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Abstract

Let ∆(d, n) be the maximum possible diameter of the
vertex-edge graph over all d-dimensional polytopes de-
fined by n inequalities. The Hirsch bound holds for
particular n and d if ∆(d, n) ≤ n − d. Francisco San-
tos recently resolved a question open for more than five
decades by showing that ∆(d, 2d) = d + 1 for d = 43;
the dimension was then lowered to 20 by Matchske,
Santos and Weibel. This progress has stimulated in-
terest in related questions. The existence of a poly-
nomial upper bound for ∆(d, n) is still an open ques-
tion, the best bound being the quasi-polynomial one
due to Kalai and Kleitman in 1992. Another natural
question is for how large n and d the Hirsch bound
holds. Goodey showed in 1972 that ∆(4, 10) = 5 and
∆(5, 11) = 6, and more recently, Bremner and Schewe
showed ∆(4, 11) = ∆(6, 12) = 6. Here we show that
∆(4, 12) = ∆(5, 12) = 7 and present strong evidence
that ∆(6, 13) = 7.

1 Introduction

Finding a good bound on the maximal diameter ∆(d, n)
of the 1-skeleton (vertex-edge graph) of a polytope in
terms of its dimension d and the number of its facets n
is one of the basic open questions in polytope theory [9].
Although some bounds are known, the behaviour of the
function ∆(d, n) is largely unknown. The Hirsch conjec-
ture, formulated in 1957 and reported in [4], states that
∆(d, n) is linear in n and d: ∆(d, n) ≤ n−d. The conjec-
ture was recently disproved by Santos [18] by exhibit-
ing a counterexample for ∆(d, 2d) with d = 43 which
was further improved to d = 20 [17]. The conjecture is
known to hold in small dimensions, i.e. for d ≤ 3 [14],
along with other specific pairs of d and n (Table 1).
However, the asymptotic behaviour of ∆(d, n) is not
well understood: the best upper bound — due to Kalai
and Kleitman — is quasi-polynomial [11].

The behaviour of ∆(d, n) is not only a natural
question of extremal discrete geometry, but is histor-
ically closely connected with the theory of the sim-
plex method. The approach of using abstract mod-
els [6, 7, 12] to study linear optimization has recently
achieved the exciting result of a subexponential lower
bound for Zadeh’s rule [7], another long standing open
problem. On the positive side, several authors have re-

n− 2d
0 1 2 3 4

d

4 4 5 5 6 7+
5 5 6 7-8 7+ 8+
6 6 7-9 8+ 9+ 9+
7 7-10 8+ 9+ 10+ 11+
8 8+ 9+ 10+ 11+ 12+

Table 1: Previously known bounds on ∆(d, n) [3, 8, 10,
15].

cently shown upper bounds for interesting special cases
of the simplex method [21] and the diameter prob-
lem [16].

In this article we will show that ∆(4, 12) = ∆(5, 12) =
7 and present strong evidence for ∆(6, 13) = 7. The first
of these new values continues the pattern of ∆(4, n) =
n−5 for n ≥ 10. It would be very interesting to establish
a general sub-Hirsch bound for d = 4. The considered
computational approaches might help to narrow the gap
between the smallest entries for d and n − d yielding
a counterexample and the largest ones for which the
Hirsch conjecture still holds.

Our approach is computational and builds on the ap-
proach used by Bremner and Schewe [3]. As in [3] we
reduce the determination of ∆(d, n) to a set of simplicial
complex realizability problems. Section 2 introduces
our computational framework and some related back-
ground. A common theme in the SAT literature is that
the hardest instances to solve are those that are “al-
most satisfiable”; we find a similar classification of our
realizability problems. Compared to [3], this work in-
volves significantly more computation, and we discuss a
simple but effective parallelization strategy in Section 2.
Finally we discuss our new bounds in Section 3. Again
comparing with [3], the results here have the feature
that they do not rely on having a priori upper bounds
on the value of ∆(d, n) to be computed, but rather
on inductive computation of ∆(d, n) using bounds on
∆(d− 1, n− 1).

2 General approach

In this section we give a summary of our general ap-
proach. For more on the theoretical background, the
reader is referred to [3].
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It is easy to see via a perturbation argument that
∆(d, n) is always achieved by some simple polytope.
By a reduction applied from [15], we only need to con-
sider end-disjoint paths: paths where the end vertices
do not lie on a common facet (facet-disjointness). It will
be convenient both from an expository and a computa-
tional view to work in a polar setting where we consider
the lengths of facet-paths on the boundary of simplicial
polytopes. We apply the term end-disjoint equally to
the corresponding facet paths, where it has the simple
interpretation that two end facets do not intersect.

For any set Z = {x1 . . . xr−2, y1 . . . y4 } ⊂ Rr, as a
special case of the Grassmann-Plücker relations [1, §3.5]
on determinants we have

det(X, y1, y2) · det(X, y3, y4)

+ det(X, y1, y4) · det(X, y2, y3)

−det(X, y1, y3) · det(X, y2, y4) = 0

(1)

where X = {x1 . . . xd−1 }. We are in particular inter-
ested in the case where r = d+1 and Z represents (d+3)-
points in Rd in homogeneous coordinates; the various
determinants are then signed volumes of simplices. In
the case of points drawn from the vertices of a simpli-
cial polytope, we may assume without loss of generality
that these simplices are never flat, i.e. determinant 0.
Thus if we define χ(v1 . . . vd+1) = sign(det(v1 . . . vd+1))
it follows from (1) that

{χ(X, y1, y2)χ(X, y3, y4),

−χ(X, y1, y3)χ(X, y2, y4),

χ(X, y1, y4)χ(X, y2, y3)} = {−1,+1}.

Any alternating map χ : Ed+1 → {−,+} satisfying
these constraints for all (d + 3)-subsets is called a uni-
form chirotope; this is one of the many axiomatizations
of uniform oriented matroids [1]. In the rest of this
paper we call uniform chirotopes simply chirotopes. A
facet is a d-set F ⊂ E such that for all g ∈ E\F , χ(F, g)
has the same sign. An interior point of a chirotope is
some g ∈ E that is not contained in any facet. We
are mainly concerned with convex chirotopes, i.e. those
without interior points.

A combinatorial facet-path is a simplicial complex
with a path as dual graph, where edges are defined by
two d-simplices sharing a (d − 1)-simplex. Our general
strategy is to show ∆(d, n) 6= k by generating all non-
isomorphic combinatorial facet-paths of length k on n
vertices in dimension d and showing that none can be
embedded on the boundary of a chirotope as a shortest
path. This is established by showing for each candidate
combinatorial facet-path π that there is no alternating
sign map χ(·) that

P1 Satisfies the Grassman-Plücker constraints, i.e. is a
chirotope,

Figure 1: Illustrating a non-shortest facet-path.

P2 Forces each d-simplex of the candidate facet-path to
be a facet of the chirotope,

P3 Does not induce a shortcut, i.e. a facet-path of
length shorter than k between the end facets of π.
See Figure 2 for an illustration of a shortcut on a
3-dimensional polytope.

There are
(

n
d+3

)
Grassman-Plücker constraints in their

natural encoding, and this further expands by a factor
of 16 when converted to conjunctive normal form (CNF)
suitable for a SAT solver.

Facet constraints actually remove variables from the
problem, since they define sets of equations. Equations
can in principle be removed as a preprocessing step,
although most modern SAT solvers deal with equality
constraints quite effectively, even when the constraints
are transformed to conjunctive normal form.

Each potential shortcut can be eliminated with 2 con-
straints encoding the fact that some d-simplex of the po-
tential shortcut is not a facet. In principle one can gen-
erate all conceivable shortcuts by considering all short
paths in the graph of all possible pivots between d-
simplices, but this approach is generally impractical.
We therefore use an incremental approach where can-
didate chirotopes are generated and any shortcuts on
the boundary of these candidate solutions are used to
generate new constraints.

A notable omission from the list of constraints above
is that we do not explicitly constrain the alternating
map χ(·) to be convex. We note that either every ele-
ment is in some facet, and thus the chirotope is convex
by definition, or there is some interior point not used by
the long facet-path. A realization with interior points
corresponds to a realization on a smaller number of ele-
ments. In the work here we are always have bounds for
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∆(d, j) for j < n when working on a bound for ∆(d, n),
so we effectively reduce non-convex cases to smaller con-
vex ones.

Chirotopes can be viewed as a generalization of real
polytopes in the sense that for every real polytope, we
can obtain its chirotope directly. Therefore, showing the
non-existence of chirotopes satisfying properties P1–P3
immediately precludes the existence of real polytopes
satisfying the same properties.

The search for a chirotope with properties P1 and
P2 is encoded as an instance of SAT [19, 20, 3], with
P3 handled implicitly via adding constraints and re-
solving. Each SAT problem is solved with MiniSat [5].
MiniSat itself discovers many constraints during the so-
lution process, and these are carried forward between
successive subproblems.

The generation of all possible paths for particular
d and n begins with case where the paths are non-
revisiting, i.e. paths where no vertex is visited more than
once. These can be generated via a simple recursive
scheme, using a bijection with restricted growth strings,
i.e. k-ary strings where the symbols first occur in or-
der. Each symbol represents a choice of pivot, and the
strings can be unpacked into combinatorial facet-paths.

Multiple revisit facet-paths are generated from facet-
paths with one less revisit by identifying pairs of ver-
tices. Such an identification is valid only if it results in
another facet-path, i.e. does not introduce new ridges,
and if the resulting facet-path is still end-disjoint.

Figure 2: Example of a facet-path.

If a vertex is not used in a facet-path we call this
occurrence a drop. See Figure 2 for an illustration of
a path of length 6 involving 1 revisit (vertex 2) and
and 1 drop (vertex 8) with n = 9 and d = 3. We can
then classify paths by dimension d, primal-facets/dual-
vertices n, length k, the number of revisits m, and the
number of drops l. For end-disjoint paths, a simple

counting argument yields:

m− l = k + d− n
m ≤ k − d
l ≤ n− 2d

Table 2 provides the number of paths to consider for
each possible combination of d, n, k, m, and l.

d n k m l #
4 10 6 0 0 15
4 10 6 1 1 24
4 10 6 2 2 16
4 11 7 0 0 50
4 11 7 1 1 200
4 11 7 2 2 354
4 11 7 3 3 96
4 12 8 0 0 160
4 12 8 1 1 1258
4 12 8 2 2 5172
4 12 8 3 3 7398
4 12 8 4 4 1512
5 11 7 1 0 98
5 11 7 2 1 98
5 12 8 1 0 1079
5 12 8 2 1 3184
5 12 8 3 2 2904
6 12 7 1 0 11
6 13 8 1 0 293
6 13 8 2 1 452

Table 2: Number of paths to consider, SAT instances to
solve.

With the implementation of [3], we were able to re-
confirm Goodey’s results for ∆(4, 10) and ∆(5, 11) in a
matter of minutes. While the number of paths to con-
sider increases with the number of the revisits, in our
experiments these paths are much less computationally
demanding than the ones with fewer revisits. For exam-
ple, the 7,398 paths of length 8 on 4-polytopes with 12
facets and involving 3 revisits and 3 drops require only
a tiny fraction of the computational effort to tackle the
160 paths without a drop or revisit.

In order to deal with the intractability of the problem
as the dimension, number of facets, and path length in-
creased, we proceeded by splitting our original facet em-
bedding problem into subproblems by fixing chirotope
signs. We use the non-SAT based mpc backtracking soft-
ware [2] to backtrack to a certain fixed level of the search
tree; every leaf job was then processed in parallel on
the Shared Hierarchical Academic Research Computing
Network (SHARCNET). Figure 3 (a partial trace of the
execution of mpc) illustrates the splitting process on a
problem generated from the octahedron. Note that vari-
able propagation (similar to the unit propagation used
by SAT solvers) reduces the number of leaves of the tree.
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Figure 3: Using partial backtracking to generate sub-
problems

Jobs requiring a long time to complete were further
split and executed on the cluster until the entire search
space was covered. Table 3 provides the number of paths
which were computationally difficult enough to require
splitting. For example, out of 160 paths of length 8
on 4-polytopes with 12 facets without drop or revisit, 2
required splitting.

d n k m l #
4 12 8 0 0 2
5 12 8 1 0 15
5 12 8 2 1 6
6 13 8 1 0 138
6 13 8 2 1 63

Table 3: Number of difficult paths.

3 Results

Summarizing the computational results, we have:

Proposition 1 There are no (4, 12)- or (5, 12)- poly-
topes with facet-disjoint vertices at distance 8.

Note that we actually prove something slightly
stronger: for (d, n) = (4, 12) or (5, 12), no (d, n)-
chirotope has has vertex-disjoint facets at distance 8,
where distance is defined by the shortest facet-path.

While the non-existence of k-length paths implies the
non-existence of (k+1)-length paths, it is not obvious if
the non-existence of end-disjoint k-length paths implies
the non-existence of (k+ 1)-length paths. To be able to

rule out vertices — not necessarily facet-disjoint — at
distance l > k, we introduce the following lemma.

Lemma 1 If ∆(d−1, n−1) < k and there is no (d, n)-
polytope with two facet-disjoint vertices at distance k,
then ∆(d, n) < k.

Proof. Assume the contrary. Let u and v be vertices
on a (d, n)-polytope at distance l ≥ k. By considering a
shortest path from u to v, there is a vertex w at distance
k from u. u and w must share a common facet F to
prevent a contradiction. F is a (d − 1, n − 1)-polytope
with diameter at least k. �

By Proposition 1 and because ∆(3, 11) = 6 and
∆(4, 11) = 6 (see [14, 3]) we can apply Lemma 1 to
obtain the following new entry for ∆(d, n).

Corollary 1 ∆(4, 12) = ∆(5, 12) = 7

We recall the following result of Klee and Walkup [15]:

Property 1 ∆(d, 2d+k) ≤ ∆(d−1, 2d+k−1)+bk/2c+
1 for 0 ≤ k ≤ 3

Applying Property 1 to ∆(5, 12) = 7 yields a new
upper bound ∆(6, 13) ≤ 8, from which we could ob-
tain ∆(6, 13) = 7 if the still underway computations for
remaining 8-paths keep on showing unsatisfiability for
(d, n) = (6, 13).

Property 1 along with the 2 new entries for ∆(d, n)
and, assuming ∆(6, 13) = 7, would imply the additional
upper bounds: ∆(5, 13) ≤ 9, ∆(6, 14) ≤ 11, ∆(7, 14) ≤
8, ∆(7, 15) ≤ 12 and ∆(8, 16) ≤ 13; see Table 4.

n− 2d
0 1 2 3 4

d

4 4 5 5 6 7
5 5 6 7 7-9 8+
6 6 7 8-11 9+ 9+
7 7-8 8-12 9+ 10+ 11+
8 8-13 9+ 10+ 11+ 12+

Table 4: Summary of bounds on ∆(d, n) assuming
∆(6, 13) = 7.

4 Conclusions

In this paper we have presented new bounds for the
diameter of the 1-skeleton of convex polytopes in di-
mensions 4 and 5. It remains open to find the small-
est n and d for which the Hirsch bound fails to hold;
we are also interested if the current trend which shows
∆(4, n) = n − 5 continues beyond n = 12. The tools
used here are mainly computational as in [3], although
further analysis of the relationship between bounds on
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end-disjoint paths and bounds on more general paths
was needed in order to establish new bounds without
requiring a priori upper bounds. Furthermore, the scale
of the computations forced us to solve individual cases
in parallel. The simple strategy we used may be effec-
tive for other so called tree search problems. Finally,
we observe experimentally that among our unrealizable
simplicial complexes, the most difficult to show unsat-
isfiable are those with the simplest topology.
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[16] Jesús A. De Loera, Edward D. Kim, Shmuel Onn,
and Francisco Santos, Graphs of transportation poly-
topes, Journal of Combinatorial Theory, Series A
116 (2009), no. 8, 1306-1325.

[17] Benjamin Matschke, Francisco Santos, and
Christophe Weibel, The width of 5-prismatoids
and smaller non-Hirsch polytopes, http:

//www.cs.dartmouth.edu/~weibel/hirsch.php

(2011).

[18] Francisco Santos, A counter-example to the Hirsch
conjecture, available at arXiv:1006.2814.

[19] Lars Schewe, Satisfiability Problems in Discrete
Geometry, Dissertation, TU Darmstadt, 2007.

[20] Lars Schewe, Non-realizable minimal vertex trian-
gulations of surfaces: Showing non-realizability us-
ing oriented matroids and satisfiability solvers, Dis-
crete and Computational Geometry 43 (2009) no. 2,
289-302.

[21] Yinyu Ye, The simplex method is strongly polyno-
mial for the Markov decision problem with a fixed
discount rate, Available at http://www.stanford.

edu/~yyye/simplexmdp1.pdf.



23rd Canadian Conference on Computational Geometry, 2011

David Bremner

Faculty of Computer Science,
University of New Brunswick.
Box 4400, Fredericton NB, Canada
Email: bremner@unb.ca

Antoine Deza

Advanced Optimization Laboratory,
Department of Computing and Software,
McMaster University,
Hamilton, Ontario, Canada.
and
Equipe Combinatoire et Optimisation,
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