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The Combinatorial Structure of Small Cut andMetric PolytopesAntoine DEZA Michel DEZAJanuary 1995Abstract. We study the combinatorial structure of the cut and metric polytopes on nnodes for n � 5. Those two polytopes have a complicated geometrical structure, but usingtheir large symmetry group, we can completely describe their face lattices. We present,for any n, some orbits of faces and give new result on the tightness of the wrapping ofthe cut polytope by the metric polytope, disproving a conjecture of [14] on their lattices.Key words: metric polytope, complete bipartite subgraphs polytope, face lattice.1 IntroductionWe �rst recall the de�nition of the metric polytope mn, the cut polytope cn, and theirrelatives, the metric cone and the cut cone. Then we present some applications to wellknown optimization problems and some combinatorial and geometric properties of thosepolyhedra. The general references are [4, 24] for polytopes and [5] for graphs. For acomplete study of the applications and the combinatorial optimization aspects of thosepolyhedra, we refer, respectively, to the surveys [13] and [21].For all 3-sets fi; j; kg � f1; : : : ; ng, we consider the following inequalities:xij � xik � xjk � 0 (1)xij + xik + xjk � 2. (2)The inequalities (1) de�ne the metric cone and the metric polytope mn is obtained bybounding the latter by the inequalities (2). The 3�n3� facets de�ned by the inequalities (1),which can be seen as triangle inequalities for distance xij on f1; 2; : : : ; ng, are called1



homogeneous triangle facets and are denoted by Trij;k. The �n3� facets de�ned by theinequalities (2) are called non-homogeneous triangle facets and are denoted by Trijk.Given a subset S of Vn = f1; 2; : : : ; ng, the cut determined by S consists of the pairs(i; j) of elements of Vn such that exactly one of i, j is in S. �(S) denotes both the cutand its incidence vector in IR(n2), that is, �(S)ij = 1 if exactly one of i, j is in S and 0otherwise for 1 � i < j � n. By abuse of language, we use the term cut for both the cutitself and its incidence vector, so �(S)ij are considered as coordinates of a point in IR(n2).The cut polytope of the complete graph cn, which is also called the complete bipartitesubgraphs polytope, is the convex hull of all 2n�1 cuts, and the cut cone is the conic hullof all 2n�1 � 1 nonzero cuts. Those polyhedra were considered by many authors, see forinstance [2, 3, 9, 11, 12, 13, 14, 15, 17, 18] and references therein. One of the motivationsfor the study of these polyhedra comes from their applications in combinatorial optimiza-tion, the most important being the max-cut and multicommodity ow problems.Given a graph G = (Vn; E) and nonnegative weights we, e 2 E, assigned to its edges,the max-cut problem consists in �nding a cut �(S) whose weight Pe2�(S)we is as largeas possible. It is a well-known NP -complete problem. By setting we = 0 if e is not anedge of G, we can consider without loss of generality the complete graph on Vn. Then themax-cut problem can be stated as a linear programming problem over the cut polytopecn as follows:( max wT �xx 2 cn:Since the metric polytope is a relaxation of the cut polytope, optimizing wT �x over cninstead of mn provides an upper bound for the max-cut problem [3].With E the set of edges of the complete graph on Vn, an instance of the multicom-modity ow problem is given by two nonnegative vectors indexed by E: a capacity c(e)and a requirement r(e) for each e 2 E. Let U = fe 2 E : r(e) > 0g. If T denotes thesubset of Vn spanned by the edges in U , then we say that the graph G = (T; U) denotesthe support of r. For each edge e = (s; t) in the support of r, we seek a ow of r(e) unitsbetween s and t in the complete graph. The sum of all ows along any edge e0 2 E mustnot exceed c(e0). If such a ow exists, we call c; r feasible. A necessary and su�cientcondition for feasibility is given by the Japanese theorem [16]: a pair c; r is feasible if andonly if (c � r)Tx � 0 is valid over the metric cone. For example, Trij;k can be seen asan elementary solvable ow problem with c(ij) = r(ik) = r(jk) = 1 and c(e) = r(e) = 0otherwise, so the inequalities (1) correspond to (c � r)Tx � 0 for x in the metric cone.Therefore, the metric cone is the dual cone to the cone of feasible multicommodity owproblems. 2



2 Combinatorial and geometric properties of thecut and metric polytopesThe polytope cn is a �n2� dimensional 0�1 polyhedron with 2n�1 vertices and mn isa polytope of same dimension with 4�n3� facets inscribed in the cube [0; 1](n2). We havecn � mn with equality only for n � 4. It is easy to see that the point !n = (12 ; 12 ; : : : ; 12)is the center of gravity of both cn and mn and is also the center of the sphere of radiusr = 12pn(n� 1) where all the cuts lie. Another two geometric characteristics of thecut polytope cn are its width and geometric diameter. We recall that while the width ofa polytope P is equal to the minimum distance between a pair of parallel hyperplanescontaining P in the slice between them, the geometric diameter of P is the maximumdistance between a pair of supporting hyperplanes. The width of cn is 1 ([22]) andits geometric diameter is n2 for n even and 12pn2 � 1) for n odd, see [21]. Any facet,respectively ridge (that is, a face of codimension 2), of the metric polytope contains afacet, respectively a ridge, of the cut polytope and the vertices of the cut polytope arevertices of the metric polytope, in fact the cuts are precisely the integral vertices of themetric polytope. Actually the metric polytope mn wraps the cut polytope cn very tightlysince, in addition to the vertices, all edges and 2-faces of cn are also faces of mn ([14]).In other words, cn is a segment of order 2 of mn and its dual, m�n, is a segment of order 1of c�n in terms of [19]: a polytope P is a segment of order s of a polytope Q if they havethe same dimension and if every i-face of P is a face of Q for 0 � i � s. The polytopecn is 3-neighbourly ([14]). Any two cuts are adjacent both on cn ([3]) and on mn ([20]);in other words mn is quasi-integral in terms of [23], that is, the skeleton of the convexhull of its integral vertices, i.e. the skeleton of the cn, is an induced subgraph of the edgegraph of the metric polytope itself. While the diameter of m�n is 2 ([6]), the diameters ofc�n and mn are respectively conjectured to be 4 and 3 ([18, 6]). For a detailed study ofthe combinatorial and geometric properties of cn and mn, we refer to [8].The metric polytope and the cut polytope share the same symmetry group, that is, thegroup of isometries preserving a polytope. This group is isomorphic to the automorphismgroup of the folded n-cube, that is, Is(mp) = Is(cp) � Aut(2n), see [11, 17]. We recallthat the folded n-cube is the graph whose vertices are the partitions of Vn = f1; : : : ; nginto two subsets, two partitions being adjacent when their common re�nement containsa set of size one, see [5]. More precisely, for n � 5, Is(mn) = Is(cn) is induced bypermutations on Vn = f1; : : : ; ng and switching reections by a cut. Given a cut �(S), theswitching reection r�(S) is de�ned by y = r�(S)(x) where yij = 1�xij if (i; j) 2 �(S) andyij = xij otherwise. These symmetries preserve the adjacency relations and the linearindependency. For the study of their face lattices, we frequently use the fact that the3



faces of mn and cn are partitioned into orbits of their symmetry group.We �nally mention the following link with metrics: there is an evident 1 � 1 corre-spondence between the elements of the metric cone and all the semi-metrics on n points,and the elements of the cut cone correspond precisely to the semi-metrics on n pointsthat are isometrically embeddable into some lm1 , see [1], it is easy to check that m � �n2�.3 Face lattices of small cut and metric polytopes3.1 Face lattice of the cn = mn for n � 4For n � 4, we have cn = mn, moreover c3 and c4 are both well-known polytopes. Whilec3 is the regular tetrahedron of edge length p2 and volume v3 = 13 , c4 is combinatoriallyequivalent to the 6-dimensional cyclic polytope with 8 vertices and its volume is v4 = 245 .The f -vector of c4 is obviously f(c4) = (8; 28; 56; 68; 48; 16); more precisely all proper facesof c4 are partitioned into the following orbits of the symmetry group Is(c4) � Aut(24):� the 8 vertices of c4 form the orbit O10,� the 2 orbits O11 and O21 of edges f�(S); �(S0)g are respectively formed by the 16edges with jS4S 0j odd and the 12 ones with jS4S 0j even, (that is respectivelyrepresented by f�(;); �(1)g and f�(;); �(1; 2)g),� the 2 orbits of 2-faces are: O12 of size 48 which is represented by f�(;); �(2); �(1; 2)g,and O22 of size 8 which is represented by f�(1); �(2); �(3)g,� the 3 orbits of 3-faces are: O13 of size 12 which is represented by f�(;); �(1); �(2);�(1; 2)g, O23 of size 24 which is represented by f�(;); �(1); �(2); �(1; 3)g, and O33 ofsize 32 and represented by f�(;); �(1); �(2); �(3)g,� the 48 ridges form the orbit O14; they are the cofaces (that is the convex hull of thevertices not belonging to a face) corresponding to the 2-faces from the orbit O12.� the 16 facets form the orbit O15; they are the cofaces corresponding to the edgesfrom the orbit O11.Remark 3.1(i) The skeleton of c�4 is the (4�4)-grid, which is also the line graph of K4;4 = 24.(ii) A set of vertices is not a face of c�4 if and only if it contains one of the following 2sets of 4 vertices: f�(1); �(2); �(3); �(4)g and f�(;); �(1; 2); �(1; 3); �(1; 4)g.4



3.2 Face lattices of c5 and m5The face lattices of c5 and m5 were obtained in the following way. We �rst gotall the non-simplex faces by systematically checking all possible pairwise, 3-wise etc.intersections of non-simplex facets. Then, considering all 2; 3 and 4-sets of vertices andthe remaining possible pairwise, 3-wise etc. intersections of facets, we obtained all i-facesfor i = 0; 1; 2; 3; 7; 8; 9. Finally, noticing that few i-faces contains the complete lower partof the lattice (for example any 7-face of m5 is a facet of a face belonging to a single orbitof 8-face), we found by a case by case analysis all the remaining simplex 4; 5 and 6-facesof m5 and c5. The dimensions of the faces were computed using the list of all a�nedependencies of m5 and c5 given below.Using [10] one can that check all a�ne dependencies on the vertices of m5 and c5,that is equations P�ixi = 0 with P�i = 0, are, up to permutations, switchings and thebijection �(S)$ �̂(S) (which clearly preserves a�ne dependencies):� XS�f1;2;3;4g(�1)jSj�(S) = 0;� XS�f1;2;3;4;5g; jf4;5g\Sj=1(�1)jSj�(S) = 0;� 2�(;)� 2�(1) + 5Xi=2(�(1; i)� �(i)) = 0;� 3�̂(;) + �(1)� 5Xi=2 �(1; i) = 0:The restriction of the face lattices of c5 and m5 to their non-simplex faces are respectivelygiven in Figures 3.1 and 3.8. All simplicial and all maximal (under inclusion) simplexfaces are given in Proposition 3.2 and their complete face lattices are presented in detailin Section 3.2.1 and Section 3.2.2. The f -vectors of c5 and m5 are respectively:� f(c5) = (16; 120; 560; 1780; : : : ; 3080; 640; 56),� f(m5) = (32; 280; 1280; 3620; : : : ; 2840; 480; 40).By f ij and gij we respectively denote a representative j-face of the ith orbit Cij , respectivelyM ij , of c5 and m5. 5



3.2.1 Face lattice of c5In Figure 3.1 all the 4 orbits of proper non-simplex faces of m5 are given. Each orbitis represented by the set of vertices belonging to a representative face of the orbit. A cut�(i), respectively �(ij), is denoted by a circled point i and respectively by an edge fi; jg.
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    Figure 3.2: 7-faces of c56



� the 6-faces are partitioned into the 10 orbits C16 ; : : : ; C106 respectively representedby the graphs given in Figure 3.3,
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Figure 3.3: 6-faces of c5� the 5-faces are partitioned into the 11 orbits C15 ; : : : ; C115 respectively representedby the graphs given in Figure 3.4,
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Figure 3.4: 5-faces of c57



� the 4-faces are partitioned into the 8 orbits C14 ; : : : ; C84 respectively represented bythe graphs given in Figure 3.5,
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Figure 3.5: 4-faces of c5� the 1780 3-faces are partitioned into the 7 orbits C13 ; : : : ; C73 respectively representedby the graphs given in Figure 3.6. Actually, the only sets of 4 cuts which are not3-faces of c5 are the 40 members of the orbit of f�(;); �(1; 2); �(1; 3); �(2; 3)g,
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� the 120 edges are partitioned into the 2 orbits C11 and C21 respectively formed bythe 40 edges f�(S); �(S0)g with jS4S 0j = 1 or 4 and the 80 ones with jS4S 0j = 2or 3 (that is respectively represented by f11 = f�(;); �(1)g and f21 = f�(;); �(1; 2)g),� the 16 vertices form the orbit C10 .3.2.2 Face lattice of m5In Figure 3.8 all the 8 orbits of proper non-simplex faces ofm5 are given. As for c5, eachorbit is represented by the set of vertices belonging to one of its representative face. Whilea straight line links 2 incident faces, a dotted one links 2 faces incident up to a permuta-tion. Besides the 16 cuts, the vertices of m5 are the 16 anticuts �̂(S) = 23(1; : : : ; 1)-13�(S).A anticut �̂(i), respectively �̂(ij), is denoted by a grey circled point i and respectivelyby a grey edge fi; jg. The anticut �̂(;) is denoted by a grey ;. Note that a face cannotcontain both �(S) and �̂(S).The face lattice of m5 is partitioned into the following orbits of Is(m5):� the 40 triangle facets form the orbit M19 represented by g19 = Tr123,� the 480 ridges are partitioned into the 2 orbits M18 and M28 , both of size 240 andrespectively represented by g18 = Tr123 \ Tr124 and g28 = Tr123 \ Tr145,� the 1880 7-faces are partitioned into the 6 orbits M17 , M27 ; : : : ;M67 of size 120, 960,480, 160, 160 and 960 respectively represented by the graphs given in Figure 3.7.We have: g17 = g18 \Tr24;3\Tr13;4, g27 = g18 \Tr35;4, g37 = g18 \Tr345, g47 = g18 \Tr134,g57 = g18 \ Tr125 and g67 = g18 \ Tr135,
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� the 6-faces are partitioned into the 11 orbits M16 ; : : : ;M116 respectively representedby the graphs given in Figure 3.9,
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  Figure 3.9: 6-faces of m5� the 5-faces are partitioned into the 13 orbits M15 ; : : : ;M135 respectively representedby the graphs given in Figure 3.10,
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� the 4-faces are partitioned into the 12 orbits M14 ; : : : ;M124 respectively representedby the graphs given in Figure 3.11,
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� the 1280 2-faces are partitioned into the 5 orbits M12 , M22 ; : : : ;M52 of size 160,160, 240, 480 and 240, and respectively represented by g12 = f�(;); �(1); �(2)g,g22 = f�(;); �(1; 2); �(1; 3)g, g32 = f�(;); �(1); �(2; 3)g, g42 = f�̂(;); �(1; 2); �(1; 3)gand g52 = f�̂(;); �(1; 2); �(3; 4)g,� the 280 edges are partitioned into the 3 orbits M11 , M21 respectively formed by the40 edges f�(S); �(S0)g with jS4S 0j = 1 or 4 and the 80 ones with jS4S 0j = 2 or3, and the orbit M31 formed by the 160 edges f�̂(S); �(S 0)g with jS4S 0j = 2 or3 (that is respectively represented by g11 = f�(;); �(1)g, g21 = f�(;); �(1; 2)g andg31 = f�̂(;); �(1; 2)g).� the 32 vertices are partitioned into the 2 orbits M10 and M20 respectively formed bythe 16 cuts and the 16 anticuts.Proposition 3.2(i) The maximal (under inclusion) simplex faces of c5 are the faces belonging to the orbitsC29, C28, C17 and C57 .(ii) The maximal (under inclusion) simplex faces of m5 are the faces belonging to theorbits M17 , M27 and M37 .(iii) The simplicial faces of c5 and m5 are respectively the faces the belonging to the orbitC26 and M116 , M26 and M124 .(iv) The faces belonging to C26 and M26 are combinatorially equivalent to m4 = c4 and soto the 6-dimensional cyclic polytope with 8 vertices.Proposition 3.3(i) The maximal (under inclusion) simplex faces of m5 containing an anticut are the facesbelonging to the orbit M37 .(ii) The number of simplex i-faces of m5 containing an anticut is, for each anticut,f̂i = 1; 10; 45; 120; 205; 222; 130; 30; 0; 0 for i = 0; 1; : : : ; 9.Proof. Let g be a i-face of m5, with i � 6, containing an anticut, for example �̂(;),and denote g0 := \�(ijk)=2gTrijk. Clearly, we have g � g0 with equality if and only if g is asimplex. Suppose that �(i) 2 g0 � g, it will mean that i is a universal vertex, that is, thegraph G(g) representing g is one of the following graphs:13



It turns out that those 4 graphs are respectively subgraphs (we require only inclusionof the edge-set) of the graphs representing the non-simplex faces: g96; g106 4 g135 ; g124 (seeFigure 3.8). Now, since g0 is the intersection of homogeneous triangle facets, �̂(ij) 2 g0implies that �̂(i); �̂(j) 2 g0. Then �̂(i) 2 g0 � g if and only if G(g) contains the clique K4which turns out to be a subgraph of the non-simplex face: g116 . 23.3 Wrapping of cn by mnLet call extra i-face of cn (respectively mn) a i-face of cn (resp. mn) which is not ai-face of mn (resp. cn). We recall that all i-faces of cn are also i-faces of mn for i = 0; 1and 2; moreover, it was conjectured in [14] that for n large enough (n > 2i) all i-faces ofcn are also i-faces of mn. We disprove this conjecture by exhibiting an extra 3-face of cn.For n � 5, let consider the following face of cn:f3 = f�(12); �(13); �(14); �(15)g.Proposition 3.4 For n � 5, the face f3 is an extra 3-face of cn.Proof. For n = 5, the face f3 is the 3-face f73 of c5 which is itself a 10-face of cn(c5 = Tni=6(Tr12;i \ Tr2i;1)), that is, f3 is a 3-face of cn. Now let suppose that f3 is also aface of mn, it would implies that f3 is a face of the following face of mn:g = ( \2�i<j�5Tr1ij) \ ( n\i=6(Tr12;i \ Tr2i;1)),where the triangle facets are seen as facets of mn. For n = 5, we have g = g124 . Onecan easily check that g contains, besides the 5 cuts �(1); �(12); �(13); �(14) and �(15), thevertex x which coordinates xij : 1 � i � j � n are: xij = 0 for i 6= 2; 3; 4; 5 < j and 23otherwise. Then, to remove x we should intersect g with some Trij;k with 1 � i; j; k � 5,but doing so will also eliminate one of the 4 cuts �(12); �(13); �(14) or �(15) of f5 as well,which implies that f3 cannot be a face of mn. 2Corollary 3.5 For n � 5, all i-faces of cn are also i-faces ofmn for exactly i = 0; 1 and 2.Proof. Let suppose that all i0-faces of cn are also i0-faces of mn with i0 � 3. Then,the face gi0 of mn equal to a face fi0 of cn containing f3 will contain a face g3 equal tof3, which contradicts Proposition 3.4. 214



Proposition 3.6(i) The representative extra i-faces of c5 belong to F = ff29 ; f38 ; f37 ; f47 ; f66 ; f76 ; f86 ; f85 ; f95 ;f105 ; f74 , f73 g (that is, all extra faces belonging to f29 ) and to F 0 = fc5 = f110; f19 ; f18 ; f28 ; f57 ; f67 ;f77 ; f96 ; f106 ; f115 ; f84 g.(ii) The representative extra i-faces of m5 belong to G = fg37; g66; g76; g86; g85; g95; g105 ; g115 ;g125 ; g74; g84; g94; g104 ; g114 ; g73; g83; g93; g103 ; g42; g52; g31; g20g (that is, all simplex extra faces, i.e. allextra faces belonging to g37) and G0 = fm5 = g110; g19; g18; g28; g47 ; g57; g67; g96; g106 ; g116 ; g135 ; g124 g(that is, all faces given in Figure 3.8 except g26 = f26 which is the unique non-simplex com-mon face of c5 and m5).(iii) All remaining faces, besides the ones given in (i) and (ii) are common faces of c5 andm5, we ordered them so that f ij = gij. Their representative i-faces belong to H = ff16 ; f15 ;f25 ; f35 ; f14 ; f24 ; f34 ; f44 ; f54 ; f13 ; f23 ; f33 ; f43 ; f53 ; f12 ; f22 ; f32 ; f11 ; f21 ; f10 ; f1�1 = ;g (that is, allcommon faces belonging to f16 ) and to H 0 = ff17 ; f27 ; f26 ; f36 ; f46 ; f56 ; f45 ; f55 ; f65 ; f75 ; f64 ; f63 g.Remark 3.7 We observed that F = fg \ f29 : g 2 G0g, F 0 = fg \ c5 : g 2 G0 � fg116 gg,H = fg \ c5 : g 2 Gg and F � ff105 g = ff \ f29 : f 2 F 0g and that the dimension ofthose intersections is one less than the one of the corresponding face. The four aboveequalities, g73 \c5 ' g103 \c5 and g116 \c5 = f105 give the following four bijections: F $ G0,F 0 $ G0 � fg116 g, H $ G� fg73g and F 0 $ F � ff105 g:dimension -1 0 1 2 3 4 5 6 7 8 9 10total # of orbits in c5 1 1 2 3 7 8 11 10 7 3 2 1# of orbits in F 1 1 3 3 2 1 1# of orbits in F 0 1 1 2 3 2 1 1# of orbits in H 1 1 2 3 5 5 3 1# of orbits in H 0 1 1 4 4 2# of orbits in G 1 1 2 4 5 5 3 1# of orbits in G0 1 1 3 3 2 1 1total # of orbits in m5 1 2 3 5 10 12 13 11 6 2 1 1Figure 3.13: Number of orbits of i-facesRemark 3.8(i) All minimal (by inclusion) faces from F belong to the orbits of f73 or f105 = f29 � f73 .(ii) All minimal (by inclusion) faces from H 0 belong to the orbits of f63 or f75 .(iii) Besides f73 and the cofacet f63 = Tr134\Tr13;4\Tr14;3 = �Tr34;1, any of the 5 remainingrepresentative 3-faces of c5 belongs to exactly either 4 or 5 triangle facets.15



3.4 Some orbits of faces and nofaces of cn and mnIn Figure 3.14, we present 5 orbits of cn and mn. For each orbit a representativefacet, the codimension, the size and the number of cuts (and anticuts for orbits of mn)belonging to a face of the orbit are given. The orbit O52 (respectively O53, O54 and O55)corresponds to C18 and M18 (respectively C28 and M28 , C17 and M17 , and C26 and M26 ). Inmn, the faces belonging to On5 are combinatorially equivalent to mn�1.orbit representative codimension size # cuts # anticutsOn1 Tr135 \ Tr246 2 160�n6� 9� 2n�5 2n�5On2 Tr123 \ Tr124 2 48�n4� 5� 2n�4 2n�4On3 Tr123 \ Tr145 2 240�n5� 9� 2n�5 2n�5On4 Tr135 \ Tr45;3 3 24�n4� 2n�2 0On5 Tr135 \ Tr15;3 n� 1 2�n2� 2n�2 0Figure 3.14: All pairwise intersections of facets of mnWe then consider the following set of cuts: An = f�(i) : 1 � i � ng. It was remarkedin [14] that no triangle facet contains An. Moreover, we have:Proposition 3.9(i) No proper face of cn contains An.(ii) For n � 5, any (n� 1)-subset of An forms an extra (n� 2)-face of cn.(iii) The size of the orbit represented by An is jO(An)j = 1; 2; 2n�1 for n = 3; 4;� 5.Proof. Let F be a facet induced by the inequality: X1�i<j�n fijxij � a and F (S) thevalue of the left hand side of the inequality on the cut �(S). Since we haveF (�(ij)) = F (�(i)) + F (�(j)) � 2fij � a, An belongs to F will implies that fij � a2 .So, we have a � F (�(S)) � ajSj(n�jSj)2 , this implies a = 0 and therefore, for n � 4 allfij � a2 = 0 which contradicts F (�(1)) � a = 0. To prove (ii), remark that An�f�(1)g isthe following face of cn: An � f�(1)g = E�(1) \( \2�i<j�n Trij;1) where E�(1) is the switch-ing by the cut �(1) of the face de�ned by the inequality: X1�i<j�n xij � dn2 e � bn2 c. Onthe other hand, \2�i<j�n Trij;1 contains �(;) which can be removed only by intersectingAn�f�(1)g with a non-homogeneous triangle facet, but this will also eliminate some cuts�(i), that is, An�f�(1)g cannot be a face of mn. Since for n � 5 all switchings of An aredi�erent and any permutation amounts to a switching, jO(An)j = 2n�1; cases n = 3 and4 are clear. 216



Remark 3.10 Proposition 3.9 means that An is a minimal (by inclusion) blocker, thatis An \ �f 6= ;, for the clutter Tc := f �f : f is a facet of cng of complements of facets ofcn and, a fortiori, for the clutter Tm := f�g : g is a facet of mng. Perhaps, An is also aminimum, that is of minimal cardinality, blocker for Tc. Remark that minimum blockersfor Tm are exactly the pairs f�(S); �̂(S)g.We call noface of cn a set of cuts which does not form a face of cn.Proposition 3.11(i) For n � 4, any set containing member of O(An) is a noface (see Proposition 3.9).(ii) For n = 4, any noface contains a member of O(A4); the only nofaces which are cofacesbelong to the orbits represented by �f21 and �f22 .(iii) For n = 5, there are exactly 1; 2; 3; 8; 13 orbits of i-sets of cuts in c5 for i = 1; 2; 3; 4; 5and among there is exactly 6 orbits of nofaces represented by the following graphs:One can check that the following holds for any n � 3:� the 2n�1 vertices of cn form the orbit represented by f�(;)g,� the �2n�12 � edges of cn are partitioned into the bn2 c orbits respectively represented byf i1 = f�(;); �(1; : : : ; i)g for i = 1; : : : ; bn2c with jOi1j = 2n�2�ni� for 1 � i < bn2c andjOi1j = 2n�3�nn2 � for n even,� the �2n�13 � 2-faces of cn are partitioned into the orbits respectively represented byf r;s;t2 = f�(;); �(1; : : : ; r+s); �(r+1; : : : ; r+s+ t)g for all triplets of integers fr; s; tgsuch that 1 � r � bn3c, 0 � s � r, r � t � min(bn�r2 c; bn2 c � s; n� 2r � s),� for n � 6, the 16(n2�7)(n4)3 ridges, that is (�n2� � 2)-face of mn, are partitioned intothe 3 orbits On1 ; On2 and On3 given in Figure 3.14 (see [6]),� the 4�n3� facets of mn form the orbit represented by Tr123.17
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