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Abstract. One of the classical problems concerning the peg solitaire game is the
feasibility issue. Tools used to show the infeasibility of various peg games include valid
inequalities, known as pagoda-functions, and the so-called rule-of-three. Here we intro-
duce and study another necessary condition: the solitaire lattice criterion. While the
lattice criterion is shown to be equivalent to the rule-of-three for the classical English
33-board and French 37-board as well as for any m� n board, the lattice criterion is
stronger than the rule-of-three for games played on more complex boards. In fact, for a
wide family of boards presented in this paper, the lattice criterion exponentially
outperforms the rule-of-three.

1. Introduction

Peg solitaire is a peg game for one player which is played on a board containing a
number of holes. The most common modern version uses a cross shaped board
with 33 holes – see Fig. 1 – although a 37 hole board is common in France.
Computer versions of the game now feature a wide variety of shapes, including
rectangles and triangles. Initially the central hole is empty, the others contain
pegs. If in some row (column) two consecutive pegs are adjacent to an empty hole
in the same row (column), we may make a move by removing the two pegs and
placing one peg in the empty hole. The objective of the game is to make moves
until only one peg remains in the central hole. Variations of the original game, in
addition to being played on different boards, also consider various alternative
starting and finishing configurations.

The game itself has uncertain origins, and different legends attest to its dis-
covery by various cultures. An authoritative account with a long annotated
bibliography can be found in the comprehensive book of Beasley [4]. The book
mentions an engraving of Berey, dated 1697, of a lady with a solitaire board. The
book also contains a quotation of Leibniz which was written for the Berlin
Academy in 1710. Apparently the first theoretical study of the game that was
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published was done in 1841 by Suremain de Missery, and was reported in a paper
by Vallot [11]. The modern mathematical study of the game dates back to the
sixties, see [5, Chapter 23].

The fundamental problem of peg solitaire is the following feasibility problem
(see Definition 2.1 in the sequel for a formal definition):

Peg Solitaire Feasibility Problem. Given a board B and a pair of configurations
ðc; c0Þ on B, determine if the pair ðc; c0Þ is feasible, that is, if there is a legal
sequence of moves transforming c into c0.

Well known constructions used to prove that some pair ðc; c0Þ is infeasible
include the so-called rule-of-three (presented in detail in Section 2) and the
pagoda-functions; see Remark 2.4. In this article we introduce and study an-
other necessary condition for feasibility: the solitaire lattice criterion. While the
lattice criterion is shown to be equivalent to the rule-of-three for the 33-board
and 37-board as well as for any m� n boards, it is stronger for games played
on more complex boards such as the one given in Fig. 4 and 8. The solitaire
lattice criterion even exponentially outperforms the rule-of-three for vari-
ous classes of boards such as the hook boards depicted in Fig. 6 and 7. In this
article, we determine the solitaire lattice of any rectangular board. It is
a challenging problem for further investigation to characterize the Gröbner
bases of solitaire lattices (see [10] for a state-of-the-art exposition to
Gröbner bases theory and [7, 8] for several illustrative Gröbner bases char-
acterizations).

2. The Rule-of-Three

In this section we introduce some terminology used throughout this paper, and
recall the so-called rule-of-three (cf. [4, 5]), a classical construction used to test
solitaire game feasibility. The rule-of-three was apparently first exposed in 1841
by Suremain de Missery; see Beasley’s book [4] for a detailed historical back-
ground. The rule-of-three can be used, for example, to show that on the classical
cross shaped English 33-board, starting with the initial configuration c0 of Fig. 1,
the only reachable final configurations with exactly one peg are c00 of Fig. 1 and
four others (see discussion following Proposition 2.2).

Fig. 1. A feasible English peg solitaire game with possible first and last moves
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2.1. Basic Definitions

The board of a peg solitaire game is a finite subset B � Z2 of the lattice of integer
points in the plane. Thus, B stands for the set of locations ði; jÞ of holes of the
board on which the game is played. For example, the classical 33-board is:

B ¼ fði; jÞ : �1 	 i 	 1; �3 	 j 	 3g
[

fði; jÞ : �3 	 i 	 3; �1 	 j 	 1g :

A configuration c on the board is an integer vector c 2 ZB � RB. When c 2 f0; 1gB,
it can be interpreted as a physical configuration of pegs on the board. The
complement of a f0; 1g-configuration c 2 f0; 1gB is defined to be the configuration
�cc :¼ 1� c where 1 ¼ ð1; 1; . . . ; 1Þ 2 RB is the all-ones configuration.

For each ði; jÞ 2 B let ei;j be the ði; jÞth unit vector in RB, which is in particular
the configuration with a unique peg in the ði; jÞth position. A move or a jump mi;j

over ði; jÞ is a vector in RB which has 3 non-zero entries: two entries of �1 in the
positions from which pegs are removed and one entry of 1 for the hole receiving
the new peg. A move mi;j over ði; jÞ could be one of the following:

Right move: ri;j ¼ eiþ1;j � ei;j � ei�1;j :

Left move: li;j ¼ ei�1;j � ei;j � eiþ1;j :

Down move: di;j ¼ ei;j�1 � ei;j � ei;jþ1 :

Up move: ui;j ¼ ei;jþ1 � ei;j � ei;j�1 :

We can now make the Peg Solitaire Feasibility Problem precise.

Definition 2.1. A pair ðc; c0Þ of configurations on a board B is feasible if there is a
sequence m1; . . . ;mk 2 ZB of moves on B such that c0 ¼ cþ

Pk
i¼1 m

i and such that
cþ

Pi
j¼1 m

j 2 f0; 1gB for i ¼ 1; . . . ; k.

For instance, the English 33-board admits 76 moves. The moves r�1;0 and u0;�1 are
the first and last moves – see Fig. 1 – in some sequence of moves transforming
the initial configuration c0 ¼ 1� e0;0 to its complementary final configuration
c00 ¼ e0;0 in that classical game.

2.2. The Rule-of-Three

Let Z2 :¼ fa; b; c; eg be the Abelian group with identity e and addition table

aþ a ¼ bþ b ¼ cþ c ¼ e; aþ b ¼ c; aþ c ¼ b; bþ c ¼ a :

Define the following two maps g1; g2 : Z2�!Z2, which simply color the integer
lattice Z2 by diagonals of a, b and c in either direction; see Fig. 2:

g1ði; jÞ :¼
a if ðiþ jÞ � 0 ðmod 3Þ
b if ðiþ jÞ � 1 ðmod 3Þ
c if ðiþ jÞ � 2 ðmod 3Þ

8<
: ; g2ði; jÞ :¼

a if ði� jÞ � 0 ðmod 3Þ
b if ði� jÞ � 1 ðmod 3Þ
c if ði� jÞ � 2 ðmod 3Þ

8<
: :
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For any board B � Z2, define the score map to be the Z-module homomorphism

/ : ZB �! Z2
2

ei;j 7!
�
g1ði; jÞ ; g2ði; jÞ

�
:

Thus, the score of a configuration c 2 ZB is given by

/ðcÞ ¼
X
ði;jÞ2B

ci;j �
�
g1ði; jÞ ; g2ði; jÞ

�
:

Since the board B under discussion will always be clear from the context, we use
the notation / for any board. For instance, the score of the configuration e0;0 of
one peg in the center of the English 33-board has the score /ðe0;0Þ ¼ ða; aÞ, as is
also the score of its complement 1� e0;0; see Fig. 2. The score of the board B is
defined to be

/ðBÞ :¼ /ð1Þ ¼
X
ði;jÞ2B

/ðei;jÞ ¼
X
ði;jÞ2B

�
g1ði; jÞ ; g2ði; jÞ

�
:

Note that /ðBÞ ¼ /ðcÞ þ /ð�ccÞ for any configuration c and its complement �cc.
Thus, the score of the English 33-board is /ðBÞ ¼ /ðe0;0Þ þ /ð1� e0;0Þ ¼
ða; aÞ þ ða; aÞ ¼ ðe; eÞ.

It is easy to verify that any feasible move mi;j on any board B has the identity
score /ðmi;jÞ ¼ ðe; eÞ. This gives the following proposition.

Proposition 2.2. [The rule-of-three]. A necessary condition for a pair of configura-
tion ðc; c0Þ to be feasible is that /ðc0 � cÞ ¼ ðe; eÞ, namely, c0 � c 2 Kerð/Þ.

Using Proposition 2.2, it can be shown that on the cross shaped English 33-
board, starting with the initial configuration c0 of Fig. 1, the only reachable final
configurations with exactly one peg are c00 (given in Fig. 1), c01, c

0
2, c

0
3 and c

0
4 with,

respectively, a final peg in position ð0; 0Þ; ð�3; 0Þ; ð0; 3Þ; ð3; 0Þ and ð0;�3Þ.

Proposition 2.3. Let B be any board. A necessary condition for the configurations
pair ðc; �ccÞ to be feasible, with �cc ¼ 1� c the complement of c, is that the board score
is /ðBÞ ¼ ðe; eÞ.

a b c    b c aaa b c    b c aa

φ( 0c ) = (a,a)

b c a b c a b

c a b c a b c
a b c
c a b

b c a
c a b c a b c

b c a b c a b
b c a
c a b

a b c
a ac    b c    b

Fig. 2. The score of the initial configuration of the English board
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Proof. It follows from Proposition 2.2 that ðc; �ccÞ is feasible only if /ð�ccÞ ¼ /ðcÞ,
which is equivalent to /ðBÞ ¼ /ðcÞ þ /ð�ccÞ ¼ /ðcÞ þ /ðcÞ ¼ ðe; eÞ. h

An application of Proposition 2.3 is that complementary games are not fea-
sible on the following French board given in Fig. 3 since /ðBÞ ¼ ða; aÞ. A Board B
satisfying /ðBÞ ¼ ðe; eÞ is called a null-class board in [4]. Clearly, a board is null if
and only if, under each of the labellings g1; g2, the numbers of occurrences of each
of a; b; c are all of the same parity; this can be used in characterizing certain classes
of shapes of null boards.

Remark 2.4. Among other constructions used to prove that a pair ðc; c0Þ is not
feasible are the pagoda-functions; see [4, 5]. The strongest such linear inequalities
are the facets of the solitaire cone ConeðBÞ defined to be the conic hull of all moves
mi;j. Note that all moves are extreme rays as they belong to the intersection of the
hyperplane x1 þ x2 þ � � � þ xjBj ¼ �1 and the sphere x21 þ x22 þ � � � þ x2jBj ¼ 3.
See [1] for some combinatorial properties of this cone which is simply the cone of
all fractional feasible games.

3. The Lattice Criterion

3.1. The Solitaire Lattice

Next, we introduce the main object of study in this article. Let B � Z2 be any
board and let M be the set of all possible moves mi;j on B. The solitaire lattice of B
is the lattice of all integer linear combinations of moves,

LatðBÞ :¼ LatðMÞ ¼ Z �M ¼
X
m2M

zm � m : zm 2 Z

( )
� ZB :

The following proposition is immediate from the definition.

Proposition 3.1. A necessary condition for a pair of configurations ðc; c0Þ to be
feasible on a board B is that c0 � c 2 LatðBÞ.

The following proposition states that, for any board B and any two configu-
rations c; c0 on B, if c0 � c 2 LatðBÞ then c0 � c 2 Kerð/Þ. In other words, it shows
that the necessary condition for feasibility provided by Proposition 3.1 is gener-

a b c    b c aa
b c a b c a b

c a b c a b c
a b c
c a b

b c a
ac    b

a

a

c

b

a b c    b c aa
c a b c a b c

b c a
c a b

a b c
ac    b

b c a b c a b
ba

ac

φ(B) = (a,a)

Fig. 3. A non null-class board
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ally stronger than the one provided by Proposition 2.2. Therefore it could be
more useful in proving non-feasibility, and motivates the close study of the lattice
LatðBÞ taken in this paper.

Proposition 3.2. For any board B, we have LatðBÞ � Kerð/Þ.

Proof. Since / is a homomorphism of Z-modules which maps each lattice gen-
erator mi;j 2 M to ðe; eÞ, it follows that /ðvÞ ¼ ðe; eÞ for any v 2 LatðBÞ. h

Fig. 4 illustrates that there are games whose infeasibility can be detected by
the lattice criterion but not by the rule-of-three. Specifically, it provides an
example of a null-class board and a game on it whose associated configuration
pair ðc; �ccÞ satisfies �cc� c 2 Kerð/Þ but �cc� c 62 LatðBÞ; see Section 5.1.
This shows that the lattice criterion may be strictly stronger than the rule-of-
three.

3.2. The Lattice Criterion Versus the Rule-of-three

We proceed to discuss the relations between the lattice criterion and the rule-of-
three, namely, between LatðBÞ and Kerð/Þ, in more detail. Any lattice
L � Zd � Rd has a basis, that is, a free generating set. Any basis is also R-linearly
independent. The rank of the lattice is the cardinality of any basis, and the lattice
is full rank if its rank is d, namely, the R-span of the lattice is the entire space Rd .
The solitaire lattice of a board B is typically of full rank jBj. The determinant of a
full rank lattice L � Rd is defined to be the absolute value detðLÞ :¼ j detðV Þj of
the determinant of any (ordered) basis V ¼ ½v1; . . . ; vd � of L. Since
LatðBÞ � Kerð/Þ for any board B, we always have ZB=Kerð/Þ � ZB=LatðBÞ.
Therefore, our main task is to compute and compare the indices
½ZB : Kerð/Þ� ¼ jZB=Kerð/Þj and ½ZB : LatðBÞ� ¼ jZB=LatðBÞj. For a typical
board B, the map / is onto and the lattice LatðBÞ is full rank, giving

½ZB : Kerð/Þ� ¼ jImð/Þj ¼ jZ2
2j ¼ 16

and

cConfiguration Configuration c

Fig. 4. An infeasible game satisfying the rule-of-three but not the solitaire lattice criterion
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½ZB : LatðBÞ� ¼ detðLatðBÞÞ :

This gives the following useful lemma.

Lemma 3.3. For a board B such that / is an onto map and LatðBÞ is full rank,
LatðBÞ ¼ Kerð/Þ if and only if detðLatðBÞÞ ¼ 16.

For example, the board given in Fig. 4, produces a full rank lattice LatðBÞ and
an onto map / but detðLatðBÞÞ ¼ 32 – see Section 5.1 – and therefore LatðBÞ is
strictly contained in Kerð/Þ. The (complementary) game of Fig. 4 is infeasible
while satisfying the rule-of-three.

The computation of ½ZB : Kerð/Þ� is easy. As the following proposition shows,
for any usual board this quantity equals 16.

Proposition 3.4. If a board B contains a 2� 2 sub-board then
½ZB : Kerð/Þ� ¼ jImð/Þj ¼ 16.

Proof. One can easily check that the 16 possible f0; 1g-configurations on a 2� 2
board are mapped by / precisely onto the 16 elements of Z2

2. h

3.3. Testing the Lattice Criterion Efficiently

Let B be a board and let V ¼ fv1; . . . ; vdg be a basis of the solitaire lattice
LatðBÞ. Then for any two given configurations c; c0 on B, the necessary con-
dition c0 � c 2 LatðBÞ for feasibility provided by Proposition 3.1 holds if and
only if the linear system

Pd
i¼1 kivi ¼ c0 � c is solvable (over R) and its unique

solution is an integer vector k 2 Zd . This can be efficiently tested, say by
Gaussian elimination. Thus, in order to efficiently facilitate the lattice criterion
for game feasibility, we need to determine a basis of LatðBÞ. One way to find a
basis is by applying the Hermite normal form algorithm (cf. Schrijver [9]) to any
generating set of the lattice. However, it is more efficient and illuminating to
characterize a canonical basis for the lattice whenever possible. This approach is
taken, for instance, in Lovasz’ outstanding work [6] on the matching lattice.
Our goal in the next section is to provide such a canonical basis for the solitaire
lattice of any rectangular board. In fact, the basis we provide is precisely the
Hermite basis of the lattice which would have been produced by the Hermite
normal form algorithm. However, our characterization will allow to write it
down at once, without applying the time consuming Hermite normal form
algorithm.

4. The Hermite Basis of the Solitaire Lattice

We start by defining the Hermite basis of an arbitrary full rank lattice. Any
integer matrix A of full row rank can be transformed by a sequence of unimodular
column operations (multiplication of a column by �1, exchange of two columns,
or addition of an integer multiple of one column to another), to a unique matrix of
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the form ½V 0� where V is square, lower triangular, non-negative, and each row of
V has a single maximum which is on the main diagonal. The matrix ½V 0� is called
the Hermite normal form (or HNF for short) of the matrix A. Moreover, the
square matrix V appearing in the HNF depends only on the lattice LatðAÞ gen-
erated by the columns of A. We define the Hermite basis HermiteðLÞ of a full rank
lattice L � Zd to be the canonical ordered basis consisting of the columns of V
where ½V 0� is the HNF of any matrix A whose columns generate L. To ease the
notation, in the following we simply identify the Hermite basis and the square
matrix V . For a thorough discussion of the Hermite normal form and its appli-
cations see the book [9]. We proceed to characterize the canonical Hermite basis
of the solitaire lattice of any rectangular board. In what follows we are going to
represent elements of ZB ffi ZjBj by column vectors, where the coordinates are
ordered by the lexicographic top-to-bottom left-to-right order on B � Z2, that is,
ði; jÞ 2 B precedes ðr; sÞ 2 B if either j > s or j ¼ s and i < r.

4.1. Playing on a 1 � n Board

We consider first the 1� n board B1;n :¼ ðð0; 0Þ; ð1; 0Þ; . . . ; ðn� 1; 0ÞÞ shown in
Fig. 5 where, without loss of generality, we take the leftmost hole to be the origin
ð0; 0Þ. It has 2ðn� 2Þ moves which are precisely the n� 2 right moves ri;0 and
n� 2 left moves li;0 for 1 	 i 	 n� 2.

Let F ðnÞ denote the Fibonacci sequence ð. . . ;�3; 2;�1; 1; 0; 1; 1; 2; 3; . . .Þ
defined for all integers by F ðnÞ ¼ F ðn� 1Þ þ F ðn� 2Þ with F ð0Þ ¼ 0 and
F ð�1Þ ¼ F ð1Þ ¼ 1. Let f ðnÞ denote the symmetric sequence
ð. . . ; 1; 0; 1; 1; 0; 1; 1; 0; 1; . . .Þ obtained by reducing the Fibonacci sequence
modulo 2, so f ðnÞ ¼ 0 if n � 0 ðmod 3Þ and f ðnÞ ¼ 1 otherwise. The following
theorem provides a characterization of the Hermite basis of any 1� n board B1;n
and shows that LatðB1;nÞ ¼ Kerð/Þ.

Theorem 4.1. Let B1;n be any 1� n board with n � 4. Then the following hold for
the solitaire lattice LatðB1;nÞ:

1. The Hermite basis of LatðB1;nÞ is

V1;n ¼
In�2 0

f ðn� 1Þ . . . f ð2Þ 2 0

f ðn� 2Þ . . . f ð1Þ 0 2

2
66666664

3
77777775
¼

In�2 0

. . . 1 1 0 1 1 0 1 2 0

. . . 1 0 1 1 0 1 1 0 2

2
66666664

3
77777775

:

Fig. 5. A feasible game on the 1� 6 board
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2. The solitaire lattice LatðB1;nÞ is characterized by:

c 2 LatðB1;nÞ ()
P�

ci;0 : 0 	 i 	 n� 1; i 6� 0 ðmod 3Þ
�

� 0 ðmod 2ÞP�
ci;0 : 0 	 i 	 n� 1; i 6� 1 ðmod 3Þ

�
� 0 ðmod 2Þ

�

3. LatðB1;nÞ has full rank with determinant detðLatðB1;nÞÞ ¼ 4.
4. ½ZB1;n : Kerð/Þ� ¼ 4 ¼ ½ZB1;n : LatðB1;nÞ� hence LatðB1;nÞ ¼ Kerð/Þ.

Proof. To prove (1), let A1;n be the integer n� 2ðn� 2Þ integer matrix whose
columns are the generators r1;0; . . . ; rn�2;0; l1;0; . . . ; ln�2;0 of the lattice LatðB1;nÞ.
Applying to A1;n the following unimodular column operations,

r1i;0 :¼ �
Xn�2
k¼i

F ði� k � 1Þrk;0; l1i;0 :¼ �
Xn�2
k¼i

F ðk � iþ 1Þlk;0; 1 	 i 	 n� 2 ;

we obtain the matrix:

A0
1;n ¼

In�2 �In�2

�F ð1� nÞ �F ð2� nÞ . . . �F ð�2Þ F ðn� 1Þ F ðn� 2Þ . . . F ð2Þ
�F ð2� nÞ �F ð3� nÞ . . . �F ð�1Þ F ðn� 2Þ F ðn� 3Þ . . . F ð1Þ

2
6666664

3
7777775

:

Applying now

r2i;0 :¼ r1i;0; l2i;0 :¼ l1i;0 þ r1i;0; 1 	 i 	 n� 2 ;

we obtain

A00
1;n ¼

In�2 0n�2

�F ð1� nÞ �F ð2� nÞ . . . �F ð�2Þ . . . 2F ð6Þ 0 2F ð4Þ 0 2

�F ð2� nÞ �F ð3� nÞ . . . �F ð�1Þ . . . 0 2F ð4Þ 0 2 0

2
6666664

3
7777775

:

Using the last two columns l2n�2;0 and l
2
n�3;0 to round modulo 2 the other columns,

we obtain the Hermite normal form of A1;n. Then, dropping all zero columns and
interchanging the last two columns, we get the desired Hermite basis
V1;n :¼ HermiteðB1;nÞ of LatðB1;nÞ as claimed in (1).

Next we prove (2) from (1) (note that (1) also follows from (4) below). We have
that c 2 LatðB1;nÞ if and only if c ¼ V � k for some k ¼ ðk0; . . . ; kn�1Þ 2 Zn. This
holds if and only if ki ¼ ci;0 for 0 	 i 	 n� 3 and
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cn�2;0 ¼ 2kn�2 þ
Xn�3
i¼0

f ðn� 1� iÞ � ci;0

¼ 2kn�2 þ cn�3;0 þ cn�5;0 þ � � � þ f ðn� 1Þ � c0;0 ;

cn�1;0 ¼ 2kn�1 þ
Xn�3
i¼0

f ðn� 2� iÞ � ci;0

¼ 2kn�1 þ cn�3;0 þ cn�4;0 þ � � � þ f ðn� 2Þ � c0;0 :

It follows that c 2 LatðB1;nÞ if and only if

Xn�1
i¼0

f ðn� 1� iÞ � ci;0 � 0 ðmod 2Þ and
Xn�1
i¼0

f ðn� 2� iÞ � ci;0 � 0 ðmod 2Þ

which translates to (2). For (3) it is clear that LatðB1;nÞ has full rank n ¼ jBj, and
its determinant is the product of the entries on the main diagonal of the Hermite
basis hence equals 4. Finally, it is easy to see that jImð/Þj ¼ 4 which, together with
detðLatðB1;nÞÞ ¼ 4 implies (4). h

4.2. Playing on an m � n Board

Since the 2� n board amounts to two independent 1� n boards, we have, taking
the lower leftmost hole to be ð0; 0Þ:

Theorem 4.2. Let B2;n be any 2� n board with n � 4. Then the following hold for
the solitaire lattice LatðB2;nÞ:

1. The Hermite basis of LatðB2;nÞ is

V2;n ¼
V1;n 0n

0n V1;n

" #
:

2. The solitaire lattice LatðB2;nÞ is characterized by:

c 2 LatðB2;nÞ ()

P�
ci;0 : 0 	 i 	 n� 1; i 6� 0 ðmod 3Þ

�
� 0 ðmod 2ÞP�

ci;0 : 0 	 i 	 n� 1; i 6� 1 ðmod 3Þ
�

� 0 ðmod 2ÞP�
ci;1 : 0 	 i 	 n� 1; i 6� 0 ðmod 3Þ

�
� 0 ðmod 2ÞP�

ci;1 : 0 	 i 	 n� 1; i 6� 1 ðmod 3Þ
�

� 0 ðmod 2Þ

8>><
>>:

3. LatðB2;nÞ has full rank with determinant detðLatðB2;nÞÞ ¼ 16.
4. ½ZB2;n : Kerð/Þ� ¼ 16 ¼ ½ZB2;n : LatðB2;nÞ� hence LatðB2;nÞ ¼ Kerð/Þ.

We now proceed to derive analogs of Theorems 4.1 and 4.2 for any rectangular
m� n board Bm;n, with n � 4 or m � 4. We take the lower leftmost hole to be
ð0; 0Þ. The set of moves is the 2mðn� 2Þ row moves ri;j; li;j and the 2nðm� 2Þ
column moves ui;j; di;j for 1 	 j 	 n� 2 and 1 	 i 	 m� 2.
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The Hermite normal form of LatðBm;nÞ can be deduced from the one of
LatðB1;nÞ by the following construction. For n � 3, let define the n� n f0; 1g-
matrix F1;n by:

F1;3 ¼
0 0 0
1 1 0
1 0 1

2
4

3
5

F1;n ¼ V1;n � In for n � 4.

8>><
>>:

We have:

Lemma 4.3. For n � 4 or m � 4, the Hermite basis of LatðBm;nÞ is Vm;n ¼ Fm;n þ Imn
where Fm;n is an mn� mn f0; 1g-matrix derived from F1;m by replacing each 0 by 0n
and each 1 by F1;n.

Proof. Let first consider the 2mðn� 2Þ row moves. Since each row is a 1� n
board, Theorem 4.1 gives that each set of 2ðn� 2Þ row moves can be replaced
(after dropping all 0 columns) by the n� n matrix V1;n ¼ F1;n þ In. In other
words, the 2mðn� 2Þ row moves can be replaced by the following mn� mn
matrix:

Rm;n ¼

F1;n þ In
F1;n þ In

F1;n þ In

. .
.

F1;n þ In
F1;n þ In

F1;n þ In

2
6666666666664

3
7777777777775

:

On the other hand, let us write the 2nðm� 2Þ column moves the following way.
First the down moves in the following order: d0;m�2; d1;m�2; . . . ; dn�1;m�2; d0;m�3;
d1;m�3; . . . ; dn�1;m�3; . . . ; d0;1; d1;1; . . . ; dn�1;1 and then the corresponding up moves
in the same order. Multiplying all the column moves by �1, we get:

Lm;n ¼

In �In
In In In �In

�In In In In In �In
. .
. . .

. . .
. . .

. . .
. . .

.

�In In In In In �In
�In In In In

�In In

2
6666666666664

3
7777777777775

:
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Identifying each In by 1, we recognize the row moves of a 1 my m board which can
be replaced (after dropping all 0 columns) by V1;m ¼ F1;m þ Im. Then easy com-
binations with Rm;n give:

Vm;n ¼

In
In

In

. .
.

In
. . . . . . . . . 0n F1;n F1;n þ In
. . . . . . . . . F1;n F1;n 0n F1;n þ In

2
6666666666664

3
7777777777775

;

that is, Vm;n ¼ Fm;n þ Imn and completes the proof. h

For example, for the 4� 5 board:

F1;4 ¼

0 0 0 0

0 0 0 0

0 1 1 0

1 1 0 1

2
6664

3
7775 leads to F4;5 ¼

05 05 05 05

05 05 05 05

05 F1;5 F1;5 05

F1;5 F1;5 05 F1;5

2
6664

3
7775

where

F1;5 ¼

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

1 0 1 1 0

0 1 1 0 1

2
6666664

3
7777775
:

Directly from Lemma 4.3, we get:

Theorem 4.4. Let Bm;n be any m� n board with n � 4 or m � 4. Then the following
hold for the solitaire lattice LatðBm;nÞ:

1. The Hermite basis of LatðBm;nÞ is
Vm;n ¼ Fm;n þ Imn :

2. The solitaire lattice LatðBm;nÞ is characterized by:

c 2 LatðBm;nÞ ()

P�
ci;0 : 0 	 i 	 n� 1; i 6� 0 ðmod 3Þ

�
� 0 ðmod 2ÞP�

ci;0 : 0 	 i 	 n� 1; i 6� 1 ðmod 3Þ
�

� 0 ðmod 2ÞP�
ci;1 : 0 	 i 	 n� 1; i 6� 0 ðmod 3Þ

�
� 0 ðmod 2ÞP�

ci;1 : 0 	 i 	 n� 1; i 6� 1 ðmod 3Þ
�

� 0 ðmod 2Þ

8>><
>>:

3. LatðBm;nÞ has full rank with determinant detðLatðBm;nÞÞ ¼ 16.
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4. ½ZBm;n : Kerð/Þ� ¼ 16 ¼ ½ZBm;n : LatðBm;nÞ� hence LatðBm;nÞ ¼ Kerð/Þ.

Note that Theorem 4.4 can be extended to the case m ¼ 1; 2 simply by setting
F1;1 ¼ I1 and F1;2 ¼ I2.

5. The Lattice Criterion Beats the Rule-of-Three

Building on the results just established on rectangular boards, we can now pro-
ceed to exhibit a large class of boards for which LatðBÞ 6¼ Kerð/Þ.

Using Lemma 4.3, we can efficiently compute the Hermite normal basis
of more complex boards. The algorithm consists in covering a board B
by overlapping rectangular sub-boards Bi, i ¼ 1; . . . ; I . Then we append each
matrix Aimi;ni i ¼ 1; . . . ; I consisting of the (row and column) moves within
each sub-board Bi and add the cross moves, that is, the moves from one sub-
board to another. Since the number of cross moves is, in general, quite
small, the computation of the resulting Hermite normal form of the initial
board B is, in general, a bit tedious but easy. This algorithm also provides a
rough upper bound for the determinant, that is, detðLatðBÞÞ 	

QI
i¼1

detðLatðBiÞÞ 	 24I .
Starting with the 60 holes board given in Fig. 4, we illustrate this method by

some examples of solitaire lattices with determinant 2k for arbitrary k � 2.

5.1. A Board with Lat(B) 6¼ Ker ð/Þ

The board B60 given in Fig. 4, is made of two overlapping square boards B6;6 and
B5;5 with 4 cross-moves centered on the common hole. Using Theorem 4.4, the
60� 160 integer matrix whose columns are the generators (moves) of LatðB60Þ can
be brought by unimodular column operation to:

1

. .
.

V6;6 �1 1

. .
.

� 1 1

. . . 1 0 2 1 � 1 �1 �1 �1
. .
.

1 �1
V5;5 1 �1

. .
.

2

2
66666666666666666664

3
77777777777777777775

;

which leads by Gaussian elimination to the Hermite basis V60 ¼ F60 þ I60 where
F60 is:
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028

. .. 1 1 0 1 1

. .. 0 0 0 0 0 0

023

. .. 1 0 1 1 0 1 0 ? 0 0 0 0 0 1 0 1 1 0 1 0 1 1

. .. 0 0 0 0 0 0 1 ? 0 0 0 0 0 0 1 1 0 1 0 1 1 0 1

03

. .. 1 0 1 1 0 1 0 .. . 1 0 1 1 0 1 0 1 1 0 0 0 0 0 0 1 0 1 1

. .. 0 0 0 0 0 0 0 .. . 0 1 1 0 1 0 1 1 0 1 0 0 0 0 0 0 1 1 0 1

2
6666666666666664

3
7777777777777775

:

We get the following statement which, in particular, excludes any complementary
game fc; �ccg while, B60 being a null-class board, complementary games satisfy the
rule-of-three; see Fig. 4 for such an example.

Corollary 5.1.

1. LatðB60Þ has full rank with determinant detðLatðB60ÞÞ ¼ 32.
2. ½ZB60 : Kerð/Þ� ¼ 16 6¼ 32 ¼ ½ZB60 : LatðB60Þ� hence LatðB60Þ 6¼ Kerð/Þ.
3. 1 62 LatðB60Þ, that is, any complementary game fc; �ccg is infeasible on B60.

Proof. (1) and (2) are a direct consequence of the computation of the Hermite basis
V60 of LatðB60Þ. Since, for example, the last row of the Hermite basis V60 has an even
number of entry of 1, 1 ¼ cþ �cc 62 LatðB60Þ, that is, c� �cc 62 LatðB60Þ and gives (3).
On the other hand, B60 is a null-class board, that is, /ð1Þ ¼ /ðc� �ccÞ ¼ ðe; eÞ. h

Fig. 7. A 5-hook board B with associated lattice satisfying detðLatðBÞÞ ¼ 64

Fig. 6. A hook board B with associated lattice satisfying detðLatðBÞÞ ¼ 128
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5.2. Hook Boards with Exponential Determinant

The computation of the Hermite normal form of B60 done in Section 5.1 can be
easily extended to any set of k rectangular boards pairwise overlapping on a
common corner. The resulting board – see for example Fig. 6 – will give a lattice
with determinant 2kþ3. Similarly, any k-hook board – one which consists of a set
of k linear boards pairwise overlapping on one common hole (see Fig. 7) – creates
a lattice with determinant 2kþ1.

Hook boards demonstrate that the solitaire lattice criterion can be exponen-
tially finer than the rule-of-three in the sense of the following theorem.

Theorem 5.2. For hook boards, the solitaire lattice condition exponentially out-
performs the rule-of-three, that is, for every k and every k-hook board B, the ratio of
the number of congruence classes of ZB modulo LatðBÞ to the number of congruence
classes of ZB modulo Kerð/Þ satisfies

½ZB : LatðBÞ�
½ZB : Kerð/Þ�

¼ 2k�1 :

5.3. Some Other Boards

Similar computations give that both the classical English 33-board B33 and the
French 37-board B37 satisfy:

1. detðLatðB33ÞÞ ¼ 16, hence LatðB33Þ ¼ Kerð/Þ,
2. detðLatðB37ÞÞ ¼ 16, hence LatðB37Þ ¼ Kerð/Þ.

On the other hand, the following null-class 165-board B165 yields to a solitaire
lattice satisfying detðLatðB165ÞÞ ¼ 256.

Fig. 8. A null-class board B satisfying detðLatðBÞÞ ¼ 256

Fig. 9. Moves on the 4� 4 and 1� 5 toric boards
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6. Variations

In order to avoid many special situations caused by the boundary, one can
consider the toric closure �BB of a board B. In other words, the toric m� n
board for m � 1 and n � 3 is an m� n rectangular board with additional
jumps which traverse the boundary of the board as illustrated for �BB1;5 and �BB4;4
by Fig. 9.

Clearly the toric closure of B1;n generates the 4 additional moves: r0;0; l0;0; rn�1;0
and ln�1;0. Appending those 4 moves to the Hermite normal form of LatðB1;nÞ
given in Section 4.1, one can easily check that:

Proposition 6.1. Let �BB1;n be any 1� n toric board with n � 4. Then the following
hold for the solitaire lattice Latð �BB1;nÞ:
1. Latð �BB1;nÞ ¼ LatðB1;nÞ for n � 0 ðmod 3Þ,
2. Latð �BB1;nÞ ¼ Zn otherwise.

Similarly, the toric closure of Bm;n, generates 4mn additional moves and Propo-
sition 6.1 immediately implies:

Proposition 6.2. Let �BBm;n be any m� n toric board with n � 4 or m � 4. Then the
following hold for the solitaire lattice Latð �BBm;nÞ:
1. Latð �BBm;nÞ ¼ LatðBm;nÞ for m � n � 0 ðmod 3Þ
2. Latð �BBm;nÞ ¼ Zmn otherwise.

Note that Latð �BB1;3Þ and Latð �BB3;3Þ are full rank lattice while their non-toric
counterparts are not.

The rule-of-three can be defined on a toric board �BBm;n if and only if
m � n � 0 ðmod 3Þ. In other words, for m 6� 0 ðmod 3Þ or n 6� 0 ðmod 3Þ, the
rule-of-three excludes no configuration, that is, Kerð/Þ can be set to Zmn. In other
words, Propositions 6.1 and 6.2 imply:

Proposition 6.3. Let �BBm;n be any m� n toric board with n � 4 or m � 4. Then we
have: Latð �BBm;nÞ ¼ Kerð/Þ.

In another variation of the solitaire game, to the classical moves we add the
moves which consist of removing two pegs surrounding an empty hole and
placing one peg in this empty hole as showed in Fig. 10.

Let denote those inside row moves iri;j (respectively, column moves ici;j) and by
LatðCBÞ the complete solitaire lattice generated by all classical and inside moves.
The conic hull of all those moves is called the complete solitaire cone; see [1] for an
interesting link between the complete solitaire game and the multicommodity flow
problem. Since /ðiri;jÞ ¼ /ðici;jÞ ¼ ðe; eÞ, we clearly have LatðCBÞ � Kerð/Þ.

Fig. 10. An inside move
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Proposition 6.4. Let Bm;n and CBm;n be any m� n board and its complete version
with n � 4 or m � 4. Then we have: LatðCBm;nÞ ¼ LatðBm;nÞ.

Proof. We have iri;j ¼ 3li;j þ 2ri;j � 2li;j�1 � 2ri;j�1, that is, insides moves are
integer linear combinations of classical moves. h
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