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Abstract

A facet of an hyperplane arrangement is called external if it belongs to exactly one bounded
cell. The set of all external facets forms the envelope of the arrangement. The number of
external facets of a simple arrangement defined by n hyperplanes in dimension d is hypothesized
to be at least d

`

n−2
d−1

´

. In this note we show that, for simple arrangements of 4 lines or more, the
minimum number of external facets is equal to 2(n−1), and for simple arrangements of 5 planes

or more, the minimum number of external facets is between n(n−2)+6
3

and (n− 4)(2n − 3) + 5.

1 Introduction

Let A d,n be a simple arrangement formed by n hyperplanes in dimension d. We recall that an
arrangement is called simple if n ≥ d + 1 and any d hyperplanes intersect at a distinct point. The
closures of connected components of the complement of the hyperplanes forming A d,n are called
the cells, or d-faces, of the arrangement. For k = 0, . . . , d − 1, the k-faces of A d,n are the k-faces
of its cells. A facet is a (d − 1)-face of A d,n, and a facet belonging to exactly one bounded cell
is called an external facet. Equivalently, an external facet is a bounded facet which belongs to an
unbounded cell. For k = 0, . . . , d − 2, an external k-face is a k-face belonging to an external facet.
Let f0

k (A d,n) denote the number of external k-faces of A d,n. The set of all external facets forms
the envelope of the arrangement. It was hypothesized in [1] that any simple arrangement A d,n has
at least d

(

n−2
d−1

)

external facets. In Section 2, we show that a simple arrangement of n lines has at
least 2(n − 1) external facets for n ≥ 4, and that this bound is tight. In section 3, we show that a

simple arrangement of n planes has at least n(n−2)+6
3 external facets for n ≥ 5, and exhibit a simple

plane arrangement with (n − 4)(2n − 3) + 5 external facets. For polytopes and arrangements, we
refer to the books of Edelsbrunner [3], Grünbaum [6] and Ziegler [7] and the references therein.

2 The complexity of the envelope of line arrangements

2.1 A lower bound

Proposition 2.1. For n ≥ 4, a simple line arrangement has at least 2(n − 1) external facets.

Proof. The external vertices of a line arrangement can be divided into three types, namely v2, v3

and v4, corresponding to external vertices respectively incident to 2, 3, and 4 bounded edges. Let us
assign to each external vertex v a weight of 1 and redistribute it to the 2 lines intersecting at v the
following way: If v is incident to exactly 1 unbounded edge, then give weight 1 to the line containing
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this edge, and weight 0 to the other line containing v; if v is incident to 2 or 0 unbounded edges,
then give weight 0.5 to each of the 2 lines intersecting at v. See Figure 1 for an illustration of the
weight distribution. A total of f0

0 (A 2,n) weights is distributed and we can also count this quantity
line-wise. The end vertices of a line being of type v2 or v3, we have three types of lines, h2,2, h2,3

and h3,3, according to the possible types of their end-vertices. As a line of type h3,3 contains 2
vertices of type v3, its weight is at least 2. Similarly the weight of a line of type h2,2 weight is at
least 1. Remarking that a line of type h2,3 contains at least one vertex of type v4 yields that the
weight of a line of type h2,3 is at least 1 + 0.5 + 0.5 = 2. For n ≥ 4 the number of lines of type h2,2

is at most 2 as otherwise the envelope would be convex which is impossible, see for example [4].
Therefore, counting the total distributed weight line-wise, we have f0

0 (A 2,n) ≥ 2n − 2. Since for a
line arrangement the number of external facets f0

1 (A 2,n) is equal to the number of external vertices
f0
0 (A 2,n), we have f0

1 (A 2,n) ≥ 2(n − 1).

Figure 1: The weight distribution for the lines of an arrangement (the shaded area corresponds to
the bounded cells).

2.2 A line arrangement attaining the lower bound

For n ≥ 4, consider the following simple line arrangement: Ao
2,n is made of the 2 lines h1 and h2

forming, respectively, the x1 and x2 axis, and (n − 2) lines defined by their intersections with h1

and h2. We have hk ∩ h1 = {1 + (k − 3)ε, 0} and hk ∩ h2 = {0, 1− (k − 3)ε} for k = 3, 4, . . . , n− 1,
and hn∩h1 = {2, 0} and hn∩h1 = {0, 2+ε} where ε is a constant satisfying 0 < ε < 1/(n−3). See
Figure 2 for an arrangement combinatorially equivalent to Ao

2,7. One can easily check that Ao
2,7

has 2(n − 1) external facets and therefore the lower bound given in Proposition 2.1 is tight.

Proposition 2.2. For n ≥ 4, the minimum possible number of external facets of a simple line
arrangement is 2(n − 1).

3 The complexity of the envelope of plane arrangements

3.1 A lower bound

Proposition 3.1. For n ≥ 5, a simple plane arrangement has at least n(n−2)+6
3 external facets.

Proof. Let hi for i = 1, 2, . . . , n be the planes forming the arrangement A 3,n. For i = 1, 2, . . . , n,
the external vertices of the line arrangement A 3,n ∩ hi are external vertices of the plane arrange-
ment A 3,n. For n ≥ 5, the line arrangement A 3,n ∩ hi has at least 2(n − 2) external facets by
Proposition 2.1, i.e., at least 2(n− 2) external vertices. Since an external vertex of A 3,n belongs to
3 planes, it is counted three times. In other words, the number of external vertices of A 3,n satisfies
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h1

h2

Figure 2: An arrangement combinatorially equivalent to Ao
2,7

f0
0 (A 3,n) ≥ 2n(n−2)

3 for n ≥ 5. As the union of all of the bounded cells is a piecewise linear ball,
see [2], the Euler characteristic of the boundary gives f0

0 (A 3,n) − f0
1 (A 3,n) + f0

2 (A 3,n) = 2. Since
an external vertex belong to at least 3 external edges, we have 2f0

1 (A 3,n) ≥ 3f0
0 (A 3,n). Thus, we

have 2f0
2 (A 3,n) ≥ f0

0 (A 3,n) + 4. As f0
0 (A 3,n) ≥ 2n(n−2)

3 , it gives f0
2 (A 3,n) ≥ n(n−2)+6

3

3.2 A plane arrangement with few external facets

For n ≥ 5, we consider following simple plane arrangement: Ao
3,n is made of the 3 planes h1, h2

and h3 corresponding, respectively, to x3 = 0, x2 = 0 and x1 = 0, and (n − 3) planes defined
by their intersections with the x1, x2 and x3 axis. We have hk ∩ h1 ∩ h2 = {1 + 2(k − 4)ε, 0, 0},
hk ∩ h1 ∩ h3 = {0, 1+ (k − 4)ε, 0} and hk ∩ h2 ∩ h3 = {0, 0, 1− (k − 4)ε} for k = 4, 5, . . . , n− 1, and
hn ∩h1∩h2 = {3, 0, 0}, hn∩h1∩h3 = {0, 2, 0} and hn ∩h2∩h3 = {0, 0, 3+ ε} where ε is a constant
satisfying 0 < ε < 1/(n − 4). See Figure 3 for an illustration of an arrangement combinatorially
equivalent to Ao

3,7 where, for clarity, only the bounded cells belonging to the positive orthant are
drawn.
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h1h2

h3

Figure 3: An arrangement combinatorially equivalent to Ao
3,7

We first check by induction that the arrangement A∗

3,n formed by the first n planes of Ao
n+1,3

has 2(n − 2)(n − 3) external facets. The arrangement A∗

3,n is combinatorially equivalent to the
plane cyclic arrangement which is dual to the cyclic polytope, see [5] for combinatorial properties
of the (projective) cyclic arrangement in general dimension. See Figure 4 for an illustration of
A∗

3,6. Let H+
3 denote the half-space defined by h3 and containing the positive orthant, and H−

3 the

other half-space defined by h3. The union of the bounded cells of A∗

3,n in H−

3 is combinatorially
equivalent to the bounded cells of A∗

3,n−1 and therefore has 2(n−3)(n−4) facets on its boundary by

induction hypothesis, including
(

n−3
2

)

bounded facets contained in h3. These
(

n−3
2

)

bounded facets

also belong to a bounded cell of A∗

3,n in H−

3 and therefore are not external facets of A∗

3,n. Thus,

the number of external facets of A∗

3,n belonging to a bounded cell in H−

3 is 2(n− 3)(n− 4)−
(

n−3
2

)

.

The union of the bounded cells of A∗

3,n in H+
3 can be viewed as a simplex cut by n − 4 sliding

down planes. It has 2
(

n−2
2

)

+ 2(n − 3) = n(n − 3) facets on its boundary, including the
(

n−3
2

)
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bounded facets contained in h3 belonging to a bounded cell of A∗

3,n in H−

3 . Thus, the number of

external facets of A∗

3,n belonging to a bounded cell in H+
3 is n(n− 3)−

(

n−3
2

)

. Therefore, A∗

3,n has

n(n − 3) + 2(n − 3)(n − 4) − 2
(

n−3
2

)

= 2(n − 2)(n − 3) external facets. We now consider how the
addition of hn to A∗

3,n−1 impacts the number of external facets. This impact is similar in nature to

the addition of hn to the first n−1 lines of Ao
2,n. The addition of hn creates

(

n

2

)

new bounded cells:
one above h1 that we call the n-shell, and the other ones being below h1. The n-shell turns n − 4
external facets of A∗

3,n−1 above h1 into internal facets of Ao
3,n, and adds 3 external facets. For each

external facet of A∗

3,n−1 belonging to h1 which is turned into an internal facet of Ao
3,n, one external

facet of Ao
3,n on hn and not incident to h1 is added. Below h1, the addition of hn creates 3(n−4)+2

new external facets of Ao
3,n with an edge on h1. Finally, n − 4 new external facets belonging to

h1 and bounded by hn are created from unbounded facets of A∗

3,n−1. Thus, the total number of
external facets of Ao

3,n is 2(n−3)(n−4)− (n−4)+3+(3(n−4)+2)+(n−4) = (n−4)(2n−3)+5.

h1

h2

h3

Figure 4: An arrangement combinatorially equivalent to A∗

3,6

Remark 3.1. We do not believe that Ao
3,n minimizes the number of external facets. Among the 43

simple combinatorial types of arrangements formed by 6 planes, the minimum number of external
facets is 22 while Ao

3,6 has 23 external facets. See Figure 5 for an illustration of the combinatorial
type of one of the two simple arrangements with 6 planes having 22 external facets. The far away
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vertex on the right and 3 bounded edges incident to it are cut off (same for the far away vertex on
the left) so the 10 bounded cells of the arrangement appear not too small.

Figure 5: An arrangement formed by 6 planes and having 22 external facets
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