Ye [13] gave a lower
iteration-complexity bound of order 3

√
m necessary to guarantee a fixed de-

crease in the central path parameter and consequently in the duality gap.
At the same time, different notions for the curvature of the central path
have been examined. The relationship between the number of approximately
straight segments of the central path introduced by Vavasis and Ye [14] and
a certain curvature measure of the central path introduced by Sonnevend,
Stoer, and Zhao [12] and further analyzed in [15], was further studied by
Monteiro and Tsuchiya in [9]. Dedieu, Malajovich, and Shub [1] investigated a
properly averaged total curvature of the central path. Nesterov and Todd [10]
studied the Riemannian curvature of the central path in particular relevant
to the so-called short-step methods. We follow a constructive approach orig-
inated in [4, 5] which is driven by the geometrical properties of the central
path to address these questions.
We consider a family of linear optimization problems over the n-dimensional

Klee—Minty cube and show that the central path may visit all of its vertices
in the same order as simplex methods do. This is achieved by carefully adding
an exponential number of redundant constraints that forces the central path
to take at least 2n − 2 sharp turns. We derive explicit formulae for the num-
ber of the redundant constraints needed. In particular, we give a bound of
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O(n23n) on the number of redundant constraints when the distances to those
are chosen uniformly. When these distances are chosen to decay geometrically,
we give a slightly tighter bound of the same order n322n as in [5].
The behavior of the central path suggests that any feasible path-following

interior-point method will take at least order 2n iterations to solve this prob-
lem. Thus, the construction potentially exhibits the worst-case iteration-
complexity known to date which almost matches the theoretical iteration-
complexity bound for this type of methods. However, state-of-the art linear
optimization solvers that include preprocessing of the problem as described
in [6, 7] are expected to recognize and remove the redundant constraints in no
more than two passes. This underlines the importance of the implementation
of efficient preprocessing algorithms.
We show that the total curvature of the central path for the construction

is at least exponential in n and, therefore, provides a counterexample to a
conjecture of Dedieu and Shub [2] that it can be bounded by O(n). Also,
the construction may serve as an example where one can relate the total
curvature and the number of iterations almost exactly.
The chapter is organized as follows. In Section 7.2 we introduce a family of

linear programming problems studied along with a set of sufficient conditions
that ensure the desired behavior for the central path and give a lower bound
on the total curvature of the central path, in Section 7.3 we outline the
approach to determine the number of the redundant constraints required, and
Sections 7.4 and 7.5 contain a detailed analysis of the two distinct models
for the distances to the redundant constraints. We give a brief conclusion in
Section 7.6.

7.2 Sufficient Conditions for Bending the Central Path
and the Total Curvature

Let x ∈ Rn. Consider the following optimization problem.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min xn
0 ≤ x1 ≤ 1

εxk−1 ≤ xk ≤ 1− εxk−1 k = 2, . . . , n
0 ≤ d1 + x1 repeated h1 times

εx1 ≤ d2 + x2 repeated h2 times
...

εxn−1 ≤ dn + xn repeated hn times.

The feasible region is the Klee—Minty n-cube and is denoted by C ⊂ Rn.
Denote d := (d1, . . . , dn) ∈ Rn+ — the vector containing the distances to the
redundant constraints from C, h := (h1, . . . , hn) ∈ Nn — the vector containing
the number of the redundant constraints.
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By analogy with the unit cube [0, 1]n, we denote the vertices of C as follows.
For S ⊂ {1, . . . , n}, a vertex vS of C satisfies

vS1 =

½
1 if 1 ∈ S
0 otherwise

vSk =

½
1− εvSk−1 if k ∈ S
εvSk−1 otherwise

k = 2, . . . , n.

Define δ-neighborhood Nδ(v
S) of a vertex vS , with the convention x0 = 0,

by

Nδ(v
S) :=

½
x ∈ C :

½
1− xk − εxk−1 ≤ εk−1δ if k ∈ S
xk − εxk−1 ≤ εk−1δ otherwise

k = 1, . . . , n

¾
.

Remark 7.1. Observe that ∀S ⊆ {1, . . . , n} for Nδ(v
S) to be pairwise-

disjoint it suffices ε + δ < 1/2: given ε, δ > 0, the shortest amongst all n
coordinates’ distance between the neighborhoods, equal to (1− 2ε− 2εδ), is
attained along the second coordinate and must be positive, which is readily
implied.

For brevity of the notation we introduce slack variables corresponding to
the constraints in the problem above as follows:

s1 = x1
sk = xk − εxk−1 k = 2, . . . , n
s̄1 = 1− x1
s̄k = 1− εxk−1 − xk k = 2, . . . , n
s̃1 = d1 + x1
s̃k = dk + (xn − εxn−1) k = 2, . . . , n.

Recall that the analytic center χ corresponds to the unique maximizer

argmax
x

nX
i=1

(ln si + ln s̄i + hi ln s̃i).

Also, recall that the primal central path P can be characterized as the closure
of the set of maximizers(
x ∈ Rn : x = arg max

x:xn=α

nX
i=1

(ln si + ln s̄i + hi ln s̃i), for some α ∈ (0, χn)
)
.

Therefore, setting to 0 the derivatives of
Pn

i=1(ln si + ln s̄i + hi ln s̃i) with
respect to xn,

1

sn
− 1

s̄n
+

hn
s̃n
= 0, (7.1)

and with respect to xk,
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1

sk
− ε

sk+1
− 1

s̄k
− ε

s̄k+1
+

hk
s̃k
− εhk+1

s̃k+1
= 0, k = 1, . . . , n− 1, (7.2)

combined give us necessary and sufficient conditions for x = χ. Further-
more, (7.2) combined with xn = α ∈ (0, χn) gives us necessary and sufficient
conditions for x ∈ P \ ({0} ∪ {χ}) where 0 ∈ Rn denotes the origin.
Given ε, δ > 0, the sufficient conditions for h = h(d, ε, δ) to guarantee that

the central path P visits the (disjoint) δ-neighborhoods of each vertex of C
may be summarized in the following proposition. We write 1 for the vector
of all ones in Rn.

Proposition 7.1. Fix ε, δ > 0. Denote for k = 2, . . . , n

Ikδ := {x ∈ C : s̄k ≥ εk−1δ, sk ≥ εk−1δ}

and
Bkδ := {x ∈ C : s̄k−1 ≤ εk−2δ, sk−2 ≤ εk−3δ, . . . , s1 ≤ δ}.

If h = h(d, ε, δ) ∈ Nn satisfies

Ah ≥ 3
δ
1 (7.3)

and

hk
dk + 1

εk−1 ≥ hk+1
dk+1

εk +
3

δ
, k = 1, . . . , n− 1, (7.4)

where

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
d1+1

−ε
d2

0 0 · · · 0 0

−1
d1

2ε
d2+1

−ε2
d3

0 · · · 0 0

...
...

. . .
. . .

...
...

...

−1
d1

0 · · · 2εk−1

dk+1
−εk
dk+1

· · · 0

...
...

...
...

. . .
. . .

...

−1
d1

0 0 0 · · · 2εn−2

dn−1+1
−εn−1
dn

−1
d1

0 0 0 · · · 0 2εn−1

dn+1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
then

Ikδ ∩ P ⊂ Bkδ .

Proof. Fix k ≥ 2 and let x ∈ Ikδ ∩ P.
Let j ≤ k − 2. Summing up all of the ith equations of (7.2) over i =

j, . . . , (k − 2), each multiplied by εi−1, and then subtracting the (k − 1) st
equation multiplied by εk−2, we have
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−2hk−1ε
k−2

s̃k−1
+

hjε
j−1

s̃j
+

hkε
k−1

s̃k
+

εj−1

sj
+

εk−1

sk
+

εk−1

s̄k

=
2εk−2

sk−1
+

εj−1

s̄j
+ 2

k−3X
i=j

εi

s̄i+1
.

Because s̃k−1 < dk−1 + 1, s̃k > dk, s̃j > dj , and sk ≥ εk−1δ, s̄k ≥ εk−1δ as
x ∈ Ikδ , from the above we get

2hk−1ε
k−2

dk−1 + 1
− hjε

j−1

dj
− hkε

k−1

dk
≤ εj−1

sj
+
2

δ
.

From (7.4) it follows that (h1/d1) ≥
¡
hjε

j−1/dj
¢
, thus we can write

−h1
d1
+
2hk−1ε

k−2

dk−1 + 1
− hkε

k−1

dk
≤ εj−1

sj
+
2

δ
;

that is, as (3/δ) ≤ − (h1/d1) +
¡¡
2hk−1ε

k−2¢ / (dk−1 + 1)¢ − ¡hkεk−1/dk¢
by (7.3), we have

snj ≤ εj−1δ, ∀j ≤ k − 2.

In turn, the (k − 1) st equation of (7.2),

hk−1ε
k−2

s̃k−1
− hkε

k−1

s̃k
=

εk−2

s̄k−1
+

εk−1

sk
+

εk−1

s̄k
− εk−2

sk−1

implies
hk−1ε

k−2

dk−1 + 1
− hkε

k−1

dk
≤ εk−2

s̄k−1
+
2

δ

and since (3/δ) ≤
¡¡
hk−1ε

k−2¢ / (dk−1 + 1)¢−¡hkεk−1/dk¢ by (7.4), we have
s̄k−1 ≤ εk−2δ. ut

Proposition 7.2. Fix ε, δ > 0. If h ∈ Nn satisfies (7.3) and (7.4), then
χ ∈ Nδ(v

{n}).

Proof. Summing up all of the ith equations of (7.2) over i = k, . . . , (n− 1),
each multiplied by εi−1, and then subtracting (7.1) multiplied by εn−1, we
have

εk−1

sk
− εk−1

s̄k
+

hkε
k−1

s̃k
− 2ε

n−1

sn
− 2

n−2X
i=k

εi

s̄i+1
− 2hnε

n−1

s̃n
= 0

implying
2hnε

n−1

s̃n
− hkε

k−1

s̃k
≤ εk−1

sk
.
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Because s̃n ≤ dn+1, s̃k ≥ dk and by (7.4), (h1/d1) ≥
¡
hkε

k−1/dk
¢
, from the

above we get
2hnε

n−1

dn + 1
− h1

d1
≤ εk−1

sk
,

combined with
¡¡
2hnε

n−1¢ / (dn + 1)¢ − (h1/d1) ≥ (3/δ) (from (7.3)) this
leads to

sk ≤
εk−1

3
δ k = 1, . . . , n− 1.

In turn, (7.1) implies
¡
hnε

n−1/s̃n
¢
≤
¡
εn−1/s̄n

¢
. And because s̃n < dn+1

and by (7.4),
¡
hnε

n−1/ (dn + 1)
¢
≥ (3/δ), we have (3/δ) ≤

¡
εn−1/s̄n

¢
; that

is, s̄n ≤
¡
εn−1/3

¢
δ. ut

Corollary 7.1. Fix ε, δ > 0 such that ε + δ < 1/2. If h ∈ Nn satisfies (7.3)
and (7.4), then the central path P intersects the disjoint δ-neighborhoods of
all the vertices of C. Moreover, P is confined to a polyhedral tube defined by

Tδ :=
Sn
k=1

³³Tn
j=k+1(I

j
δ )
c
´
∩ Bkδ

´
with the convention B1δ = C.

Remark 7.2. Observe that T0 is the sequence of connected edges of C start-
ing from v{n} and terminating at v∅ , and is precisely the path followed by
the simplex method on the original Klee—Minty problem as it pivots along
the edges of C.

For simplicity of the notation we write T instead of Tδ when the choice
of δ is clear. For a fixed δ, we define a turn of T adjacent to a vertex vS , or
corresponding to Nδ(v

S) if the δ-neighborhoods are disjoint because in the
latter case Nδ(v

S) determines vS uniquely, to be the angle between the two
edges of C that belong to T0 and connect at this vertex.
Intuitively, if a smooth curve is confined to a narrow tube that makes a

sharp turn, then the curve itself must at least make a similar turn and thus
have a total curvature bounded away from zero. It might be worthwhile to
substantiate this intuition with a proposition.

Proposition 7.3. Let Ψ : [0, T ]→ R2 be C2, parameterized by its arc length
t, such that Ψ([0, T ]) ⊂ {(x, y) : 0 ≤ x ≤ a+ b, 0 ≤ y ≤ b} ∪ {(x, y) : a ≤ x ≤
a + b,−a ≤ y ≤ b} and Ψ(0) ∈ {0} × [0, b], Ψ(T ) ∈ [a, a + b] × {−a}. Then
the total curvature K of Ψ satisfies K ≥ arcsin

¡
1− 2b2/a2

¢
.

Proof. By the mean-value theorem, for any τ such that Ψ1(τ) = a we have τ ≥
a; recall that kΨ̇k = 1. Thus, by the same theorem, ∃t1 such that |Ψ2(t1)| ≤
b/a. Similarly, ∃t2 such that |Ψ1(t2)| ≤ b/a. Now map the values of the
derivative of Ψ at t1 and t2 onto a sphere and recall that the total curvature
K between these two points corresponds to the length of a connecting curve
on the sphere, thus bounded below by the length of the geodesic (which in
this case is the same as the angular distance).
A simple calculation completes the proof. ut
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b

Ψ2

(0, 0) a Ψ1

Ψ̇2

Ψ̇1Ψ̇(t1)

Ψ̇(t2)

Fig. 7.1 Total curvature and geodesics.

Remark 7.3. Note that if b/a→ 0, then the corresponding lower bound on
the total curvature K approaches π/2.

Next we construct a simple bound on the total curvature of P by picking
suitable d, ε, and finally δ small enough, together with h, that results in a
“narrow” polyhedral tube T .
For X ⊆ Rn denote its orthogonal projection onto a linear subspace

spanned by a subset S ⊆ {1, . . . , n} of coordinates, with coordinates cor-
responding to Sc suppressed, by XS . For x, z ∈ Rn we denote (x, z) the
straight line segment connecting the point x and z.

Corollary 7.2. Fix n ≥ 2. If di = (n− 1)2n−i+2, i = 1, . . . , n,

ε =
n− 1
2n

,

δ =
1

32n2

µ
4

5

¶n−2
,

and h satisfies

h =

⎢⎢⎢⎣⎛⎝1 + δ

3
max
i

nX
j=1

|aij |

⎞⎠ 3

δ
eh
⎥⎥⎥⎦ ,

where Aeh = 1, then the total curvature of the central path P satisfies

K ≥ 1

2n

µ
8

5

¶n−2
.
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X1

X2

X3

v{3}

v{2,3}

v{2}
v{1,3} v{1,2,3}

v∅

v{1}
v{1,2}

P

X1

X2

(v{2}){1,2}

(v{1,2}){1,2}

(v{1}){1,2}

(v∅ ){1,2}

P{1,2} ¡
I2δ
¢
{1,2}

¡
B2δ
¢
{1,2}

1

1

1

1

0
0 1

= ( {2 3}){1 2}

= ( {1 2 3}){1 2}

= ( {1 3}){1 2}

= ( {3}){1 2}

Fig. 7.2 Planar projection of the central path for n = 3.

Proof. That ε, δ, h = h(d, ε, δ) above satisfies the conditions of Corollary 7.1
and thus P is confined to the polyhedral tube T is established in Section 7.5.
Instead of analyzing P ∈ Rn directly we derive the lower bound on the

total curvature of P based on its planar projection P{1,2}.
From Ikδ ∩ P ⊂ Bkδ , k = 2, . . . , n, it follows that P{1,2} will tra-

verse the two-dimensional Klee—Minty cube C{1,2} at least 2n−2 times, ev-
ery time originating in either Nδ(v

∅ ){1,2} or Nδ(v
{2}){1,2} and terminating

in the other neighborhood, while confined to the polyhedral tube T{1,2} =
({s2 ≤ εδ} ∪ {s̄1 ≤ δ} ∪ {s̄2 ≤ εδ}) ∩ C{1,2}. Thus, P{1,2} will make at least
2n−1 “sharp turns”, each corresponding to a turn in Nδ(v

{1,2}){1,2} or

Nδ(v
{1}){1,2}.
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In order to understand how the turns of P{1,2} contribute to the total
curvature of P we need the following lemma.
Lemma 7.1. Let bu, bv ∈ R3 and u = (bu{1,2}, 0), v = (bv{1,2}, 0). If the angle

� := π − arccos arg minbw∈span{bu,bv},
w∈span{u,v},
k bwk=kwk=1

bwTw

between the hyperplane spanned by bu, bv and the hyperplane spanned by u, v
does not exceed arcsin ε, then the angle bα between bu and bv satisfies

cosα− ε2
¡
1−cosα

2

¢
1 + ε2

¡
1−cosα

2

¢ ≤ cos bα ≤ cosα+ ε2
¡
1+cosα

2

¢
1 + ε2

¡
1+cosα

2

¢
where α is the angle between u and v.

Proof. Without loss of generality we may assume kuk = kvk = 1 with

u1 = sin
α
2 =

q
1−cosα

2 , v1 = − sin α
2 = −

q
1−cosα

2 ,

u2 = cos
α
2 =

q
1+cosα

2 , v2 = cos
α
2 =

q
1+cosα

2 ,

and, assuming that the angle � is precisely arcsin ε, parameterize span{bu, bv}
by span{u, v} and z = (z1, z2, 0) such that kzk = 1, writing x ∈ span{bu, bv}
as x = (x1, x2, x

T
{1,2}z{1,2}ε).

Introducing β such that z1 = cosβ and z2 = sinβ we have

bu = Ãr1− cosα
2

,

r
1 + cosα

2
, ε cos

³
β − π

2
+

α

2

´!
,

bv = Ã−r1− cosα
2

,

r
1 + cosα

2
, ε cos

³
β − π

2
+

α

2

´!
,

and, therefore,

cos bα = buTbv
kbukkbvk = cosα+ ε2 cos

¡
β − π

2 +
α
2

¢
cos
¡
β − π

2 −
α
2

¢q
1 + ε2 cos2

¡
β − π

2 +
α
2

¢q
1 + ε2 cos2

¡
β − π

2 −
α
2

¢ .
Denoting γ := β − (π/2) and differentiating the above with respect to γ we
get

(cos bα)0γ = (1 + ε2)(−32ε2 sin 2γ + 16ε2 sin(2γ + 2α) + 16ε2 sin(2γ − 2α))
D

,

where
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D =
¡
16 + 8ε2 cos(2γ − α) + 16ε2 + 8ε2 cos(2γ + α) + 2ε4 cos 2α

+ 2ε4 cos 4γ + 4ε4 cos(2γ + α) + 4ε4 cos(2γ − α) + 4ε4
¢3/2

.

Setting the derivative to 0 and simplifying the numerator we obtain the nec-
essary condition for the extremum of cos bα,

32ε2(1 + ε2)sin 2γ(cos 2α− 1) = 0.

That is, γ = k (π/2) for k = 0,±1,±2, and so on. In particular, it follows that
the minimum of cos bα is attained at βmin = 0 and the maximum is attained
at βmax = π/2. The bounds are obtained by further substituting the critical
values of β into the expression for cos bα and observing the monotonicity with
respect to ε. ut

Although the full-dimensional tube T might make quite wide turns, the
projected tube T{1,2} is bound to make the same sharp turn equal to¡
(π/2) + arcsin

¡
ε/
√
1 + ε2

¢¢
each time T passes through the δ-neighborhood

of a vertex vS , 1 ∈ S (e.g., consider the turn adjacent to v{1,3} for n = 3).
For a moment, equip C and T with a superscript n̄ to indicate the di-

mension of the cube, that is, the largest number of linearly independent vec-
tors in span({vS : vS ∈ Cn̄}). Recalling the Cn defining constraints, namely
εxn−1 ≤ xn ≤ 1 − εxn−1, we note that by construction of the Klee—Minty
cube, whenever we increase the dimension from n̄ to n̄ + 1, Cn̄ is affinely
transformed into “top” and “bottom” n̄-dimensional faces F n̄+1

top and F n̄+1
bottom

of Cn̄+1; that is,

F n̄+1
top =

µ
I

(0, . . . , 0,−ε)

¶
Cn̄ +

⎛⎜⎜⎜⎝
0
...
0
1

⎞⎟⎟⎟⎠ ,

F n̄+1
bottom =

µ
I

(0, . . . , 0, ε)

¶
Cn̄,

where I is the identity n̄× n̄ matrix, and Cn̄+1 is the convex hull of F n̄+1
top and

F n̄+1
bottom. Consequently, any two-dimensional space spanned by two connected
edges of Cn̄+1 from T n̄+1

0 ∩ F n̄+1
top or T n̄+1

0 ∩ F n̄+1
bottom is obtained by tilting

the two-dimensional space spanned by the two corresponding edges of Cn̄

from T n̄
0 , lifted to Rn̄+1 by setting the (n̄+ 1) st coordinate to zero, by an

angle not exceeding arcsin
¡
ε/
√
1 + ε2

¢
, and moreover, not exceeding arcsin ε.

Therefore, we are in position to apply Lemma 7.1 to bound how fast the cosine
of a turn αS of T n adjacent to any vS ∈ Cn with 1 ∈ S may approach its two
boundary values of 1 or −1 by induction on the dimension n.
Fixing n = 3, S ⊆ {1, 2, 3} such that 1 ∈ S, adding and subtracting 1 to

cosαS we get



234 A. Deza, T. Terlaky, and Y. Zinchenko

1 + cosαS ≥ 1 + cosαS{1,2}

1 + ε2
³
1−cosαS{1,2}

2

´
and

1− cosαS ≥ 1− cosαS{1,2}

1 + ε2
³
1+cosα

S{1,2}

2

´ .
Furthermore, for any n ≥ 3 and vS with 1 ∈ S we can write

1 + cosαS ≥ 1 + cosα
S{1,2}

(1 + ε2)
n−2 ≥ 1− ε

(1 + ε2)
n−2 ,

1− cosαS ≥ 1− cosα
S{1,2}

(1 + ε2)n−2
≥
1 +

¡
2ε/
√
5
¢

(1 + ε2)n−2
,

recalling −2ε/
√
5 ≥ cosαS{1,2} = −ε/

√
1 + ε2 ≥ −ε because ε ≥ 2.

Observe that by construction of a polyhedral tube T , a single linearly
connected component of T \

³S
S⊆{1,...,n}Nδ(v

S)
´
may be uniquely iden-

tified with an edge (vR, vS), R,S ⊆ {1, . . . , n}, of C from T0 by having
a nonempty intersection with this component and thus we denote such a
component by L(vR,vS) and refer to it as a section of T corresponding to

(vR, vS). Moreover, recalling the definition of Nδ(v
S) and T , and noting thatp

δ2 + (εδ)2 + (εδ)3 + · · · ≤ δ + εδ + · · · ≤ 2δ because ε ≤ 1/2, we get
that within a given section of a tube L(vR,vS) the Euclidean distance from

∀x ∈ L(vR,vS) to the compact closure of (v
R, vS) ∩ L(vR,vS) is bounded from

above by 2δ.
Let us consider what happens to the central path in the proximity of a

vertex vS ∈ C such that 1 ∈ S. We do so by manufacturing a surrogate for a
part of T that is easier to analyze.
Fix vS ∈ C with 1 ∈ S and denote the two adjacent vertices to which vS is

connected by the two edges from T0 by vR and vQ. Without loss of generality
we may assume that

vR{1,2} = (0, 1),

vS{1,2} = (1, 1− ε),

vQ{1,2} = (1, ε),

and vRn > vSn > vQn , so that the central path P enters the part of the polyhe-
dral tube T sectioned between these three vertices via Nδ(v

R) and exits via
Nδ(v

Q).
Define four auxiliary points x, z ∈ (vR, vS) and x, z ∈ (vS , vQ) satisfying

x{1,2} = (1− 3δ, 1− ε+ 3εδ) + 1/2−ε−3δ√
1+ε2

(−1, ε),
z{1,2} = (1− 3δ, 1− ε+ 3εδ),
x{1,2} = (1, 1− ε− 3δ),
z{1,2} = (1, 1/2).
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X1

X2

P{1,2}
x{1,2}

z{1,2}

x{1,2}
z{1,2}

T {1,2}

T {1,2}

vR{1,2}

vS{1,2}

vQ{1,2}

1

1

1 2

0
0 1 1

Fig. 7.3 Schematic drawing for the cylindrical tube segments.

Because the distance from any point to the (part of the) identifying edge
of L(vR,vS) or L(vS ,vQ) is no greater than 2δ and because (·){1,2} corresponds
to the orthogonal projection from Rn onto its first two coordinates, we can
define two cylindrical tube segments:

T := {x ∈ Rn : minz∈(x,z) kx− zk ≤ 2δ}
∩ {x ∈ Rn : (x− z)Tx ≤ (x− z)Tx}
∩ {x ∈ Rn : (z − x)Tx ≤ (z − x)T z}

and
T := {x ∈ Rn : minz∈(x,z) kx− zk ≤ 2δ}

∩ {x ∈ Rn : (x− z)Tx ≤ (x− z)Tx}
∩ {x ∈ Rn : (z − x)Tx ≤ (z − x)T z}

such that

T ⊃ L(vR,vS) ∩ {x ∈ Rn : (x− z)Tx ≤ (x− z)Tx, (z − x)Tx ≤ (z − x)T z},

T ⊃ L(vS ,vQ) ∩ {x ∈ Rn : (x− z)Tx ≤ (x− z)Tx, (z − x)Tx ≤ (z − x)T z},
and

T ∩
¡
Nδ(v

R) ∪Nδ(v
S)
¢
= T ∩

¡
Nδ(v

S) ∪Nδ(v
Q)
¢
= ∅.

Therefore, P will traverse T and T , first entering T through its face cor-
responding to (x − z)Tx = (x − z)Tx and exiting through the face cor-
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responding to (z − x)Tx = (z − z)T z, and then entering T at a point with
(x−z)Tx = (x−z)Tx and exiting through a point with (z−x)Tx = (z−x)T z.
Now we choose a new system of orthogonal coordinates in Rn that allows

us apply the argument similar to that of Proposition 7.3 as follows. Let the
first two coordinates correspond to the linear subspace spanned by (x, z) and
(x, z); align the second coordinate axis with the vector (z, x), so that the
vector (x, z) forms the same angle equal to αS with the second coordinate
axis as with (x, z). Choose the rest (n− 2) coordinates so that they form an
orthogonal basis for Rn.
Consider parameterization of P by its arc length, Parc. Because the

shortest distance between the two parallel faces of T that correspond to
{x ∈ Rn : (x − z)Tx = (x − z)Tx} and {x ∈ Rn : (z − x)Tx = (z − x)T z}
is equal to k(x, z)k = 1/2 − ε − 3δ, by the mean-value theorem it takes at
least (1/2−ε−3δ) change of the arc length parameter for Parc to traverse T .
Noting that while traversing the tube T the second coordinate of Parc might
change at most by 2 · |2δ sinαS |+ |(1/2−ε−3δ)cosαS |, by the same theorem
we deduce that ∃t1 such that¯̄̄³

Ṗarc(t1)
´
2

¯̄̄
≤ 2|2δ sinαS |+ |(1/2− ε− 3δ)cosαS |

1/2− ε− 3δ

≤ |cosαS |+ 4δ

1/2− ε− 3δ .

Analogously, considering T along the ith coordinate with i 6= 2 we conclude
that ∀i 6= 2, ∃ti such that¯̄̄³

Ṗarc(ti)
´
i

¯̄̄
≤ 4δ

1/2− ε− 3δ .

We use the points t1, t2, . . . , tn to compute a lower bound on the total cur-
vature contribution of a turn of P next to vS : recalling kṖarck = 1, the total
curvature of the part of P that passes through T and T (i.e., resulting from a
turn of T adjacent to vS) may be bounded below by the length of the shortest
curve on a unit n-sphere that connects points Ṗarc(t1), Ṗarc(t2), . . . , Ṗarc(tn)
in any order. For simplicity, the latter length may be further bounded below
by

KS := min
xi∈Rn, i=1,...,n:

kxik=1, ∀i,
|x11|≤| cosαS|+ 4δ

1/2−ε−3δ ,

|xjj |≤ 4δ
1/2−ε−3δ , j≥2

max
j≥2

dist(x1, xj)

≥ min
xi∈Rn, i=1,...,n:

kx1k=1,
|x11|≤| cosαS|+ 4δ

1/2−ε−3δ ,

|xjj |≤ 4δ
1/2−ε−3δ , j≥2

max
j≥2

kx1 − xjk,
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where dist(x, z) is the length of the shortest curve on a unit sphere between
points x and z, that is, the geodesic. Clearly, the critical value for the last
expression is attained, in particular, at xi ∈ Rn+, ∀i, when kx1k = 1, kx1 −
xjk = kx1 − xik, i, j ≥ 2, and

x11 = | cosαS |+
4δ

1/2− ε− 3δ , xjj =
4δ

1/2− ε− 3δ , j ≥ 2.

It follows that

nX
j=2

(x1j)
2 = 1−

µ
| cosαS |+ 4δ

1/2− ε− 3δ

¶2
≥ 1− | cosαS |− 4δ

1/2− ε− 3δ

and, because |cosαS | ≤ 1−
³
(1− ε) /

¡
1 + ε2

¢n−2´
,

nX
j=2

(x1j )
2 ≥ 1− ε

(1 + ε2)n−2
− 4δ

1/2− ε− 3δ ,

resulting in

x1j ≥ (x1j )2 ≥
1

n− 1

µ
1− ε

(1 + ε2)n−2
− 4δ

1/2− ε− 3δ

¶

≥ 1

n− 1 ·
1

2(1 + 1/4)n−2
− 1

n− 1

µ
4δ

1/2− ε− 3δ

¶
, j ≥ 2.

Therefore, recalling ε = (n− 1) /2n and δ =
¡
1/32n2

¢
(4/5)n−2, we can write

KS ≥ kx1 − x2k

≥ x12 − x22

≥ 1

2(n− 1)

µ
4

5

¶n−2
−
µ
1 +

1

n− 1

¶
4δ

1/2− ε− 3δ

≥ 1

2(n− 1)

µ
4

5

¶n−2
− n

8n2(n− 1)

µ
4

5

¶n−2
1

1
2n −

3
32n2

¡
4
5

¢n−2
≥ 1

2(n− 1)

µ
4

5

¶n−2
− n

8n2(n− 1)

µ
4

5

¶n−2
2n

≥ 1

4n

µ
4

5

¶n−2
.

Finally, recalling that the polyhedral tube T makes 2n−1 such turns, we con-
clude that the total curvature of P indeed satisfies K ≥ (1/2n) (8/5)n−2. ut
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The bound on the total curvature K of P established above is obviously
not tight. We expect the true order of K to be 2n up to a multiplier, rational
in n.

Remark 7.4. In R2, by combining the optimality conditions (7.1) and (7.2)
for the analytic center χ with that of the central path P visiting the δ-
neighborhoods of the vertices v{1} and v{1,2} one can show that for δ below a
certain threshold both d1 and d2 are bounded away from 0 by a constant. In
turn, this implies that for fixed feasible d1, d2, the necessary conditions (7.1)
and (7.2) for h chosen such that the central path visits the δ-neighborhoods
of all the vertices of C are “asymptotically equivalent” as δ ↓ 0 to the suffi-
cient conditions (7.3) and (7.4), up to a constant multiplier. Here the term
asymptotic equivalence refers to the convergence of the normalized extreme
rays and the vertices of the unbounded polyhedra given by the set of nec-
essary conditions for a fixed d to those of the polyhedra given by the set of
sufficient conditions (7.3) and (7.4).
This suggests that the following might be true. In Rn

min
i=1,...,n

di ≥ d̂ > 0,

where d̂ is independent of n, δ, ε. Moreover, the necessary conditions for P
to visit the δ-neighborhoods of all the vertices of C for a fixed d are asymp-
totically equivalent as δ ↓ 0 to the sufficient conditions (7.3) and (7.4). If,
furthermore, we confine ourselves to only bounded subsets of all such feasible
(d, h) corresponding to, say,

nX
i=1

hi ≤ H∗δ := 2min
d,h

nX
i=1

hi

then the conditions (7.3) and (7.4) are tight, in a sense that if we denote
the set of all (d, h) satisfying the necessary conditions for P to visit all the
δ-neighborhoods intersected with {h :

P
i h ≤ H∗δ } as Neccδ, the set of all

(d, h) satisfying (7.3) and (7.4) intersected with {h :
P

i h ≤ H∗δ } as Suffδ,
then for some small enough δ̂ there exists M,m > 0 independent of ε such
that

Neccmδ ⊆ Suffδ ⊆ NeccMδ, 0 < δ ≤ δ̂.

7.3 Finding h ∈ Nn Satisfying Conditions (7.3)
and (7.4)

We write f(n) ≈ g(n) for f(n), g(n) : N→ R if ∃c,C > 0 such that cf(n) ≤
g(n) ≤ Cf(n), ∀n; the argument n is usually omitted from the notation.
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Denote b := 1 (3/δ). Let us first concentrate on finding h ∈ Nn such
that (7.3) holds. If the integrality condition on h is relaxed, a solution to (7.3)
can be found by simply solving Ah = b. Note that

kAk1,∞ = max
i

nX
j=1

|aij |

is, in fact, small for d — large componentwise and ε < 1/2. So to find an
integral h we can

• Solve Abh = (1 + γ)b for some small γ > 0.

• Set h = bbhc.
Observe that for h to satisfy (7.3), it is enough to require maxi(A(bh− h)−
γb)i ≤ 0. In turn, this can be satisfied by choosing γ > 0 such that

γ
3

δ
≥ max

i

nX
j=1

|aij |.

In Section 7.3.1 we show how to solve this system of linear equations.
In Section 7.3.2 we demonstrate that under some assumption on d, (7.4) is

already implied by (7.3), and consequently the rounding of bh will not cause
a problem for (7.4) either.

Remark 7.5. The choice of rounding down instead of rounding up is arbi-
trary.

7.3.1 Solving the Linear System

Because (1 + γ)b = (1 + γ) (3/δ)1, we can first solve Aeh = 1 and then scaleeh by (1 + γ) (3/δ). Our current goal is to find the solution to Aeh = 1.
For an arbitrary invertible B ∈ Rn×n and y, z ∈ Rn such that 1 +

zTB−1y 6= 0, the solution to

(B + yzT )x = b

can be written as
x = B−1(b− αy),

where

α =
xTB−1b

1 + zTB−1y

(for writing (B + yzT )x = Bx + y(zTx) = b, denoting α := zTx, we can
express x = B−1(b− αy) and substitute this x into (B + yzT )x = b again to
compute α).
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Denoting

B :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
d1+1

−ε
d2

0 0 · · · 0 0

0 2ε
d2+1

−ε2
d3

0 · · · 0 0
...

...
. . .

. . .
...

...
...

0 0 · · · 2εk−1

dk+1
−εk
dk+1

· · · 0
...

...
...

...
. . .

. . .
...

0 0 0 0 · · · 2εn−2

dn−1+1
−εn−1
dn

0 0 0 0 · · · 0 2εn−1

dn+1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

yT :=
−1
d1
(0, 1, 1, . . . , 1),

zT := (1, 0, 0, . . . , 0),

we can compute the solution to (B + yzT )eh ≡ Aeh = 1 as
eh = B−11+

α

d1
B−1

⎛⎜⎜⎜⎝
0
1
...
1

⎞⎟⎟⎟⎠ , (7.5)

where

α =

Pn
j=1B

−1
1j

1− 1
d1

Pn
j=2B

−1
1j

. (7.6)

So to get the explicit formula for eh we need to compute B−1 and show that d
can be chosen such that α is well defined; that is, 1− (1/d1)

Pn
j=2B

−1
1j 6= 0.

In order to invert B first note that it satisfies

B = Diag

µ
1

d1 + 1
,
2ε

d2 + 1
,
2ε2

d3 + 1
. . . ,

2εn−1

dn + 1

¶
(I + S),

where a superdiagonal matrix S ∈ Rn×n is such that

Sij =

( −ε(di+1)
di+1

j = i+ 1, i = 1, . . . , n− 1
0 otherwise.

Recall that (I + Z)−1 = I − Z + Z2 − Z3 + · · · for any Z ∈ Rn×n such that
these matrix-power series converge. In our case, the powers of S are easy to
compute for 1 ≤ k ≤ n− 1,
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Skij =

(Qi+k−1
l=i Sl,l+1 j = i+ k, i = 1, . . . , n− k

0 otherwise,

and Sm = 0 for all m ≥ n, so the inverse of (I + S) can be computed as
above and the inverse of B can be further computed by post-multiplying by
the inverse of

Diag

µ
1

d1 + 1
,
2ε

d2 + 1
,
2ε2

d3 + 1
. . . ,

2εn−1

dn + 1

¶
.

Therefore, B−1 is equal to⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

d1 + 1
(d1+1)(d2+1)

2d2

(d1+1)(d2+1)(d3+1)
4d2d3

(d1+1)···(d4+1)
8d2d3d4

· · ·
Qn
j=1(dj+1)

2n−1
Qn
j=2 dj

0 d2+1
2ε

(d2+1)(d3+1)
4d3ε

(d2+1)···(d4+1)
8d3d4ε

· · ·
Qn
j=2(dj+1)

2n−1ε
Qn
j=3 dj

0 0 d3+1
2ε2

(d3+1)(d4+1)
4d4ε2

· · ·
Qn
j=3(dj+1)

2n−2ε2
Qn
j=4 dj

0 0 0 d4+1
2ε3 · · ·

Qn
j=4(dj+1)

2n−3ε3
Qn
j=5 dj

...
...

...
...

. . .
...

0 0 0 0 · · · dn+1
2εn−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

7.3.2 Partial Implication for Sufficient Conditions

Observe that in order for eh ∈ Rn+, we must have α > 0 as in (7.6). For if not
(i.e., if α < 0), then denoting

β1 := zTB−1

⎛⎜⎜⎜⎝
0
1
...
1

⎞⎟⎟⎟⎠ =
nX
j=2

B−11j

and writing

α =
β1 + d1 + 1

1− β1
d1

(7.7)

we must have β1 > d1 > 0. So

−α
d1

=
β1 + d1 + 1

β1 − d1
> 1
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and from (7.5) it follows that if (α/d1) < −1, then eh2,eh3, . . . ,ehn < 0.
From now on we assume α > 0 (in Sections 7.4.1, 7.5.1 we show how to

achieve this by choosing d appropriately). Note that in this case (α/d1) > 1.
Suppose h ∈ Nn is such that (7.3) holds. If, furthermore,

¡
hiε

i−1¢ /di
is dominated by h1/d1 for i = 1, . . . , n, then (7.3) already implies (7.4).

Therefore, it is left to show that d can be chosen such that h = bbhc satisfies
the domination condition above.
For this to hold it suffices

3
δ (1 + γ)eh1 − 1

d1
≥

3
δ (1 + γ)ehi + 1

di
εi−1, i = 2, . . . , n,

where eh solves Aeh = 1. The above is implied by
d1 + 1 + β1 +

α
d1
β1 − 1

6

d1
≥
(1 + α

d1
) βi
εi−1 +

1
6

di
εi−1, i = 2, . . . , n

because γ > 0, δ < 1/2, where

βi := εi−1(B−11)i.

This can be written asµ
1 +

α

d1

¶
β1
d1
+ 1 +

5

6d1
≥
µ
1 +

α

d1

¶
βi
di
+

εi−1

6di
, i = 2, . . . , n.

In particular, if we have

β1
d1

>
βi
di
, i = 2, . . . , n (7.8)

then the above inequality holds true if

1 ≥ ε

6d1
− 5

6d1
,

that is, because ε < 1/2, for di > 0 for i = 1, . . . , n.
Finally, observe that if d1 ≥ di, i ≥ 2, and d1 = O(2n), then the magnitude

of eh is primarily determined by α: recalling (7.5), (7.7), we write
eh = α

⎛⎜⎜⎜⎝B−1

d1

⎛⎜⎜⎜⎝
0
1
...
1

⎞⎟⎟⎟⎠+ B−1

d1
1

⎞⎟⎟⎟⎠
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≤ α

⎛⎜⎜⎜⎝B−1

d1

⎛⎜⎜⎜⎝
0
1
...
1

⎞⎟⎟⎟⎠+
³
1− β1

d1

´
B−1

d1 + 1
1

⎞⎟⎟⎟⎠

= α

⎛⎜⎜⎜⎝B−1

d1

⎛⎜⎜⎜⎝
0
1
...
1

⎞⎟⎟⎟⎠+
µ
1− β1

d1

¶
B−1

d1 + 1

⎛⎜⎜⎜⎝
0
1
...
1

⎞⎟⎟⎟⎠+
µ
1− β1

d1

¶⎛⎜⎜⎜⎝
d1 + 1
0
...
0

⎞⎟⎟⎟⎠
⎞⎟⎟⎟⎠ .

Because di > 0 for i = 1, . . . , n, we have (di + 1) /2di > 1
2 and so 1 −

(β1/d1) < 1/2
n−1, implying

eh < α

⎛⎜⎜⎜⎝B−1

d1

⎛⎜⎜⎜⎝
0
1
...
1

⎞⎟⎟⎟⎠+ B−1

2n−1(d1 + 1)

⎛⎜⎜⎜⎝
0
1
...
1

⎞⎟⎟⎟⎠+ 1

2n−1

⎛⎜⎜⎜⎝
d1 + 1
0
...
0

⎞⎟⎟⎟⎠
⎞⎟⎟⎟⎠

≈ α
B−1

d1

⎛⎜⎜⎜⎝
0
1
...
1

⎞⎟⎟⎟⎠ for large n.

(7.9)

7.4 Uniform Distances to the Redundant Hyperplanes

Clearly, many different choices for d are possible. In this section we explore
the uniform model for d; that is d1 = d2 = · · · = dn.

7.4.1 Bounding α

For α > 0 we need
β1 < d1.

Denoting

ξ :=
d1 + 1

2d1

the above can be written as

(d1 + 1)ξ + (d1 + 1)ξ
2 + · · ·+ (d1 + 1)ξn−1 < d1
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or, equivalently,

ξ2(1 + ξ + ξ2 + · · ·+ ξn−2) <
1

2
,

same as

ξ2
µ
1− ξn−1

1− ξ

¶
<
1

2
.

In other words, we want

p(ξ) := 1− ξ − 2ξ2 + 2ξn+1 > 0.

Note that as d1 →∞, ξ → 1
2 and p(ξ)→ 2ξn+1 > 0, so p(ξ) > 0 for d1 large

enough.
Observe that ξ > 1

2 for any d1 > 0, and

p0
¡
1
2

¢
= −3 + 2(n+1)

2n < 0 for n = 1, 2, . . .

p00
¡
1
2

¢
= −4 + 2(n+1)n

2n−1

⎧⎨⎩= 0> 0
< 0

for n = 1
for n = 2, 3, 4
otherwise

p(k)
¡
1
2

¢
= 1

2n−k
(n+1)!

(n−k+1)! > 0 for k ≥ 3,

so

p

µ
1

2
+∆ξ

¶
≥ epµ1

2
+∆ξ

¶
:= p

µ
1

2

¶
+ p0

µ
1

2

¶
∆ξ + p00

µ
1

2

¶
∆ξ2

2
.

Thus, to guarantee p(ξ) > 0, it is enough to require

epµ1
2
+∆ξ

¶
≥ 0

letting ξ = 1
2 +∆ξ.

Denoting

ea := −2 + n(n+ 1)

2n−1eb := −3 + 2(n+ 1)
2nec := 1

2n

and

∆ξ∗ :=

⎧⎪⎨⎪⎩
−eb+√eb2−4eaec

2ea , 2 ≤ n ≤ 4

−eb−√eb2−4eaec
2ea , n > 4

(7.10)
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(the smallest positive root of ep(12 +∆ξ) = 0), we conclude that β1 < d1 as
long as

ξ =
d1 + 1

2d1
≤ 1
2
+∆ξ∗.

That is,

d1 =
1

2∆ξ
≥ 1

2∆ξ∗
. (7.11)

Note that for d1 = d2 = · · · = dn, (7.8) holds, so (7.4) is readily implied
by (7.3).
It is left to demonstrate how to choose d1 satisfying the above to guarantee

a moderate growth in eh as n→∞.
7.4.2 Picking a “Good” d1

Note that as n→∞, we have

∆ξ∗ → 1

3 · 2n

by expanding the square root in (7.10) as a first-order Taylor series. Also,

1− β1
d1
= p(ξ) ≥ ep(ξ)

and hence
1

1− β1
d1

≤ 1ep(ξ) .
In fact, for large n, p(ξ) ≈ ep(ξ), for 12 ≤ ξ ≤ 1

2 +∆ξ∗. In turn, ep(ξ) is almost
linear on this interval because, as n→∞,

eb→ −3← ec
∆ξ∗

(we compare the slope of ep(12 + ∆ξ) at ∆ξ = 0 with its decrement as a
function of ∆ξ over [0,∆ξ∗]).

Recalling that the growth of eh is primarily determined by α for large n
(see (7.9)), our goal becomes to minimize α. From (7.7), (7.11), noting that
β1 ≈ d1 for large n (also recall β1 < d1), we get

α ≤ β1 + (d1 + 1)ep(ξ) ≈ 2d1ep(ξ) ≈ 2

2∆ξ
· 1ec− ec ∆ξ

∆ξ∗
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and, moreover the right-hand side of this expression approximates α fairly
well. So, to approximately minimize eh, we maximize

∆ξ ·
µec− ec ∆ξ

∆ξ∗

¶
for 0 ≤ ∆ξ ≤ ∆ξ∗, which corresponds to setting

∆ξ =
∆ξ∗

2

thus resulting in
α→ 6 · 22n as n→∞

and ehi = O

µ
22n

εi−1

¶
, i = 1, . . . , n.

7.4.3 An Explicit Formula

For a given n, ε, δ, compute ∆ξ∗ according to (7.10), set ∆ξ = ∆ξ∗/2, d1 as

in (7.11). Compute the solution to Aeh = 1 using (7.5), where α is computed
according to (7.6). Set γ = (δ/3)maxi

Pn
j=1 |aij | and, finally,

h =

¹
(1 + γ)

3

δ
ehº .

From (7.9) it follows that (for large n)

ehi ≈ α

d1
B−1

⎛⎜⎜⎜⎝
0
1
...
1

⎞⎟⎟⎟⎠ ≤ α

εi−1
, i = 1, . . . , n.

We are interested in picking ε, δ, to minimize the total number of the redun-
dant constraints,

Pn
i=1 hi. Recalling ε+ δ < 1

2 , denoting

g(ε) :=
ε(ε−n − 1)
1− 3ε+ 2ε2

for large n we can writePn
i=1 hi ≈ 3

δ

Pn
i=1
ehi ≈ 3

δ

Pn
i=1 α

¡
1
ε

¢i−1
≈ 6 · 22n 6

1−2ε
1−( 1ε)

n

1− 1
ε

= 9 · 22n+2g(ε)
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(it is natural to pick δ as close to 1
2 − ε as possible, say δ = .999

¡
1
2 − ε

¢
).

In order to bound
g∗ := min

0<ε< 1
2

g(ε)

we first bound the minimizer ε∗ of the above, next we bound the derivative
of g(ε), and finally using the mean-value theorem we bound g∗ itself.
Observing

g0(ε) =
(1− 3ε+ 2ε2)((1− n)ε−n − 1)− (4ε− 3)ε(εn − 1)

(1− 3ε+ 2ε2)2

=
(1− 2ε)(1− n− εn) + ε(3− 4ε)(εn−1 + εn−2 + · · ·+ 1)

εn(1− ε)(1− 2ε)2

=
3− 4ε

εn(1− ε)(1− 2ε)2

µ
1− n

2
+

n− 1 + εn

2(3− 4ε) +
µ
1

2
εn + εn−1 + · · ·+ ε

¶¶
and noting that in the expression above the second and the third summands
are monotone-increasing functions of ε (for ε ∈ (0, 1/2), n ≥ 1), for n ≥ 3 we
can write ε∗ ∈ (εL, εU ) with

εL :=
n− 5/4
2n

because for n ≥ 2 we have

(1− 2ε)(1− n− εn) + ε(3− 4ε)(εn−1 + εn−2 + · · ·+ 1)
¯̄
ε=εL

=
(−4n2 + 15n− 25) + (−16n2 − 40n+ 25)

³
n−5/4
2n

´n
4n(4n+ 5)

< 0,

where the first summand in brackets has no real roots with respect to n and
the second summand is negative for n ≥ 2, so g0(εL) < 0 and thus g0(ε) < 0
for 0 < ε < εL, and

εU :=
n− 1
2n

because for n ≥ 3,

(1− 2ε)(1− n− εn) + ε(3− 4ε)(εn−1 + εn−2 + · · ·+ 1)
¯̄
ε=εU

=
n− 1− n2 − 2n+ 2

¡
n−1
2n

¢n
n(n+ 1)

=
n− 1−

¡
(n− 1)(n+ 3)

¡
n−1
2n

¢n
+
¡
n−1
2n

¢n¢
n(n+ 1)

>
n− 1

n(n+ 1)

µ
1− n+ 4

2n

¶
> 0,
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so g0(εU ) > 0 and thus g0(ε) > 0 for εU < ε < 1/2. Consequently, for
ε ∈ (εL, εU ) we have

g0(ε) ≥ min
ε∈[εL,εU ]

−n(1− 2ε)
εn(1− ε)(1− 2ε)2 =

−2n3
n+ 1

µ
8n

4n− 5

¶n
and, therefore, by the mean-value theorem,

g(εL) + min
ε∈[εL,εU ]

g0(ε)(εU − εL) ≤ g∗ ≤ g(εL);

that is,

0 <
4n

5

µ
4n− 5
4n+ 5

¶µµ
8n

4n− 5

¶n
− 1
¶
− n2

4(n+ 1)

µ
8n

4n− 5

¶n

≤ g∗ ≤ −4n
5

µ
4n− 5
4n+ 5

¶µµ
8n

4n− 5

¶n
− 1
¶

for n ≥ 3.
In turn, this results in

Pn
i=1 hi = O(n23n), and, in fact,

Pn
i=1 hi has the

same order lower bound as well by the above, noting thatµ
8n

4n− 5

¶n
= 2n

µ
1 +

5

4n− 5

¶n
→ e5/4 · 2n

as n→∞, for a suitably chosen small ε > 0.

7.5 Geometrically Decaying Distances to the Redundant
Hyperplanes

Next we explore the geometric model for d: di = ω (1/ε̃)
n−i+1

, i = 1, . . . , n.

7.5.1 Bounding α

As in Section 7.4.1, we need to guarantee β1 < d1.
Firstly, we give a lower bound on (∆k)k=1,...,n recursively defined by

1−∆k+1 =
d̃k+1 + 1

2d̃k+1
(2−∆k), k = 0, . . . , n− 1 (7.12)

with ∆0 = 1, and where
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d̃k = ω

µ
1

ε̃

¶k
, k = 1, . . . , n

with some constant ω.
We have di = d̃n−i+1 for i = 1, . . . , n, and

β1
d1
=

d̃n + 1

d̃n
(1−∆n−1),

βi
di
= 1−∆n−i+1, i = 2, . . . , n.

Note that to satisfy β1 < d1 we necessarily must have 1 − ∆k < 1 for k =
1, . . . , n− 1.
From (7.12) it follows that

∆k+1 =
∆k

2
− ε̃k+1

ω
+

∆k

2

ε̃k+1

ω
≥ ∆k

2
− ε̃k+1

ω
, k = 1, . . . , n− 1

and hence

∆k ≥
∆1

2k−1
− ε̃2

ω2k−2
(1 + (2ε̃) + (2ε̃)2 + · · ·+ (2ε̃)k−2), k = 2, . . . , n.

Observing ∆1 =
1
2 (1− (ε̃/ω)) we can write the above inequality as

∆k ≥
1

2k

µ
1− ε̃

ω

¶
− ε̃2

ω2k−2

k−2X
i=0

(2ε̃)i

=
1

2k

Ã
1− ε̃

ω
− 4ε̃

2

ω

k−2X
i=0

(2ε̃)i

!
, k = 2, . . . , n.

Now, for α to be positive, that is, for

1− d̃n + 1

d̃n
(1−∆n−1) = 1−

µ
1−∆n−1 +

1

d̃n
− ∆n−1

d̃n

¶
> 0,

it suffices

∆n−1 −
1

d̃n
> 0

which is implied by

1

2n−1

Ã
1− ε̃

ω
− 4ε̃

2

ω

n−3X
i=0

(2ε̃)i

!
− ε̃n

ω
> 0.

If ε̃ = 1
2 , the above translates into

1

2n−1
− n− 1

ω · 2n−1 > 0;
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that is

ω > n− 1

resulting in

di = ω2n−i+1 > (n− 1)2n−i+1, i = 1, . . . , n.

It is left to verify that hiε
i−1/di is indeed dominated by h1/d1 for

i = 1, . . . , n, to ensure (7.4) as in Section 7.3.2. In particular, we demon-
strate (7.8), as in the case of uniform d. Recalling

β1
d1
=

d̃n + 1

d̃n
(1−∆n−1)

and
βi
di
= 1−∆n−i+1 for i = 2, . . . , n,

it immediately follows that
β1
d1

>
β2
d2

.

Also observe

β1
d1

>
β2
d2

>
β3
d3

> · · · > βn
dn

because, recalling (7.12) and 0 < ∆k < 1, k = 1, . . . , n− 1,

(1−∆k+1)− (1−∆k) =
1

2

µ
2−∆k +

2−∆k

d̃k+1

¶
− 1 +∆k

=
∆k

2
+
2−∆k

2d̃k+1
> 0.

7.5.2 Picking a “Good” ω

As in Section 7.4.2, we would like to minimize α with respect to ω, which, in
the case of ε̃ = 1

2 , can be well approximated from above by

³
2d̃n + 1

´µ
∆n−1 −

1

d̃n

¶−1
≈ 2d̃n

µ
1

2n−1
− n− 1

ω · 2n−1

¶−1
.

We look for
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min
ω>n−1

ω · 2n
µ

1

2n−1
− n− 1

ω · 2n−1

¶−1
;

that is,

min
ω>n−1

ω2

ω − n+ 1

or equivalently
min

ω>n−1
(2 lnω − ln(ω − n+ 1)) .

Setting the gradient to 0, we obtain

2

ω
− 1

ω − n+ 1
=
2(ω − n+ 1)− ω

ω(ω − n+ 1)
= 0

which gives us the minimizer

ω = 2(n− 1)

with the corresponding value of α ≈ (n− 1)22n+1. This results in

di = (n− 1)2n−i+2, i = 1, . . . , n

and ehi = O

µ
n22n

(2ε)i−1

¶
, i = 1, . . . , n.

7.5.3 An Explicit Formula

For a given n, ε, δ, set di = (n − 1)2n−i+2 for i = 1, . . . , n and compute the
solution to Aeh = 1 using (7.5). Set

h =

⎢⎢⎢⎣⎛⎝1 + δ

3
max
i

nX
j=1

|aij |

⎞⎠ 3

δ
eh
⎥⎥⎥⎦ .

From (7.9) it follows that for large n

ehi ≈ α

d1
B−1

⎛⎜⎜⎜⎝
0
1
...
1

⎞⎟⎟⎟⎠ ≤ α

µ
1

2ε

¶i−1
, i = 1, . . . , n.

We choose ε, δ, to minimize the total number of the redundant constraints,Pn
i=1 hi. Recalling ε+ δ < 1/2, for large n we can write
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nX
i=1

hi ≈
3

δ

nX
i=1

ehi ≈ 3
δ

nX
i=1

α

µ
1

2ε

¶i−1
≈ 3(n− 1)22n+1 2

1− 2ε
1−

¡
1
2ε

¢n
1− 1

2ε

= 3(n− 1)22n+2 2ε
¡
1
2ε

¢n − 1
(2ε− 1)2

≤ 3(n− 1)22n+2
¡
1
2ε

¢n − 1
(2ε− 1)2 .

(7.13)

In fact, we would expect ε to be close to 1/2 in order for
Pn

i=1 hi to be
minimized, so the last inequality also gives us a good approximation, namely

nX
i=1

hi ≈ 3(n− 1)22n+2
¡
1
2ε

¢n − 1
(2ε− 1)2 . (7.14)

Indeed, denoting
ζ := 2ε

and introducing

f(ζ) :=

³
1
ζ

´n
− 1

(ζ − 1)2

we can write the last two lines in (7.13) as

3(n− 1)22n+2ζf(ζ) ≤ 3(n− 1)22n+2f(ζ).

Differentiating ζf(ζ) we get

(ζf(ζ))0 =
(n+ 1− ζn)(ζ + 1)− 2n

ζn(1− ζ)3
< 0 for 0 < ζ <

n− 1
n+ 1

because (n+ 1 − ζn)(ζ + 1)− 2n < (n+ 1)(ζ + 1) − 2n < 0 for such ζ, and
therefore, the function is decreasing on this interval. So to maximize

ζf(ζ) ≈
Pn

i=1 hi
3(n− 1)22n+2

we must take ζ > (n− 1) / (n+ 1), thus justifying (7.14).
Next we demonstrate how to minimize

Pn
i=1 hi with respect to 0 < ε <

1/2. We note that the approximate minimum of
Pn

i=1 hi corresponds to

f∗ := min
0<ζ<1

f(ζ).

To analyze f∗ we proceed as follows: first we demonstrate that for n large
enough f(ζ) is convex on (0, 1); then we produce lower and upper bounds
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on the root of f 0(ζ) = 0 in this interval, thus bounding the minimizer; and
finally we compute upper and lower bounds on f∗ using Taylor expansions
of f(ζ).
Observe

f 0(ζ) =
(n+ 2)ζ−n − nζ−n−1 − 2

(1− ζ)3

and

f 00(ζ) =
(n2 + 6n+ 6)ζ2 − (2n2 + 6n)ζ + n2 + n− 6ζn+2

ζn+2(1− ζ)4
.

Denoting

â := n2 + 6n+ 6

b̂ := −(2n2 + 6n)
ĉ := n2 + n

for f 00(ζ) to be positive on (0, 1) it suffices to show that the minimum of

âζ2 + b̂ζ + ĉ

is greater or equal than 6 (recall 0 < ζ < 1, so that 6ζn+2 < 6). In turn,

min
ζ

³
âζ2 + b̂ζ + ĉ

´
=
³
âζ2 + b̂ζ + ĉ

´¯̄̄
ζ=−b̂/2â

=
−b̂2
4â

+ ĉ

so for f 00(ζ) > 0 on (0, 1) it is enough to have

− (2n2 + 6n)2

4(n2 + 6n+ 6)
+ n2 + n ≥ 6.

The above can be rewritten as

4n3 + 12n2 + 24n

4(n2 + 6n+ 6)
= n− 3n2

n2 + 6n+ 6
≥ 6

and is clearly implied by
n− 3 ≥ 6.

Therefore, f(ζ) is convex on (0, 1) as long as n ≥ 9.
Furthermore, at

ζL :=
n− 1
n+ 1

we have

f 0(ζL) =

³
n+1
n−1

´n
2

n−1 − 2³
1− n−1

n+1

´3 < 0, for n ≥ 2.
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On the other hand, at

ζU :=
n− 1
n

we have

f 0(ζU ) =

³
n

n−1

´n ³
n−2
n−1

´
− 2¡

1− n−1
n

¢3 < 0

and relying on all the derivatives of (1+z)n for n ∈ N being positive at z = 0,
expanding µ

n

n− 1

¶n
=

µ
1 +

1

n− 1

¶n
into second-order Taylor series, we get

f 0(ζU ) ≥

³
1 + n

n−1 +
n(n−1)
2(n−1)2

´³
n−2
n−1

´
− 2¡

1− n−1
n

¢3 =
n2 − 4n

2(n− 1)
¡
1− n−1

n

¢3 ≥ 0
for n ≥ 4.
Now we are in position to give bounds on f∗ for n ≥ 9: by convexity it

follows that
f(ζL) + f 0(ζL)(ζU − ζL) ≤ f∗ ≤ f(ζL);

that is,

0 <

µ
n+ 1

n− 1

¶nµ
(n+ 1)2

4
− (n+ 1)

2

4n

¶
− (n+ 1)

2

4n

≤ f∗ ≤
µµ

n+ 1

n− 1

¶n
− 1
¶
(n+ 1)2

4
.

Consequently
Pn

i=1 hi = O(n322n) with the same order lower bound in the
best case for ε ≈ (n− 1) / (2(n+ 1)).

Remark 7.6. Similar analysis can be easily carried out for d̃k = ω (1/ε̃)k for
k = 1, . . . , n, with ε̃ = ε. Because

α ≈ 2d̃n + 1

1− d̃n+1
d̃n

(1−∆n−1)

≈ 2ω

εn

Ã
1

2n−1

Ã
1− ε

ω
− 4ε

2

ω

n−3X
i=0

(2ε)i

!
− εn

ω

!−1

=
2n

εn
ω2

ω −
³
ε+ (2ε)2

Pn−3
i=0 (2ε)

i + (2ε)n−1ε
´
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and is approximately minimized at ω = 2
³
ε+ (2ε)2

Pn−3
i=0 (2ε)

i + (2ε)n−1ε
´
,

resulting in α ≈ 4 (2/ε)n
³
ε+ (2ε)2

Pn−3
i=0 (2ε)

i + (2ε)n−1ε
´
, we have

nX
i=1

hi ≈
3

δ

nX
i=1

ehi ≈ 3 2

1− 2ε4
µ
2

ε

¶nÃ
ε+ (2ε)2

n−3X
i=0

(2ε)i + (2ε)n−1ε

!
n

= 12n22n
1

(1− 2ε)(2ε)n

µ
2ε+ (2ε)n + 2(2ε)2

1− (2ε)n−2
1− 2ε

¶
.

Noting that

1

(1− 2ε)(2ε)n

µ
2ε+ (2ε)n + 2(2ε)2

1− (2ε)n−2
1− 2ε

¶
≤ 2(n− 1)
(1− 2ε)(2ε)n

for ε ∈ (0, 1/2) and thus the latter may be bounded from above by the value
of the right-hand side at ε = n/ (2(n+ 1)), that is, 2e(n+ 1)(n− 1), we get

nX
i=1

hi ≤ 24e(n+ 1)(n− 1)n22n = O(n322n).

The resulting estimate for the number of the redundant constraints is not
much different from the case of ε̃ = 1/2, so this model for d is not discussed
here in any more details.

7.6 Conclusions

We provide sufficient conditions for the central path to intersect small neigh-
borhoods of all the vertices of the Klee—Minty n-cube; see Propositions 7.1,
7.2, and Corollary 7.1. More precisely, we derive explicit formulae for the
number of redundant constraints for the Klee—Minty n-cube example given
in [4, 5]. We give a smaller number of redundant constraints of order n23n

when the distances to those are chosen uniformly, as opposed to the previously
established O(n226n). When these distances are chosen to decay geometri-
cally, we give a slightly tighter bound of the same order n322n as in [5], that
results in a provably smaller number of constraints in practice.
We argue that in R2 the sufficient conditions presented are tight and in-

dicate that the same is likely true in higher dimensions.
Our construction potentially gives rise to linear programming instances

that exhibit the worst case iteration-complexity for path-following interior-
point methods, which almost matches its theoretical counterpart.
Considering the n-dimensional simplex, Megiddo and Shub [8] demon-

strated that the total curvature of the central path can be as large as order
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n. Combined with Corollary 7.2, it follows that the worst-case lower bound
on the total curvature of the central path is at least exponential in n up to
a rational multiplier. We conjecture that the total curvature of the central
path is O(m); see [3].
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