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Abstract Akçay and Xu (Manag Sci 50(1):99–116, 2004) studied a periodic review
assemble-to-order (ATO) system with an independent base stock policy and a first-come-
first-served allocation rule, where the base stock levels and the component allocation are
optimized jointly. The formulation is non-convex and, thus theoretically and computationally
challenging. In their computational experiments, Akçay and Xu (Manag Sci 50(1):99–116,
2004) modified the right hand side of the inventory availability constraints by substituting
linear functions for piece-wise linear ones. This modification may have a significant impact
for low budget levels. The optimal solutions obtained via the original formulation; that is,
without the modification, include zero base stock levels for some components and indicate
consequently a bias against component commonality. We study the impact of component
commonality on ATO systems. We show that lowering component commonality may yield
a higher type-II service level. The lower degree of component commonality is achieved via
separating inventories of the same component for different products. We substantiate this
property via computational and theoretical approaches. We show that for low budget levels
the use of separate inventories of the same component for different products could achieve a
higher reward than with shared inventories. Finally, considering a simple ATO system con-
sisting of one component shared by two products, we characterize the budget ranges such that
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the use of separate inventories is beneficial, as well as the budget ranges such that component
commonality is beneficial.

Keywords Assemble-to-order · Component commonality · Stochastic programming ·
Inventory replenishment · Component allocation

1 Introduction

Given the pressure of high capital costs and the competitive environment in manufacturing,
more and more manufacturers have adopted assemble-to-order (ATO) systems to increase
product customization and reduce response time. The main difference between ATO and
make-to-stock (MTS) approaches is that ATO eliminates the necessity for final product inven-
tories. When a customer order arrives, an ATO system satisfies the order by assembling the
products from component inventories. Manufacturers will benefit from an ATO system if
their product assembly times are negligible compared with their component replenishment
lead times. While ATO systems provide numerous benefits, efficiently matching the demand
and the supply for ATO systems is a challenging task. In particular, if the matching prob-
lem is not efficiently solved, those benefits may be offset, see Song and Zipkin (2003). Our
approach focuses on a periodic review ATO system with an independent base stock policy
and a first-come-first-served (FCFS) allocation rule. We analyze the theoretical and compu-
tational aspects of the formulation of Akçay and Xu (2004) which jointly optimizes the base
stock levels and the component allocation. In particular, we discuss the impact of substitut-
ing linear inventory availability constraints for piece-wise linear ones in the Akçay and Xu
formulation and the efficiency of component commonality for ATO systems.

1.1 Literature review

Component commonality is widely adopted and often preferred in ATO systems in order to
offset the reduction of economies of scale when providing customized products. The eco-
nomic impact of component commonality for single period models has been extensively
studied. Eynan and Rosenblatt (1996) presented three models to compare and analyze the
effects of increasing component commonality, and demonstrated that some formsof common-
ality might not always be beneficial. They also provided conditions for which commonality
should be either employed or avoided. Mirchandani and Mishra (2002) compared a non-
commonality model with two different commonality models—based on whether or not the
products are prioritized—for a system with two products and independent uniform demand
distributions. They derived theoretical conditions when component commonality is benefi-
cial for this specific system. Both Eynan and Rosenblatt (1996) and Mirchandani and Mishra
(2002) allowed the common component to bemore expensive than those it replaces. However,
in our formulation, we apply component commonality to the inventory management rather
than to the design process. We assume, like Baker et al. (1986) and Gerchak et al. (1988),
that the costs of the dedicated component and the common component are identical. Baker
et al. (1986) studied the effect of component commonality on optimal safety stock levels for
an ATO system with two end-products and two components. They considered the problem of
minimizing safety stock levels while satisfying a service level constraint under independent
uniform demand distributions and showed that component commonality induced a reduction
in the optimal safety stock levels. Gerchak et al. (1988) extended this work by investigating
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whether the results hold for a system with an arbitrary number of products and a general joint
demand distribution.

In contrast to the above works where a single period model is assumed, our commonality
study focuses on amulti-periodmodel. Considering a simplemulti-periodATOmodel, Hillier
(1999) observed that component commonality is not always beneficial. Hillier (1999) studied
a periodic review ATO system with zero lead times and uniformly distributed demands, and
derived a closed-form solution for a cost minimization model with service level constraints.
The results demonstrated that, for a multi-period model, the use of a common component
is always beneficial if its price does not exceed the price of the replaced components. If
the common component is more expensive than the replaced ones, then in contrast to the
single period case, it is almost never beneficial to use it. Hillier (2000) further extended these
results to systems with an arbitrary number of final products and components. Song and Zhao
(2009) considered a continuous-review ATO system with one common component, two end
products, and Poisson distributed demands, and showed that, while component commonality
is generally beneficial, its added value depends strongly on the component costs, lead times,
and allocation rules. Based on the general setting proposed by Huang and Kok (2015), our
approach aims at further analyzing complicated ATO systems while taking into account
component commonality. Huang and Kok (2015) considered a periodic-review ATO system
with component base stock policy and correlated demands, and presented a FCFS formulation
for a cost minimization model involving the inventory holding cost, remnant stock holding
cost and backlogging cost.

In the literature reviewed above, minimizing inventory level or inventory cost subject
to some service level constraints is commonly used to model ATO systems. However, the
problem we consider follows another line of research: component commonality for systems
with a given budget for all the components. Jönsson and Silver (1989) analyzed the impact
of component commonality for an ATO system with two end products and two components,
with one being common to both products. Fong et al. (2004) pursued the approach of Baker
et al. (1986) and provided analytical formulations for a commonality problem minimizing
the expected shortage subject to a fixed budget constraint and assuming independent Erlang
demand distributions. They observed that the relative reduction in the expected shortage can
be substantial when the budget level is high relative to the demand requirements for the end
products—even if the component is much more expensive. Note that all these models assume
a single period.

Another relevant work is Nonås (2009)who formulated a two-stage stochastic program for
an ATO system with three products and an arbitrary number of components, and introduced
a gradient-based search method to find the optimal inventory levels for a profit maximization
problem. The key difference is that we consider a budget constraint.

1.2 Akçay and Xu formulation

Following the model proposed by Akçay and Xu (2004), we assume:

(1) a periodic review system,
(2) an independent base stock policy is used for each component,
(3) the product demands are satisfied by a FCFS rule,
(4) the product demands are correlated within each period, while the demands over different

periods are independent,
(5) the replenishment lead time for each component is constant,
(6) a product reward is collected if the assembly is completed within the given time window.
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In addition, the following sequence of events is assumed for each period:

(i) inventory position reviewed,
(ii) new replenishment order of components placed,
(iii) earlier component replenishment order arrive,
(iv) demand realized,
(v) component allocated and product assembled,
(vi) associated rewards accounted for.

In this model, assembly takes zero time while component lead times are greater than zero.
The model is based on a multi-matching approach proposed by Huang and Kok (2015)
and Huang (2014) where multiple components are matched with multiple products to satisfy
demands. In each period within the time window, rewards are collected by satisfying product
demands.We recall that the timewindow is the number of periods between the order receiving
period and the order fulfillment period. In particular, a time window equal to 0 means that
the demand must be fulfilled within the period the order is received; that is, we must have
enough components to satisfy the demand within that period in order to collect rewards. The
base stocks of the ATO system are constrained by a pre-set overall budget. The approach is
based on a two-stage decisionmodel. The first stage consists of determining a base stock level
for each component, and the second stage consists of determining products that need to be
assembled in each periodwith respect to some constraints reflecting the inventory availability.
The first stage decisions are made before the second stage decisions following a two-stage
stochastic programming framework, see Birge and Louveaux (2011). The objective of the
approach is to maximize the expected total reward collected from the products assembled
within given time windows. Note that while all products are eventually assembled within
L +1 periods, the rewards are collected only within the pre-set time windows. The notations
are summarized in Table 1.

The second stage corresponds to the allocation problem
(
Alloc(S, ξ)

)
, where S = (Si ) is

the vector representing base stock levels, ξ = {Pj,k | j = 1, . . . ,m; k = 0,−1, . . . ,−L} is
the vector representing random demands, and Oi,k is the number of component i available
at period k. Note that Oi,k = (Si − DLi−k

i )+ for 0 ≤ k ≤ Li where DLi−k
i = ∑Li−k

s=0 Di,−s ,
and Oi,k = Di,0 for Li + 1 ≤ k ≤ L + 1 are inferred from the base stock policy and a FCFS
rule, see Huang and Kok (2015) and Huang (2014).

max
m∑

j=1

w j∑

k=0

(r j,k × x j,k) (Alloc(S, ξ))

L+1∑

k=0

x j,k = Pj j = 1, . . . ,m

k∑

μ=0

m∑

j=1

(ai, j × x j,μ) ≤ Oi,k i = 1, . . . , n, k = 0, . . . , L + 1

x j,k ∈ Z+ j = 1, . . . ,m, k = 0, . . . , L + 1

Thefirst set of constraints guarantees that assemblywill satisfy customer demand.The second
set of constraints—called inventory availability constraints—guarantees that assembly could
only happen when there are enough component inventories. While an optimal allocation can
be computed for a given base stock level S and demand ξ , we still need to determine the
optimal base stock levels. Thus, we use the two-stage stochastic integer program

(
Joint(B)

)
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Table 1 Notations
n Number of components

m Number of products

i Index of component i = 1, . . . , n

j Index of product j = 1, . . . ,m

Si Base stock level of component i = 1, . . . , n

ci Unit base stock level cost of component i = 1, . . . , n

Li Lead time of component i = 1, . . . , n

L Maximum lead time among all components; that is,
L = maxni=1 Li

w j Time window of product j

k Index of period k corresponding to the duration
[k, k + 1); k = 0 implies the current period; negative
values of k imply previous periods

x j,k Number of product j assembled in period k

r j,k Reward for satisfying the demand for product j in
period k

ai, j Number of component i used to assemble one unit of
product j ; that is, the bill of materials (BOM)

B The budget, i.e.,
∑n

i=1 ci × Si ≤ B

Pj,k Demand of product j at period k

Pj Demand of product j at the current period; that is, Pj,0

Di,k Demand of component i at period k; that is,
Di,k = ∑n

j=1 ai, j Pj,k

M Number of independent samples

N Number of realizations in one sample

l Index of sample l = 1, . . . , M

h Index of realization h = 1, . . . , N

x+ The positive part of x ; that is, x+ = (|x | + x)/2

where the first stage determines the base stock levels and the the second stage maximizes the
expectation of the component allocations:

max IE[Alloc(S, ξ)] (Joint(B))
n∑

i=1

(ci × Si ) ≤ B

Si ∈ Z+ i = 1, . . . , n

We recall in Sect. 1.3 the sample average approximation method used to solve
(
Joint(B)

)
.

1.3 Sample average approximation method

The sample average approximation (SAA) method, see Kleywegt et al. (2002), consists of
the following steps:

(i) generateM independent samples for l = 1, . . . , M with N realizations for each sample.
The vector ξ N

l = (ξ(ω1
l ), ξ(ω2

l ), . . . , ξ(ωN
l )) represents the N realizations of the l-th

sample,
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(i i) solve the optimization problem (INLP ) for each sample, which is the associ-
ated deterministic version of

(
Joint(B)

)
. where the objective function is set to

1
N

∑N
h=1 Alloc(S, ξ(ωh

l )) as described below. Note that (INLP ) is non-linear not only
due to the integrality constraints but also due to the right hand side of the inventory
availability constraints. Let Ŝl denote the optimal base stock levels for (INLP ) and
Ĝ(Ŝl) denote its optimal objective value.

max
1

N

N∑

h=1

m∑

j=1

w j∑

k=0

(r j,k × xhj,k) (INLP )

L+1∑

k=0

xhj,k = Ph
j j = 1, . . . ,m, h = 1, . . . , N

k∑

μ=0

m∑

j=1

(ai, j × xhj,μ) ≤ Oh
i,k i = 1, . . . , n, k = 0, . . . , L + 1, h = 1, . . . , N

n∑

i=1

(ci × Si ) ≤ B

Si ∈ Z+ i = 1, . . . , n

xhj,k ∈ Z+ j = 1, . . . ,m, k = 0, . . . , L + 1, h = 1, . . . , N

(i i i) generate a different sample ξ N ′
with N ′ � N realizations and compare the perfor-

mance among all the base stock vectors Ŝl solved in (i i) by solving
(
Alloc(S, ξ N ′

)
)

with S = Ŝl . Let Ḡ(Ŝl) be the new optimal objective value.
(iv) select the optimal base stock vector Ŝ∗ achieving the best performance among all the

base stock vectors; that is, Ŝ∗ = argmax{Ḡ(Ŝl) : l = 1, . . . , M}.
Let ĜM = 1

M

∑M
l=1 Ĝ(Ŝl), ḠN ′ = Ḡ(Ŝ∗), and G∗ be the optimal objective value of

(
Joint(B)

)
. Since ḠN ′ ≤ G∗ ≤ ĜM under certain conditions for N , M, N ′, see Birge and

Louveaux (2011), ḠN ′ and ĜM are, respectively, a lower and an upper bound for G∗. For
more details concerning the statistical testing of optimality for the SAA method, and the
selection of N , M , and N ′, see Kleywegt et al. (2002). Note that Oi,k = (Si − DLi−k

i )+
is a non-convex function of Si ; and we use the standard Big-M method to check whether
(Si − DLi−k

i ) is positive.

2 Impact of modifying the inventory availability constraints

While the (INLP ) formulation uses a plus sign in the right hand side of the inventory avail-
ability constraints, (Si − DLi−k

i )+ is substituted by (Si − DLi−k
i ) in the computational

experiments performed by Akçay (2002). The obtained new formulation (ILP) allows faster
computation. Note that the feasible region of (ILP) is a subset of the feasible region of
(INLP ). In addition, while relaxing the integrality constraints on the variables would make
(ILP) convex, (INLP ) would remain non-convex due to the (Si − DLi−k

i )+ term in the right

hand side of the inventory availability constraints. Note that substituting (Si − DLi−k
i ) for

(Si − DLi−k
i )+ may lead to infeasibility. This issue can be addressed by filtering out samples

leading to infeasibility and by assuming sufficiently large budget level; that is, by allowing
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large base stock levels. We argue that substituting (Si − DLi−k
i ) for (Si − DLi−k

i )+ might
yield an intractable sample generation process for the SAA approach for low budget levels.

2.1 Impact of modifying the inventory availability constraints on the sample
generation

Generating enough samples such that the associated (ILP) formulation is feasible could be
highly challenging for low budget levels. Note that under the extreme case of setting the
budget to zero, the only sample yielding a feasible formulation is the trivial zero sample.
Disregarding infeasible ones, we generate samples for (ILP) until the required number of
samples, or a pre-set number of feasibility tests, is reached. For a given budget, the feasibility
check is done by comparing with a computed minimum budget for a sample having a feasible
solution. The computed minimum budget is determined from the (ILP) minimum base stock
levels using Algorithm 1 described below. The non-negativity of the left hand side of the
inventory availability constrains implies (Si − DLi−k

i ) ≥ 0. Note that while we can gen-
erate enough feasible samples for (ILP), the mean and variance—i.e., the distribution—of
generated sample are impacted and, thus, the SAA method.

Algorithm 1 Computing minimum feasible budget
Initialize maxS ← zeros(n)

for any realization h do
for for any component i do

if D
Li
i > maxS(i) then

maxS(i) ← D
Li
i

end if
end for

end for
B = ∑n

i=1 ci × maxS(i)

2.2 Impact of modifying the inventory availability constraints on the SAA method

Following the notation and discussion of Sect. 1.3, let Ḡ•
N ′ , G∗•, and Ĝ•

M denote respectively
the (ILP) lower bound, optimal value, and upper bound. Since x ≤ x+, any feasible solution
of (ILP) is a feasible solution of (INLP ). In addition, this inclusion is typically strict as one
can set some base stocks to zero to build a solution feasible for (INLP ) but infeasible for
(ILP). To ensure a fair comparison, we only consider samples yielding feasible (ILP) and
(INLP ) formulations. Since, for a given sample, the optimal objective value for (INLP ) is at
least the one for (ILP), we have G•

M ≤ ĜM .

2.3 Computational results for the Zhang system

We consider an ATO system proposed in 1997 by Zhang (1997) with four products and five
components as described in Table 2. The computational results are presented in Table 3where
N/A corresponds to budgets for which not enough sample yielding a feasible formulation can
be generated, and LB and UB denote, respectively, the lower and upper bounds for the (ILP)
and (INLP ) formulations. The parameters for the SAAmethod are set to: N = 25, N ′ = 100
and M = 5000. If a million samples are not enough to yield 100 feasible (INLP ) samples,
the process stops and outputs N/A.
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Table 2 Settings for the Zhang
system

Component

i 1 2 3 4 5
ci 2 3 6 4 1

Product Li 3 1 2 4 4

j Mean Std
Dev

r j w j Bill of materials

1 100 25 1 0 1 2 1 0 0

2 150 30 1 0 1 1 1 0 0

3 50 15 1 0 0 1 1 1 0

4 30 11 1 0 0 0 0 1 1

Table 3 Type-II service levels
for (ILP) and (INLP ) for the
Zhang system

Budget (ILP)-LB (ILP)-UB (INLP )-LB (INLP )-UB

2000 N/A N/A 9.08 9.11

3000 N/A N/A 9.08 9.12

4000 N/A N/A 9.46 9.88

5000 N/A N/A 21.59 22.98

6000 N/A N/A 46.47 47.83

7000 N/A N/A 65.78 66.49

7500 57.74 60.03 71.73 71.99

8000 68.58 70.54 74.88 75.01

8500 79.78 80.22 81.13 82.40

9000 87.85 88.85 89.07 90.02

9500 92.68 93.60 94.77 95.35

10000 97.76 98.12 98.20 98.34

10500 98.69 98.89 99.88 99.59

11000 99.62 99.66 100.50 99.86

Remark that systems with low service level occur, for example in the IT industry. In
particular, instances of low service level occur under so-called hunger marketing, or guerrilla
marketing, strategies which are driven not only by targeting more sales, but also by restricted
capital cost; that is, low budget. Consider for example a new iPhone released by Apple. The
service level is actually low given the fact that the time window is small. Similarly, Xiaomi
grew exponentially in China over the last few years by reducing significantly the required
capital cost. Xiaomi service level is quite low but, despite many resulting complaints, the
activity flourished as Xiaomi could cut competitors’ price in half. In other words, reducing
the service level could be strategic in some situations.

2.4 Computational results for the IBM system

We consider an ATO system proposed in 2002 by Cheng et al. (2002) with six products and
seventeen components as described in Table 4. The computational results are presented in
Fig. 1 where LB and UB denote, respectively, the lower and upper bounds for the (ILP) and
(INLP ) formulations. The parameters for the SAA method are set to N = 25, N ′ = 100,
and M = 1000. If a million samples are not enough to yield 100 feasible (INLP ) samples,
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Table 4 Settings for the IBM
system

Component

j 1 2 3 4 5 6

ci 1363 1595 1765 1494 1494 1628

i ci Li Bill of materials

1 42 5 1 1 1 1 1 1

2 114 5 1 1 1 1 1 1

3 114 5 1 1 1 1 1 1

4 307 5 1 0 0 0 0 0

5 538 5 0 1 0 0 0 0

6 395 5 0 0 1 1 1 0

7 790 5 0 0 0 0 0 1

8 290 5 1 1 1 1 1 1

9 155 5 1 1 0 0 0 1

10 198 5 0 0 1 1 1 0

11 114 5 1 1 1 1 1 1

12 114 5 1 1 1 0 1 0

13 114 5 0 0 0 1 0 0

14 43 5 0 0 1 0 0 0

15 114 5 0 0 1 0 0 0

16 114 5 1 1 1 1 1 0

17 114 5 0 0 1 0 0 0

the process stops and the reward is set to 0. In particular, a budget of at least 11 million is
needed to yield 100 feasible (INLP ) samples for the (ILP) model, see Fig. 1.

3 Component commonality for specific ATO systems

3.1 Component commonality for the Zhang system

The computational experiments performed for the Zhang system with (INLP ) formulation
show that, for some low level budgets, the optimal base stock levels of some components are
set to zero, see Table 5. This computation indicates a bias against component commonality
and suggests that dedicating the components to different productsmay yield a higher objective
value. For example, for a budget of 2000, the inventory levels for C1, C2 and C3 are set to
zero implying that an optimal solution only considers assembling product 4. Similarly, for a
budget between 5000 and 8000, the optimal base stock levels for components C4 and C5 are
set to zero and thus products 3 and 4 are ignored.

We propose a model separating component inventories with respect to the different prod-
ucts; that is, each product is served by dedicated components. We consider a modified BOM
for the Zhang system as described in Table 6. In the first row, the subscript is the com-
ponent index in the original BOM, and the superscript is the index of the product served
by the component. The components with the same subscript have the same cost and lead
time. Computational experiments, presented in Table 7, are performed to compare the Zhang
system with maximum component commonality, denoted as (INLP ), and the Zhang system
with no component commonality, denoted as (INLP�). Table 7 indicates that the (INLP�)
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Fig. 1 Type II service levels for (ILP) and (INLP ) for the IBM system

Table 5 Optimal base stock
levels and Type-II service levels
for the Zhang system

Budget C1 C2 C3 C4 C5 LB UB

2000 0 0 0 428 199 9.08 9.11

3000 0 0 162 413 376 9.08 9.12

4000 0 325 249 339 175 9.46 9.88

5000 613 492 383 0 0 21.59 22.98

6000 699 598 468 0 0 46.47 47.83

7000 782 722 545 0 0 65.78 66.49

7500 819 786 584 0 0 71.73 71.99

8000 865 846 622 0 0 74.88 75.01

8500 766 727 562 316 151 81.13 82.40

9000 793 779 595 339 151 89.07 90.02

9500 823 835 632 350 157 94.77 95.35

10000 855 876 665 377 163 98.20 98.34

10500 883 932 696 400 162 99.88 99.59

11000 899 981 744 402 187 100.50 99.86

model outperforms the original (INLP ) model for a budget no greater than 8000. While the
gap decreases with the increase of the budget, it is significant for a low to medium budget.
Since the model uses a FCFS policy, we need to satisfy all the demands that are ahead of
time t to gain reward for a product for current period, i.e., at time t . Then, there could be
insufficient inventories to meet the high reward demand generated at time t . Intuitively, our
results highlight that tweaking the domaine of the FCFS policy can be beneficial.

3.2 Component commonality for the IBM system

We compare our formulation and the original one for the IBM system in Fig. 2. Our formu-
lation is at least as good as the original one for a service level around 80%, and a budget
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Table 6 Bill of materials for the
Zhang system without
component commonality

C1
1 C1

2 C1
3 C2

1 C2
2 C2

3 C3
2 C3

3 C3
4 C4

4 C4
5

P1 1 2 1 0 0 0 0 0 0 0 0

P2 0 0 0 1 1 1 0 0 0 0 0

P3 0 0 0 0 0 0 1 1 1 0 0

P4 0 0 0 0 0 0 0 0 0 1 1

Table 7 Type II service levels for (INLP ) and (INLP�) for the Zhang system

Budget (INLP )-LB (INLP )-UB (INLP�)-LB (INLP�)-UB

2000 9.08 9.11 14.26 14.40

3000 9.08 9.12 25.62 26.60

4000 9.46 9.88 43.53 43.70

5000 21.59 22.98 53.72 53.67

6000 46.47 47.83 58.44 59.40

7000 65.78 66.49 68.73 69.78

7500 71.73 71.99 74.85 75.67

8000 74.88 75.01 79.74 80.24

8500 81.13 82.40 82.83 82.92

9000 89.07 90.02 84.39 85.29

9500 94.77 95.35 89.54 90.59

10000 98.20 98.34 94.05 94.68

10500 99.88 99.59 97.12 97.35

11000 100.50 99.86 98.94 98.89
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Fig. 2 Type II service levels for (INLP ) and (INLP�) for the IBM system

up to around 11.5 million. For a budget above 12.5 million, both formulations yield similar
service level as the budget is large enough to satisfy all the demands immediately. For a
budget between 11.5 and 12.5 million, the benefit of common component is clear.
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Table 8 Bill of materials for Λ-
and Λ�-systems

Λ-system ΛΔ-system

C1

P1 P2

C1

P1

C2

P2

Table 9 Parameters for Λ- and
Λ�-systems

Mean Std Dev r j,0

P1 100 25 1

P2 150 30 1

3.3 Component commonality for Λ-system

While in Sect. 3.1 the gap between the (INLP�) and (INLP )models is substantiated computa-
tionally, we provide a theoretical analysis for a simpler system, denotedΛ-system, consisting
of one component shared by two products. See Table 8 for a description of the original
Λ-system and of our modified model, denoted Λ�-system, that removes component com-
monality (Table 9).

To simplify the analysis, the component costs and product rewards are set to 1, and the
product time windows are set to 0. The corresponding SAA formulations (INLPN ) and
(INLPN

� ) are as follows:

max
1

N

N∑

h=1

(xh1 + xh2 ) (INLPN )

xh1 + xh2 ≤ (B − Dh
1 − Dh

2 )+ h = 1, . . . , N

xh1 ≤ Ph
1 , xh2 ≤ Ph

2 h = 1, . . . , N

xh1 , xh2 ∈ Z+ h = 1, . . . , N

max
1

N

N∑

h=1

(xh1 + xh2 ) (INLPN
�)

xh1 ≤ (B1 − Dh
1 )+ h = 1, . . . , N

xh2 ≤ (B2 − Dh
2 )+ h = 1, . . . , N

xh1 ≤ Ph
1 , xh2 ≤ Ph

2 h = 1, . . . , N

B1 + B2 = B

xh1 , xh2 ∈ Z+ h = 1, . . . , N

B1, B2 ∈ R+.

Theorem 1 characterizes the budget ranges such that component commonality is beneficial
for Λ-system over Λ�-system. For example, the “<” sign means that common commonality
is non-beneficial for a budget ranging from Bmin to B+

min as specified in Theorem 1. The
proof of Theorem 1 is given in Sect. 4.
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Table 10 Λ�-system where a positive sign corresponds to common commonality being beneficial

N
B [0, Bmin ] (Bmin , B+

min ] (B+
min , B+

max ] (B+
max , B

Σ
max ] (BΣ

max , +∞)

1 = < < ≤ =
2 = < ≤ ≤ or > =
N0 = < ≤ or > ≤ or > =

Theorem 1 Given a budget B, let f ∗(B) and f ∗
�(B) be the optimal objective values of

(INLPN ) and (INLPN
� ). Considering the cases N = 1, 2 and N0, the sign of f ∗(B) -

f ∗
�(B) is given in Table 10 where

Bmin = min2i=1{
N

min
h=1

{Dh
i }}

B+
min = minNh=1{Dh

1 + Dh
2 }

B+
max = maxNh=1{Dh

1 + Dh
2 }

BΣ
max =

∑2

i=1

N
max
h=1

{Dh
i + Ph

i }.

Some intuition behind Theorem 1 arises from the non-convexity of the formulation
resulting from the right hand side of the inventory availability constraints, i.e., Oi,k =
(Si − DLi−k

i )+. If the budget level is high enough, the inventory availability constraints
become classic linear constraints and, thus, the non-convexity decreases. Using a manage-
ment science formulation; if the base stock is large enough to meet the demand, the inventory
availability become less important and the number of back orders decrease. If the budget
level, which can de derived from the sample, can meet the demand, the base stock is not an
issue.

4 Proof of Theorem 1

4.1 Case N = 1

Wefirst consider the case N = 1; that is for one realization in the SAAmethod. The associated
formulations (INLP1) and (INLP1

�) correspond to a deterministic demand where P1
1 and P1

2
represent the demands in the current period for, respectively, product 1 and 2, and D1

1 and
D1
2 represent the overall demands from all previous periods. The budget level B is given and

since the cost of the component is set to one, the budget level is equivalent to the base stock
level.

max x11 + x12 (INLP1)

x11 + x12 ≤ (B − D1
1 − D1

2)
+

x11 ≤ P1
1 , x12 ≤ P1

2

x11 , x
1
2 ∈ Z+
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max x11 + x12 (INLP1
�)

x11 ≤ (B1 − D1
1)

+

x12 ≤ (B2 − D1
2)

+

x11 ≤ P1
1 , x12 ≤ P1

2

B1 + B2 = B

x11 , x
1
2 ∈ Z+

B1, B2 ∈ R+

Property 1 Given a budget B, let f ∗(B) and f ∗
�(B) be the optimal objective values of

(INLP1) and (INLP1
�). Both f ∗(B) and f ∗

�(B) are monotonically non-decreasing with B
and f ∗(B) ≤ f ∗

�(B). 
�
Proof Since the feasible region of (INLP1) for a given B is a subset of the feasible region of
(INLP1) for B ′ ≥ B, f ∗(B) is non-decreasing with B increasing. The same holds for f ∗

�(B).
We then prove that f ∗(B)≤ f ∗

�(B) by showing that an optimal solution for (INLP1) yields
a feasible solution for (INLP1

�). Assume first that an optimal solution for (INLP1) satisfies
(x11 )

∗ = 0. Then, the solution x̂11 = (x11 )
∗ = 0, x̂12 = (x12 )

∗, B1 = 0, B2 = B is feasible for
(INLP1

�) as x̂
1
2 ≤ (B − D1

2)
+ holds since x̂12 = (x12 )

∗ ≤ (B − D1
1 − D1

2)
+ ≤ (B − D1

2)
+.

Assume then that an optimal solution for (INLP1) satisfies (x11 )
∗ > 0. Then, the solution

x̂11 = (x11 )
∗, x̂12 = (x12 )

∗, B1 = (x11 )
∗ + D1

1, B2 = B − (x11 )
∗ − D1

1 is feasible for (INLP1
�)

as x̂12 = (x12 )
∗ ≤ (B − (x11 )

∗ − D1
1 − D1

2)
+ holds since (x11 )

∗ > 0 implies B > D1
1 + D1

2;
that is : B − D1

1 − D1
2 ≥ (x11 )

∗ + (x12 )
∗ by the first constraint of (INLP1).

Property 2 refines the inequality f ∗(B)≤ f ∗
�(B) for N = 1 by providing budget ranges for

which the inequality is strict or holds with equality.

Property 2 Given a budget B, let f ∗(B) and f ∗
�(B) be the optimal objective values of

(INLP1) and (INLP1
�). We have: f ∗(B) = f ∗

�(B) if B ≤ Bmin or B ≥ D1
1 + D1

2 +
max{P1

1 , P1
2 }, and f ∗(B)< f ∗

�(B) if Bmin < B < D1
1 + D1

2 + max{P1
1 , P1

2 }.
Proof Consider first the case B ≤ Bmin = min(D1

1, D
1
2), then (x11 )

∗ = (x12 )
∗ =

(x̂11 )
∗ = (x̂12 )

∗ = 0, and thus f ∗(B) = f ∗
�(B) = 0. Consider then the case B ≥

D1
1 + D1

2 + max{P1
1 , P1

2 }. Adding the last two constraints of (INLP1
�) yields that P

1
1 + P1

2
is an upper bound; that is, f ∗(B) ≤ f ∗

�(B) ≤ P1
1 + P1

2 . Without loss of generality, we
assume P1

1 > P1
2 and consider two sub-cases. Sub-case B ≥ D1

1 + D1
2 + P1

1 + P1
2 :

then the solution (x11 )
∗ = P1

1 and (x12 )
∗ = P1

2 is feasible for (INLP1) and, thus,
P1
1 + P1

2 ≤ f ∗(B) ≤ f ∗
�(B)≤ P1

1 + P1
2 which implies f ∗(B) = f ∗

�(B). Sub-case
D1
1 + D1

2 + max{P1
1 , P1

2 } ≤ B < D1
1 + D1

2 + P1
1 + P1

2 : then an optimal solution for
(INLP1) satisfies (x11 )

∗ = P1
1 and (x12 )

∗ = B−D1
1 −D1

2 − P1
1 . Furthermore, for (INLP1

�), if
B1−D1

1 < 0 then x11 = 0 and x12 ≤ P1
2 < P1

1 < f ∗(B)which is not an optimal solution, there-
fore we can assume that B1 −D1

1 ≥ 0. In addition, if B2 −D1
2 < 0 then x12 = 0 and x11 ≤ P1

1
which can not yield a strictly larger objective value. Thus we can assume B1 − D1

1 ≥ 0 and
B2 − D1

2 ≥ 0. Adding the first two constraints shows that f ∗
�(B)≤ B − D1

1 − D1
2, and thus

a strictly larger objective value can not be achieve; that is f ∗(B)= f ∗
�(B). Finally, consider

the case min(D1
1, D

1
2) < B < D1

1 + D1
2 +max{P1

1 , P1
2 }. We consider 2 sub-cases. Sub-case

min(D1
1, D

1
2) < B ≤ D1

1 + D1
2: then f ∗(B) = 0 while B∗

1 = B and B∗
2 = 0 yields a
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feasible solution for (INLP1
�) which a strictly positive objective value and, thus, f ∗

�(B) >

f ∗(B). Sub-case D1
1 + D1

2 < B < D1
1 + D1

2 +max{P1
1 , P1

2 } and, without loss of generality,
P1
1 > P1

2 : then f ∗(B) ≤ B − D1
1 − D1

2 < P1
1 by the first constraint of (INLP1). On the

other hand, setting B∗
1 = B, B∗

2 = 0 and x̂11 = min{B − D1
1, P

1
1 } yields a feasible solution

for (INLP1
�) with an objective value of at least P1

1 ; that is, f
∗
�(B) ≥ P1

1 > f ∗(B). 
�
4.2 Case N = 2

We consider the case N = 2; that is the simplest random demand with only two realizations.
We assume that both realizations have probability 0.5 and omit this constant term in the
objectives for clarity. In the associated formulations (INLP2) and (INLP2

�) below, super-
scripts are use to distinguish different realizations. For example, x21 , D

2
1 , and P2

1 refer to the
second realization.

max x11 + x12 + x21 + x22 (INLP2)

x11 + x12 ≤ (B − D1
1 − D1

2)
+

x21 + x22 ≤ (B − D2
1 − D2

2)
+

x11 ≤ P1
1 , x12 ≤ P1

2

x21 ≤ P2
1 , x22 ≤ P2

2

x11 , x
1
2 , x

2
1 , x22 ∈ Z+

max x11 + x12 + x21 + x22 (INLP2
�)

x11 ≤ (B1 − D1
1)

+

x12 ≤ (B2 − D1
2)

+

x21 ≤ (B1 − D2
1)

+

x22 ≤ (B2 − D2
2)

+

x11 ≤ P1
1 , x12 ≤ P1

2

x21 ≤ P2
1 , x22 ≤ P2

2

B1 + B2 = B

x11 , x
1
2 , x

2
1 , x

2
2 ∈ Z+

B1, B2 ∈ R+

As the number of cases to consider in order to provide an analogue of Property 2 essentially
increases exponentially with the number of realizations, comparing (INLP2) and (INLP2

�)
can be quite tedious. Thus, Property 3. focuses on the following 3 scenarios : (i) the demands
are large for both realizations, (ii) the demands are large for one realization and small for the
other, and (iii) the demands are small for both realizations.

Property 3 Given a budget B, let f ∗(B) and f ∗
�(B) be the optimal objective values of

(INLP2) and (INLP2
�) We have: f ∗(B) < f ∗

�(B) if Bmin < B ≤ B+
min ,

f ∗(B) ≤ f ∗
�(B) if B+

min < B ≤ B+
max , and

f ∗(B)= f ∗
�(B) if 0 ≤ B ≤ Bmin or B ≥ max{D1

1+P1
1 , D2

1+P2
1 }+max{D1

2+P1
2 , D2

2+
P2
2 }.
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Proof Consider first the case B ≤ Bmin , then (x11 , x
2
1 , x

1
2 , x

2
2 ) must be set to (0, 0, 0, 0) to

obtain a feasible solution for (INLP2) and (INLP2
�) and, thus we have f ∗(B) = f ∗

�(B) = 0.
Consider the case B ≥ max{D1

1 + P1
1 , D2

1 + P2
1 }+max{D1

2 + P1
2 , D2

2 + P2
2 }. First note that

P1
1 + P1

2 + P2
1 + P2

2 is an upper bound both f ∗(B) and f ∗
�(B) as implied by adding the last 4

constraints. Then, as xhi = Ph
i is a feasible solution for (INLP2), f ∗(B)= P1

1 +P1
2 +P2

1 +P2
2 .

Similarly, xhi = Ph
i , B1 = max{D1

1 + P1
1 , D2

1 + P2
1 } and B2 = B − B1 a feasible solution

for (INLP2
�) and the corresponding objective is also P1

1 + P1
2 + P2

1 + P2
2 ; that is, f

∗
�(B)=

f ∗(B). Consider the case B ≤ B+
min = min{D1

1 + D1
2, D

2
1 + D2

2}, then while f ∗(B) = 0,
setting B∗

1 = B and B∗
2 = 0 yields a feasible solution for (INLP2

�) with a strictly positive
objective value; that is, f ∗(B) < f ∗

�(B). Consider the case B+
min < B ≤ B+

max , and assume
without loss of generality that D2

1 + D2
2 > D1

1 + D1
2. Since B ≤ D2

1 + D2
2 , the second

constraints of (INLP2) is x21 + x22 ≤ 0; that is x21 = x22 = 0. In other words, we can restrict
to (x11 , x

1
2 , 0, 0) feasible solutions and use Property 2 to derive f ∗(B) ≤ f ∗

�(B). 
�
4.3 Case N = N0

Similarly to Sect. 4.2, we assume for N = N0, that the N0 realizations have probability
1/N0 and omit this constant term in the objectives for clarity. In the associated formulations
(INLPN0 ) and (INLPN0

� ) below, superscripts are use to distinguish different realizations. For
example, xh1 , xh2 , Dh

1 , Dh
2 , Ph

1 , and Ph
1 refer to the h-th realization.

max
N0∑

h=1

(xh1 + xh2 ) (INLPN0 )

xh1 + xh2 ≤ (B − Dh
1 − Dh

2 )+ h = 1, . . . , N0

xh1 ≤ Ph
1 , xh2 ≤ Ph

2 h = 1, . . . , N0

xh1 , xh2 ∈ Z+ h = 1, . . . , N0

max
N0∑

h=1

(xh1 + xh2 ) (INLPN0
� )

xh1 ≤ (B1 − Dh
1 )+ h = 1, . . . , N0

xh2 ≤ (B2 − Dh
2 )+ h = 1, . . . , N0

xh1 ≤ Ph
1 , xh2 ≤ Ph

2 h = 1, . . . , N0

B1 + B2 = B

xh1 , xh2 ∈ Z+ h = 1, . . . , N0

B1, B2 ∈ R+.

Similarly to Sect. 4.2, the number of cases being essentially intractable, Property 4. focuses
on the following 2 scenarios : (i) the demands are large for all N0 realizations, and (ii) the
demands are small for all N0 realizations.

Property 4 Given a budget B, let f ∗(B) and f ∗
�(B) be the optimal objective values of

(INLPN0 ) and (INLPN0
� ) We have: f ∗(B)= f ∗

�(B) if 0 ≤ B ≤ Bmin or B ≥ BΣ
max , and

f ∗(B)< f ∗
�(B) if Bmin < B ≤ B+

min .
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Proof Similarly to Property 3, for B ≤ Bmin , xhi must be set to 0 for h = 1, . . . , N0 and i = 1

and2 to obtain a feasible solution for (INLPN0 ) and (INLPN0
� ) and, thus, f ∗(B)= f ∗

�(B)= 0.

Consider then, Since B ≥ BΣ
max = ∑2

i=1 maxN0
h=1{Dh

i + Ph
i }. First note that

∑2
i=1

∑N0
h=1{Ph

i } is an upper bound both f ∗(B) and f ∗
�(B) as implied by adding the

last 2N0 constraints. Then, as xhi = Ph
i is a feasible solution for (INLPN0 ), f ∗(B) =

∑2
i=1

∑N0
h=1{Ph

i }. Similarly, xhi = Ph
i , B1 = maxN0

h=1{Dh
1 + Ph

1 } and B2 = B − B1 a fea-

sible solution for (INLPN0
� ) and the corresponding objective is also

∑2
i=1

∑N0
h=1{Ph

i }; that
is, f ∗

�(B) = f ∗(B).

Consider the case B ≤ B+
min = minN0

h=1{Dh
1 +Dh

2 }, thenwhile f ∗(B)= 0, setting B∗
1 = B

and B∗
2 = 0 yields a feasible solution for (INLPN0

� ) with a strictly positive objective value;
that is, f ∗(B) < f ∗

�(B). 
�

5 Conclusions and future work

We highlighted the critical role played by the piece-wise linear inventory availability con-
straints and the associated feasibility issue and challenges for sample generation. The
computational results estimate the impact resulting from substituting linear functions for
piece-wise linear ones: While the impact decreases when the budget increases, it remains
significant for low to medium level budgets. In addition, the benefits of component com-
monality are analyzed from theoretical and computational aspects and illustrated for specific
ATO systems. We introduce a simple inventory control method applicable in practice where
a more flexible design of products and components allows us to exploit the different degrees
of component commonality according to the budget. Future work includes an enhanced anal-
ysis of the sample generation process for (ILP) and a tighter estimate of the gap between the
optimal objective values of (ILP) and (INLP ). Further flexibility for the proposed inventory
control method might be achieved via component commonality for subset of components
and products.
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