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Abstract.

We consider the average diameter of a bounded cell of a simple
arrangement defined by n hyperplanes in dimension d. In particu-
lar, we investigate the conjecture stating that the average diameter is
no more than the dimension d. Previous results in dimensions 2 and
3 suggested that specific extensions of the cyclic arrangement might
achieve the largest average diameter. We show that the suggested ar-
rangements do not always achieve the largest diameter and disprove
a related conjecture dealing with the minimum number of facets be-
longing to exactly one bounded cell. In addition, we computationally
determine the largest possible average diameter in dimensions 3 and 4
for arrangements defined by no more than 8 hyperplanes via the as-
sociated uniform oriented matroids. These new entries substantiate
the hypothesis that the largest average diameter is achieved by an ar-
rangement minimizing the number of facets belonging to exactly one
bounded cell. The computational framework to generate specific ar-
rangements, and to compute the average diameter and the number of
facets belonging to exactly one bounded cell is presented.

§1. Introduction

Let Ad,n be a simple arrangement formed by n hyperplanes in di-
mension d. We recall that an arrangement is called simple if n ≥ d+ 1
and any d hyperplanes intersect at a unique distinct point. The num-
ber of bounded cells (closures of the bounded connected components of
the complement) of Ad,n is I =

(
n−1
d

)
. Let δ(Ad,n) denote the average

diameter of a bounded cell Pi of Ad,n; that is,

δ(Ad,n) =

∑i=I
i=1 δ(Pi)

I

Key words and phrases. simple hyperplane arrangements, average diameter,
Hirsch conjecture, oriented matroids.
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where δ(Pi) denotes the diameter of Pi, i.e., the smallest number such
that any two vertices of Pi can be connected by a path with at most
δ(Pi) edges. Let ∆A(d, n) denote the largest possible average diameter
of a bounded cell of a simple arrangement defined by n inequalities
in dimension d. We consider the following conjecture stating that the
average diameter is no more than the dimension d.

Conjecture 1. [7] The average diameter of a bounded cell of a sim-
ple arrangement defined by n inequalities in dimension d is not greater
than d, i.e., ∆A(d, n) ≤ d.

1.1. Conjecture 1 as a discrete analogue of a result of
Dedieu, Malajovich, and Shub

Conjecture 1 can be regarded as a discrete analogue of a result of
Dedieu, Malajovich, and Shub [6] on the average total curvature of the
central path associated to a bounded cell of a simple arrangement. We
first recall the definitions of the central path and of the total curvature.
For a polytope, i.e. bounded polyhedron, P = {x : Ax ≥ b} with
A ∈ ℜn×d, the central path corresponding to min{cTx : x ∈ P} is a set
of minimizers of min{cTx+µf(x) : x ∈ P} for µ ∈ (0,∞) where f(x) =
−
∑n

i=1 ln(Aix − bi) – the standard logarithmic barrier function [19].
Intuitively, the total curvature [21] is a measure of how far off a certain
curve is from being a straight line. Let ψ : [α, β] → ℜd be a C2((α −
ε, β+ε)) map for some ε > 0 with a non-zero derivative in [α, β]. Denote

its arc length by l(t) =
∫ t

α
∥ψ̇(τ)∥dτ , its parametrization by the arc

length by ψarc = ψ ◦ l−1 : [0, l(β)] → ℜd, and its curvature at the point

t by κ(t) = ψ̈arc(t). The total curvature is defined as
∫ l(β)

0
∥κ(t)∥dt.

The requirement ψ̇ ̸= 0 insures that any given segment of the curve is
traversed only once and allows to define a curvature at any point on the
curve. Let λc(Ad,n) denote the average associated total curvature of a
bounded cell Pi of a simple arrangement Ad,n; that is,

λc(Ad,n) =
i=I∑
i=1

λc(Pi)

I

where λc(P ) denotes the total curvature of the central path correspond-
ing to the linear optimization problem min{cTx : x ∈ P}. Dedieu,
Malajovich and Shub [6] demonstrated that λc(Ad,n) ≤ 2πd for any
fixed c. Keeping the linear optimization approach but replacing central
path following interior point methods by simplex methods, Haimovich’s
probabilistic analysis of the shadow-vertex simplex algorithm, see [3,
Section 0.7], showed that the expected number of pivots is bounded
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by d. Note that while Dedieu, Malajovich and Shub consider only the
bounded cells (the central path may not be defined over some unbounded
ones), Haimovich considers the average over bounded and unbounded
cells. The result of Haimovich and Conjecture 1 are similar in nature
but differ in some aspects as, while the diameter is a lower bound for
the number of pivots in the worst case, the number of pivots could be
smaller than the diameter for some cells.

Considering the largest λc(P ) over all possible c, we obtain the quan-
tity λ(P ), referred to as the curvature of a polytope. Following the ap-
proach regarding the curvature λ(P ) as a continuous analogue of the
diameter δ(P ), analogues of the results of Holt and Klee [14], and Klee
and Walkup [15] were given in [7, 8]. Namely, a family of polytopes
which attain the conjectured order of the largest curvature was given,
and it was proved that if the order of the curvature is less than the di-
mension d for all polytopes defined by 2d inequalities and for all d, then
the order of the curvature is less than the number of inequalities for all
polytopes.

As pointed out by an anonymous referee, it would be interesting to
consider the average diameter over all cells, bounded and unbounded.
The following property, see [12], illustrates the mathematical appeal of

this approach. For an oriented matroid of rank d+ 1, fk ≤
(
d
k

)
fd where

fk denotes the number of k-faces. Setting k = d− 1 yields fd−1 ≤ d fd;
that is, since any facet belongs to exactly 2 cells, the average number of

facets of a cell 2fd−1

fd
is no more than 2d. Note that the inequality holds

without the simplicity assumption.

1.2. Conjecture 1 and the conjecture of Hirsch

The conjecture of Hirsch formulated in 1957 and reported in [5]
states that the diameter of a polyhedron defined by n inequalities in
dimension d is not greater than n − d. The conjecture holds for d ≤ 3
and for n−d ≤ 6, but it had been speculated to be false for large enough
n and d, and was recently disproved by Santos [20]. It was noticed in [7]
that Conjecture 1 is nearly implied by the conjecture of Hirsch using the
following straightforward argument. If we assume that the diameter of a
bounded cell Pi defined by ni hyperplanes of Ad,n is bounded by ni− d,
then:

δ(Ad,n) ≤
∑i=I

i=1(ni − d)

I
=

∑i=I
i=1 ni
I

− d =
2n

(
n−2
d−1

)
− ϕ(Ad,n)

I
− d

where ϕ(Ad,n) denotes the number of external facets of Ad,n; that is, the
number of facets belonging to exactly one bounded cell. This inequality
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yields ∆A(d, n) ≤ d + 2d
n−1 as ϕ(Ad,n) ≥ 0, and suggests that arrange-

ments minimizing ϕ(Ad,n) might be good candidates for achieving a
large δ(Ad,n). Let ΦA(d, n) denote the minimum number of external
facets for any simple arrangement defined by n hyperplanes in dimen-
sion d. It was hypothesized in [7] that: ΦA(d, n) ≥ d

(
n−2
d−1

)
. While the

conjecture of Hirsch turned out to be false, we speculate that the weaker
Conjecture 1 could still hold.

We recall previous results concerning Conjecture 1 in Section 2. In
Section 3 we consider specific single element extensions of the cyclic
arrangements. The computational framework to generate such arrange-
ments, as well as to compute the average diameter and the number of
external facets, is presented in Section 4. Finally, in Section 5 we show
that, while providing a promising lower bound, the specific single ele-
ment extensions of the cyclic arrangements do not always achieve the
largest diameter and disprove the hypothesized lower bound for the num-
ber of external facets. We also substantiate Conjecture 1 by determining
new entries for the largest possible average diameter in dimensions 3 and
4 for arrangements defined by no more than 8 hyperplanes. We provide
computational evidence that maximizing the average diameter and min-
imizing the number external facets might be achieved simultaneously.

We refer to the books of Grünbaum [13] and Ziegler [25] for poly-
topes and arrangements, to the books of Renegar [18] and Roos et
al. [19] for linear programming and the central path, and to the books
of Bokowski [1] and Bjöner et al. [4] for oriented matroids.

§2. Previous Results

Let A∗
d,n denote a simple arrangement combinatorially equivalent to

the cyclic hyperplane arrangement which is dual to the cyclic polytope.
Proposition 2 recalls that, since the bounded cells of A∗

d,n are mainly
combinatorial cubes, the dimension d is an asymptotic lower bound for
∆A(d, n) for fixed d. Additional results for small d and n − d are re-
called in Proposition 3. See Figure 1 and Figure 2 for an illustration of
arrangements maximizing the average diameter for (d, n) = (2, 7) and
(3, 6).

Proposition 2. [9] For n ≥ 2d, we have

∆A(d, n) ≥
(d−1)(n−d

d )+(n−1
d )+(n−d)(n−d−1)

(n−1
d )

.
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h1

h2

Fig. 1. An arrangement formed by 7 lines maximizing the
average diameter

Proposition 3. [9] We have

(a) ∆A(d, d+ 2) = 2d
d+1

(b) ∆A(2, n) = 2− 2⌈n
2 ⌉

(n−1)(n−2) for n ≥ 3

(c) ∆A(3, 6) = 2

(d) 3− 6
n−1 +

6(⌊n
2 ⌋−2)

(n−1)(n−2)(n−3) ≤ ∆A(3, n) ≤ 3 + 4(2n2−16n+21)
3(n−1)(n−2)(n−3) .

One can easily check that the arrangement resulting from the ad-
dition of one hyperplane to A∗

2,n−1 such that all the vertices are on
one side of the added hyperplane, simultaneously maximizes the aver-
age diameter and minimizes the number of external facets. Noticing
that the arrangement given in Figure 2 maximizing the average diame-
ter for (d, n) = (3, 6) is obtained by adding a hyperplane to A∗

3,5 such
that all the vertices of A∗

3,5 are on one side of the added hyperplane, we
investigate extensions of A∗

d,n−1 as potential candidates to achieve the

largest average diameter ∆A(d, n) and minimize the number of external
facets ΦA(d, n).

§3. Covering extensions of cyclic arrangements

3.1. Covering extensions of cyclic arrangements

The alternating oriented matroidM∗
d+1,n of rank d+1 and with n el-

ements can be realized as a cyclic arrangement A∗
d,n−1. Let (M∗

d+1,n, k)



6 A. Deza, H. Miyata, S. Moriyama, and F. Xie

Fig. 2. An arrangement formed by 6 planes maximizing the
average diameter

be the corresponding affine alternating oriented matroid where k is
the infinity element. The combinatorics of the addition of a pseudo-
hyperplane to the cyclic hyperplane arrangement, and its relationship
with higher Bruhat orders, is studied in detail in [24]. Note that since
the combinatorial type of an arrangement defined by d+ 2 hyperplanes
is unique, all arrangements defined by d+ 3 hyperplanes are extensions
of A∗

d,d+2. In order to avoid the NP-hard realizability problem [23],

we focus on single element extensions of (M∗
d+1,n, k) for which all the

cocircuits are on one side of the added pseudo-hyperplane. These affine
oriented matroids are, by definition, realizable. Let us call covering
extensions of A∗

d,n−1 arrangements whose underlying affine oriented ma-

troid is a single element extension of (M∗
d+1,n, k) for which all the cocir-

cuits are on one side of the added pseudo-hyperplane. In other words,
covering extensions of cyclic arrangements are obtained by adding one
hyperplane to A∗

d,n−1 such that all the vertices are on one side of the
added hyperplane. For example, the cyclic arrangement A∗

d,n and the
arrangements given in Figures 1 and 2 are covering extensions of a cyclic
arrangement.

3.2. Generating covering extensions of cyclic arrangements

One can generate covering extensions of cyclic arrangements via
single element extensions of the alternating oriented matroid M∗

d+1,n,

see [1,4], and selecting one element as the infinity element.
We recall that the alternating oriented matroid M∗

d+1,n can be rep-
resented as an arrangement of n hemispheres on the d-sphere. We
generate the covering extensions by adding one hemisphere resulting
from a proper perturbation of the infinity hemisphere. Let C∗ be the
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set of cocircuits of M∗
d+1,n. Each cocircuit X ∈ C∗ corresponds to a

vertex on the hemisphere arrangement representing M∗
d+1,n. A single

element extension of M∗
d+1,n is determined by the cocircuit signature

σ : C∗ → {+,−, 0}, see [4]. We obtain the cocircuit signature σc corre-
sponding to the covering extension via a series of sphere rotations. Let
Hk with 1 ≤ k ≤ n be the infinity hemisphere to be perturbed, and
Hn+1 denote the resulting new hemisphere. Regardless of the directions
of the rotations, we can keep it small enough so that the vertices which
are on the positive, respectively negative, side of Hk are also on the
positive, respectively negative, side of Hn+1, i.e., we have σc(X) = Xk if
Xk ̸= 0, where Xk is the kth sign of X. The signature of the remaining
cocircuits {X ∈ C∗ : Xk = 0} is determined by the rotations in the fol-
lowing way. Let us choose a pair of antipodal vertices Y and −Y both
on the hemisphere Hk, i.e. which have, besides the kth sign, (d−1) zero-
signs. Let the ordered index set of zeros in Y , except the one at index
k, be (i1, i2, . . . , id−1). We use a sign vector O ∈ {+,−}d−1 to represent
the rotations, where Oj records the direction of rotation of the d-sphere
around the axis defined by the intersection of the hemispheres Hk and
Hij for j = 1, . . . , d − 1. The signature of any cocircuit X, except for
the antipodal pair Y and −Y , is therefore given by:

σc(X) =

{
Xk, if Xk ̸= 0;
XijOj , if Xk = 0, j : smallest index such that Xij ̸= 0.

Finally, for computational purposes, we set the signature of the antipo-
dal pair Y and −Y by extending the length of the orientation vector O
by 1 and use Od to record the chosen orientation of the antipodal pair.
Thus, the signature of any cocircuit X is given by:

σc(X) =


Od, if X = Y ;
−Od, if X = −Y ;
Xk, if Xk ̸= 0;
XijOj , if Xk = 0, j : smallest index such that Xij ̸= 0.

See Figure 3 for an illustration of a covering extension of M∗
3,4. The

covering hemisphere, colored in red, is obtained as a perturbation of
hemisphere H4 corresponding to the choice Y =0++0 and −Y =0--0
as antipodal pair, rotating the sphere around the intersection of hemi-
spheres H4 and H1 towards the reader, and then perturbing the antipo-
dal pairs clockwise, that is, Od = {−}.
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2

1

3

4

5

-0-0+

-+00+

00-++0--0+

+-00-

0+0++

+00++

+0+0-

0++0-

+--00

+-0+0

+0++0

-++00

0+++0

Fig. 3. A covering extension of M∗
3,4, the alternating ori-

ented matroid of rank 3 with 4 elements

We have n choices for the infinity hemisphere,
(
n−1
d−1

)
possible pairs of

antipodal vertices, (d−1)! different ways of ordering the (d−1) rotations,
2 directions per rotation, and finally 2 choices for the signature of the
antipodal pair. Therefore, the total number of potential perturbations is
n
(
n−1
d−1

)
2d−1(d−1)! 2 = n

(
n−1
d−1

)
2d(d−1)!. Note that some affine oriented

matroids obtained by the operation described above might belong to
the same dissection type [10], i.e., the equivalence class of a realizable
oriented matroid defined by combinations of relabeling and reorientation
that map infinity element to infinity element.

§4. Computational framework

The developed C++ package for computing the average diameter
and the number of external facets of an affine oriented matroid can be
found at [22]. All computations are performed in a combinatorial way
which allows us to avoid numerical errors. The code was run on a 32-core
server with each core running at a clock rate of 2.3 GHz. Realizability is
checked only for the few affine oriented matroids which either maximize
the average diameter or minimize the number of external facets. The
realizability checking was done on a 64-core server with each core running
at a clock rate 2.2 GHz.
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4.1. Uniform oriented matroids enumeration

The list of all (uniform) oriented matroids Md+1,n+1 for d+ 1 ≤ 5
and n+ 1 ≤ 8 as well as for (d+ 1, n+ 1) = (3, 9) can be found on the
online database [11]. The enumeration of all uniform oriented matroids
for (d+ 1, n+ 1) = (4, 9) and (5, 9) was recently performed by Finschi,
Fukuda, and Moriyama and will be uploaded on the online database [11]
soon.

4.2. Computing the average diameter of a simple arrange-
ment

An affine uniform oriented can be represented as a simple affine
pseudo-sphere arrangement. One can easily check if a cell is bounded by
verifying that any vertex on the infinity pseudo-sphere is not conformal
to the sign vector of the cell. Recall that the sign vector of a cell does
not contain any 0. Given the sign vector of a bounded cell, we compute
its diameter by constructing its skeleton graph. Two vertices X and Y
are adjacent if X can be pivoted to Y , or vice versa, i.e. if there exists a
pair of indices (i, j) with 1 ≤ i, j ≤ n, i ̸= j such that: (i)Xk = Yk for all
k ̸= i, j, (ii) Xi = 0, Yi ̸= 0, and (iii) Xj ̸= 0, Yi = 0. The diameter of
the cell is obtained by computing the diameter of the resulting skeleton
graph.

4.3. Computing the number of external facets of a simple
arrangement

One can check if a facet is bounded by verifying that the sign vector
of any vertex at infinity is not conformal to the sign vector of the facet.
Recall that the sign vector of a facet contains exactly one 0. A bounded
facet is external facet if its sign vector is conformal to the sign vector of
some unbounded cell.

4.4. Realizability of uniform oriented matroids

Deciding the realizability of an oriented matroid is known to be
NP-hard [16] in general but could be tractable for small instances. In
particular, following the approach used in [17] for M4,8, M3,9, and
M6,9, a software was developed to check the realizability for M4,9 and
M5,9.

Let ({1, . . . , n+1}, χ) be a uniform oriented matroid where χ is the
associated chirotope, and (v1, . . . , vn+1) ∈ R(d+1)×(n+1) the correspond-
ing vector configuration if realizable. The realizability of ({1, . . . , n +
1}, χ) is equivalent to the feasibility of the following polynomial system:

sign(det(vi1 , . . . , vid+1
)) = χ(i1, . . . , id+1) for 1 ≤ i1 < · · · < id+1 ≤ n+ 1.
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This system contains many redundancies which can be exploited to solve
it efficiently for small instances. First, since the feasibility of this sys-
tem is invariant under linear transformations A, with det(A) > 0, of
the configuration (v1, . . . , vn+1) and positive scalar multiplications of
v1, . . . vn+1, we can assume the submatrix (vi1 , . . . , vid+1

) to be an iden-
tity matrix for some (d+ 1)-tuple (i1, . . . , id+1), and the 1st coordinate
of v1, . . . , vn+1 to be 1 or −1 according to the sign constraints. In addi-
tion, square-free variables can be regarded as redundant in the following
case: {

y < Ri(x1, . . . , xn+1) for i = 1, . . . , l

y > Lj(x1, . . . , xn+1) for j = 1, . . . ,m

where Ri, Lj are rational functions for i = 1, . . . , l, j = 1, . . . ,m. In this
case, we can eliminate the variable y:

Lj(x1, . . . , xn) < Ri(x1, . . . , xn) for i = 1, . . . , l, j = 1, . . . ,m

The solvability sequence method applies this rule to special polynomial
systems consisting of determinants under the bipartiteness condition [2].
This elimination rule can be combined with the following branching rule.

Proposition 4.
Let A1(x1, . . . , xn),. . . ,Ap(x1, . . . , xn),B1(x1, . . . , xn),. . . ,Bp(x1, . . . , xn)
be real polynomials. Then the following system

Ak(x1, . . . , xn)y < Bk(x1, . . . , xn) for k = 1, . . . , p

is feasible if and only if, for at least one s : {1, . . . , p} → {+,−}, the
following system is feasible

sign(Ai(x1, . . . , xn)) = s(i) for i = 1, . . . , p

y < Bi(x1,...,xn)
Ai(x1,...,xn)

for s(i) = +

y > Bi(x1,...,xn)
Ai(x1,...,xn)

for s(i) = −

We search a square-free variable y, and then apply the branching
and elimination rules. If we can eliminate all variables by successive ap-
plications of the branching and elimination rules, and obtain consistent
inequalities of rationals at some branch of the tree, the oriented ma-
troid is realizable. If we have a polynomial system without a square-free
variable at some branch, we try random assignments to the remaining
variables. If the random assignments at some branch are successful,
the oriented matroid is realizable. Thus, we transform the realizabil-
ity problem into a tree search problem for which an iterative deepening
depth-first search can be used.
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§5. Computational results

5.1. Maximal average diameter

For d ≤ 4 and n ≤ 8, in order to determine the entries for ∆A(d, n),
we consider the set Md+1,n+1 of uniform oriented matroids. For each
uniform oriented matroid, we consider the n+1 choices of setting one ele-
ment as the infinity element, and compute the average diameter of the re-
sulting affine oriented matroid. Finally, we check the realizability of the
oriented matroids maximizing the average diameter. Note that all ori-
ented matroids maximizing the average diameter turned out to be realiz-
able which leads to the following question: Can an affine non-realizable
oriented matroid achieve the maximal average diameter? The entries for
∆A(d, n), including the four new entries for (d, n) = (3, 7), (3, 8), (4, 7)
and (4, 8), are listed in Table 1. The list of hyperplane arrangements
satisfying δ(Ad,n) = ∆A(d, n) can be found in [22] where arrangements
are represented by the chirotope of its corresponding affine oriented ma-
troid. The signs of the chirotope are ordered reverse lexicographically
and the infinity element is always the last one. To avoid redundancy,
affine oriented matroids with equivalent dissection types were removed.

(d, n) ||Md+1,n+1|| ∆A(d, n)
(2,5) 4 1.5
(2,6) 11 1.7
(2,7) 135 1.73. . .
(2,8) 4,382 1.80. . .
(3,6) 11 2
(3,7) 2,628 2.25
(3,8) 9,276,595 2.42. . .
(4,7) 135 2.2
(4,8) 9,276,595 2.71. . .

Table 1. Entries for ∆A(d, n) for d ≤ 4 and n ≤ 8

One can easily check, by removing a hyperplane and checking if
the associated oriented matroid is alternating, if an arrangement sat-
isfying δ(Ad,n) = ∆A(d, n) corresponds to a single element extension
of A∗

d,n−1. Similarly, one can easily check if an arrangement satisfying

δ(Ad,n) = ∆A(d, n) corresponds to a covering extension. As stated in
Proposition 5, the computational results disprove the hypothesis that
∆A(d, n) is always achieved by an (covering) extension of A∗

d,n−1.
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Proposition 5. While a single element extension of A∗
3,6 achieves

∆A(3, 7), none of the arrangements achieving ∆A(3, 8) and ∆A(4, 8) is
a single element extension of the cyclic arrangement. In addition, the
single element extension of A∗

3,6 achieving ∆A(3, 7) is not a covering
extension.

Remark 6. For line arrangements, ∆A(2, n) is always achieved by
covering extensions of A∗

2,n−1. The largest average diameter ∆A(2, n)
is achieved only by covering extensions for n ≤ 6, by covering and non-
covering extensions as well as non-extensions of A∗

2,6 for n = 7, and by
covering extensions as well as non-extensions of A∗

2,7 for n = 8.

While the extensions of A∗
d,n−1 fail to always reach ∆A(d, n), the

covering extensions of A∗
d,n−1 could provide a good lower bound. See

Table 2 where the value of ∆A(d, n) is compared with the maximal av-
erage diameter ∆c

A(d, n) over all covering extensions of A∗
d,n−1 as well

as with δ(A∗
d,n), the average diameter of the cyclic arrangement A∗

d,n.

In particular, we obtain a new lower bound for ∆A(3, 9). It was showed
in [9] that ∆A(2, n) = ∆c

A(2, n) and ∆A(3, 6) = ∆c
A(3, 6). The compu-

tation shows that ∆A(4, 7) = ∆c
A(4, 7), and all arrangements achieving

∆A(3, 6) and ∆A(4, 7) are covering arrangements.

(d, n) ∆A(d, n) ∆c
A(d, n) δ(A∗

d,n)

(3,6) 2 2 1.8
(3,7) 2.25 2.1 2
(3,8) 2.42 2.34. . . 2.14. . .
(3,9) ? 2.39. . . 2.25
(4,7) 2.2 2.2 2
(4,8) 2.71. . . 2.45. . . 2.28. . .

Table 2. Covering extensions of as a lower bound for
∆A(d, n)

5.2. Minimal number of external facets

While computing entries for ∆A(d, n), one can also obtain ΦA(d, n),
the minimum number of external facets, i.e. facets belonging to exactly
one bounced cell, over all arrangements formed by n hyperplanes in
dimension d. It was showed in [9] that ΦA(2, n) = 2(n − 1). The
computed entries for ΦA(d, n) are listed in Table 3. In particular, as
stated in Proposition 7, the entry for (d, n) = (3, 8) is a counterexample
for the hypothesized lower bound. Similarly to Section 5.1, all affine
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oriented matroids minimizing the number of external facets turned out to
be realizable. The list of hyperplane arrangements satisfying ϕ(Ad,n) =
ΦA(d, n) can be found in [22].

(d, n) ||Md+1,n+1|| ΦA(d, n)
(2,5) 4 8
(2,6) 11 10
(2,7) 135 12
(2,8) 4,382 14
(3,6) 11 22
(3,7) 2,628 32
(3,8) 9,276,595 44
(4,7) 135 47
(4,8) 9,276,595 84

Table 3. Entries for ΦA(d, n) for d ≤ 4 and n ≤ 8

Proposition 7. The entry for for (d, n) = (3, 8) disproves the hy-
pothesized inequality ΦA(d, n) ≥ d

(
n−2
d−1

)
as we have ΦA(3, 8) = 44 <

45 = 3
(
6
2

)
.

In addition of providing a promising lower bound for ∆A(d, n), the
covering extensions of A∗

d,n−1 might provide a good upper bound for

ΦA(d, n). See Table 4 where the value of ΦA(d, n) is compared with the
minimum number of external facets Φc

A(d, n) over all covering extensions
of A∗

d,n−1 as well as with ϕ(A∗
d,n), the number of external facets of

the cyclic arrangement A∗
d,n, and with the hypothesized lower bound

d
(
n−2
d−1

)
. In particular, we obtain an upper bound for ΦA(3, 9). We have

ΦA(3, 6) = Φc
A(3, 6) and ΦA(4, 7) = Φc

A(4, 7), and all arrangements
achieving ΦA(3, 6) and ΦA(4, 7) are covering arrangements.
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(d, n) ΦA(d, n) Φc
A(d, n) ϕ(A∗

d,n) d
(
n−2
d−1

)
(3,6) 22 22 24 18
(3,7) 32 34 40 30
(3,8) 44 48 60 45
(3,9) ? 64 84 63
(4,7) 47 47 50 40
(4,8) 84 88 100 80

Table 4. Covering extensions as an upper bound for ΦA(d, n)

Remark 8. While the covering extensions turn out to provide only
lower, respectively upper, bound for ∆A(d, n), respectively ΦA(d, n), the
hypothesized relation between maximizing ∆A(d, n) and minimizing ΦA(d, n)
is computationally substantiated by the existence for d ≤ 4 and n ≤ 8
of at least one simple arrangement simultaneously maximizing ∆A(d, n)
and minimizing ΦA(d, n).

The known entries for ∆A(d, n) are summarized in Table 5.

2 3 4 5 6 . . . n− d . . .

2 4
3

3
2

17
10

26
15

38
21 . . . 2− 2⌈n

2 ⌉
(n−1)(n−2)

3 3
2 2 9

4
17
7 ≥ 67

28

4 8
5

11
5

19
7

...
...

d 2d
d+1

...
...

Table 5. Known entries for ∆A(d, n)
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Mathématiques 48, 103-114 (2009).

[10] L. Finschi and K. Fukuda, Combinatorial generation of small point con-
figurations and hyperplane arrangements, Discrete and Computational
Geometry, The Goodman-Pollack Festschrift, Algorithms and Combina-
torics 25, Springer 425-440 (2003).

[11] L. Finschi and K. Fukuda, Oriented matroids database,
http://www.om.math.ethz.ch.

[12] K. Fukuda, S. Saito, and A. Tamura, Combinatorial face enumeration
in arrangements and oriented matroids, Discrete Applied Mathematics
31, 141-149 (1991).
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