
Computational Geometry: Theory and Applications 100 (2022) 101809
Contents lists available at ScienceDirect

Computational Geometry: Theory and

Applications
www.elsevier.com/locate/comgeo

A linear optimization oracle for zonotope computation

Antoine Deza a,b, Lionel Pournin c,∗
a McMaster University, Hamilton, Ontario, Canada
b LIX, CNRS, École Polytechnique, Palaiseau, France
c LIPN, Université Paris 13, Villetaneuse, France

a r t i c l e i n f o a b s t r a c t

Article history:
Received 16 September 2020
Received in revised form 21 April 2021
Accepted 11 June 2021
Available online 10 July 2021

Keywords:
Enumeration algorithms
Hyperplane arrangements
Minkowski sums
Optimization algorithms

A class of counting problems asks for the number of regions of a central hyperplane ar-
rangement. By duality, this is the same as counting the vertices of a zonotope. Efficient
algorithms are known that solve this problem by computing the vertices of a zonotope
from its set of generators. Here, we give an efficient algorithm, based on a linear opti-
mization oracle, that performs the inverse task and recovers the generators of a zonotope
from its set of vertices. We also provide a variation of that algorithm that allows to decide
whether a polytope, given as its vertex set, is a zonotope and when it is not a zonotope, to
compute its greatest zonotopal summand.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

Linear optimization consists in finding a vertex of a polyhedron that maximizes some linear functional. It is widely used
in many areas of science and engineering. Linear optimization has been used for solving some prominent questions and has
led to formulating a number of other widely studied problems. While linear optimization itself is known to be polynomial
time solvable in the size of the problem, the complexity of simplex methods, pivot-based linear optimization algorithms, is
still not known, see for instance [1] and references therein. In contrast to linear optimization that consists in finding just
one vertex of a polyhedron, convex hull computation amounts to enumerate all the faces of a polytope.

A number of practical algorithms have been given that address this particular problem [2–4]. Since the number of faces
of a polytope of arbitrary dimension is exponential, for instance in its number of vertices, the worst case complexity of these
algorithms is exponential. This article considers a case that lies in-between linear optimization and convex hull computation.
Just as with linear optimization, we are interested in the small dimensional faces of polytopes (their vertices and edges)
and, in keeping with convex hull computations, one of our main goals is to enumerate them. We are going to do that for a
particular class of polytopes, the zonotopes or, in other words, the Minkowski sums of line segments.

Recall that the Minkowski sum of two subsets A and B of Rd is the set

A + B = {a + b : a ∈ A, b ∈ B}.

This notion is illustrated in Fig. 1 in the particular case of a zonotope and in Fig. 2 in general.

* Corresponding author.
E-mail addresses: deza@mcmaster.ca (A. Deza), lionel.pournin@univ-paris13.fr (L. Pournin).
https://doi.org/10.1016/j.comgeo.2021.101809
0925-7721/© 2021 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.comgeo.2021.101809
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/comgeo
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comgeo.2021.101809&domain=pdf
mailto:deza@mcmaster.ca
mailto:lionel.pournin@univ-paris13.fr
https://doi.org/10.1016/j.comgeo.2021.101809

A. Deza and L. Pournin Computational Geometry: Theory and Applications 100 (2022) 101809
Fig. 1. The zonotope Z is the Minkowski sum of the line segments A, B , and C .

Fig. 2. The octagon P is the Minkowski sum of Q and Z .

By their definition, zonotopes are more combinatorial, and can behave rather differently than arbitrary polytopes. For
instance, linear optimization over a zonotope is linear time solvable in the number of its generators. Zonotopes arise in a
number of counting problems related to different fields, often in terms of their dual hyperplane arrangement [5–8]. These
counting problems ask for the number of vertices of a zonotope given as the set of its generators (or equivalently, for the
number of chambers of the dual hyperplane arrangement). This can be done in practice by using an efficient, convex-hull-
free algorithm that computes the vertices of a zonotope from its set of generators, see for instance [9,10].

Our first contribution is an efficient algorithm that performs the inverse task, also without requiring any convex hull
computation. Given the vertex set of a polytope P , this algorithm will decide whether P is a zonotope and, if so, it will
return its set of generators. In this sense it can also be considered a decision algorithm. It is polynomial in the number
of vertices of the considered polytope. In fact, considering complexity in terms of the combined size of the input and
output [2], all the algorithms we propose are polynomial. Our second contribution is an algorithm that provides a practical
approach to the decomposability of a polytope in terms of Minkowski sums, another topic that has attracted significant
attention [11–15]. It efficiently computes the greatest zonotopal summand of an arbitrary polytope. Let us illustrate this
notion. By a summand of a polytope P , we mean any polytope Q such that P is the Minkowski sum of Q with another
polytope. In Fig. 2 for instance, the octagon P is the Minkowski sum of the triangle Q with the hexagon Z . In particular,
Q and Z are two summands of P . Observe that Z is, up to translation, the Minkowski sum of three of its edges. In other
words, Z is a zonotope. On the other hand, since Q is a triangle, no line segment—and therefore no zonotope—can be a
summand of Q . In this case, Z is what we call the greatest zonotopal summand of P .

When a polytope P is given as the convex hull of a finite set of points, linear optimization is polynomial time solvable in
the number of these points since it amounts to computing the value of a linear functional at each of them. According to the
theory developed in [16], deciding whether a given point is a vertex of P is then also polynomial time solvable. Similarly,
deciding whether two points are the extremities of an edge of P can be done in polynomial time. Our algorithms rely on
the ability to solve these two problems. In Section 2, we will give an explicit linear optimization oracle that provides a
practical way to do that. In section 3, we will recall a number of properties of Minkowski sums and zonotopes, and derive
further properties that will be used in the sequel.

As mentioned earlier, efficients algorithms are known that enumerate the vertices of a zonotope from its set of gener-
ators, see for instance [9,10]. This task will appear as a subtask in our algorithms. For this reason, and in order to keep
our article self-contained, we give an algorithm that performs this task in Section 4. The greatest zonotopal summand of a
polytope is defined and studied at in Section 5, and the algorithm that computes it is described at the end of the section.
Finally, the algorithm that enumerates the generators of a zonotope from its vertex set is given in Section 6.

2. A linear optimization oracle

We begin the section with a linear optimization oracle that allows to tell whether the convex hull of a finite subset of
Rd is disjoint from the affine hull of another finite subset of Rd . We then show that this oracle provides a practical way to
decide when a polytope is a face of another when both are given as convex hulls of finite sets of points. As a consequence,
we obtain an explicit algorithm that efficiently computes the graph of a polytope given either as the set of its vertices or
as the convex hull of a finite subset of Rd . At the end of the section, we show how our oracle also allows to compute the
extreme rays of a pointed cone given as the conic hull of a set of points.

Consider a finite subset A of Rd and a subset F of A. The convex hull of A\F and the affine hull of F are non-disjoint
if and only if a convex combination of A\F coincides with an affine combination of F ; that is, if and only if there exists a
family (αa)a∈A of real numbers such that
2

A. Deza and L. Pournin Computational Geometry: Theory and Applications 100 (2022) 101809
∑
a∈A\F

αaa −
∑
a∈F

αaa = 0, (1)

∑
a∈A\F

αa = 1, (2)

∑
a∈F

αa = 1, (3)

and αa ≥ 0 when a ∈ A\F . In other words, checking whether conv(A\F) and aff(F) are non-disjoint amounts to finding
a solution to a system of d + 2 linear equalities (note here that (1) accounts for d of these equalities) and |A| − |F | linear
inequalities that state the non-negativity of some of the variables. This feasibility problem, which we denote by (L OA,F) is
polynomial time solvable in |A|, d, and the binary size L of the input (see [16,1]). In our case and throughout the section,
L is the number of bits needed to store A. Let us illustrate how (L OA,F) allows for an efficient way to compute the graph
of a polytope given as the convex hull of a finite subset of Rd .

Proposition 1. A point x in a finite subset A of Rd is a vertex of conv(A) if and only if it does not belong to conv(A\{x}).

Proof. The vertices of a polytope are precisely its extreme points. Therefore, a point x in A is not a vertex of conv(A) if
and only if it can be written as a convex combination of A such that the coefficient for x in that convex combination is
less than 1. Now observe that x appears on both sides of that equality. Solving this equality for x results in an equivalent
equation that expresses x as a convex combination of A\{x}. �

Recall that the affine hull of a single point only contains that point. Hence, according to Proposition 1, A point x in A is
a vertex of conv(A) if and only if (L OA,{x}) is infeasible. Solving this feasibility problem for every point x in A allows to
recover the vertex set of conv(A) in polynomial time in |A|, d, and L. Proposition 1 can be generalized as follows.

Proposition 2. Consider a finite subset A of Rd. The convex hull of a subset F of A is a face of the convex hull of A if and only if the
affine hull of F is disjoint from the convex hull of A\F .

Proof. Let F be a subset of A. Consider the orthogonal projection

π : Rd → aff(F)⊥,

where aff(F)⊥ is the orthogonal complement of aff(F) in Rd; that is, the set of the vectors in Rd orthogonal to it. By
construction, π sends all the points in F to a single point x. Now observe that aff(F) is disjoint from conv(A\F) if and
only if x is not contained in the convex hull of π(A\F). By Proposition 1, this is equivalent to x being a vertex of the
convex hull of π(A) which, in turn, is equivalent to conv(F) being a face of conv(A). �

Consider two distinct elements x and y of A. According to Proposition 2, conv({x, y}) is an edge of conv(A) if and
only if (L OA,{x,y}) is infeasible. Therefore, in order to compute the graph of the convex hull of a finite subset A of Rd , it
is sufficient to solve (L OA,{x}) for every point x in A in order to recover the vertex set V of conv(A) and then to solve
(L OA,{x,y}) for any pair of distinct points x and y in V in order to decide whether conv({x, y}) is an edge of conv(A). Since
the number of feasibility problems to solve is quadratic in |A| and each of these problems is polynomial time solvable in
|A|, d, and L, we recover the following well-known result (see [17]).

Theorem 1. Consider a finite subset A of Rd. The graph of conv(A) can be computed in polynomial time in |A|, d, and L.

Note that, computing the whole 2-skeleton of conv(A) with that procedure would require solving a number of feasibility
problems that is exponential in |A|. Indeed, the possible candidates for being the vertex set of a 2-dimensional face of
conv(A) would be all the sets of at least three vertices of conv(A). Therefore, the k-skeleton of conv(A) cannot be computed
in polynomial time using the same ideas when k is greater than 1. However, for any given positive integer k, it is possible
to compute in polynomial time all the faces of conv(A) with at most k vertices and arbitrary dimension. According to
Proposition 2, this amounts to solve (L OA,F) for every non-empty subset F of A with at most k elements, whose number
is at most a polynomial of degree k in |A|.

We now explain how the same ideas allow to compute in polynomial time the rays of a pointed cone spanned by a
finite subset A of Rd\{0}. This will be used in Section 4 in order to compute the vertices of a zonotope efficiently from its
generators. Recall that the cone spanned by A, or conic hull of A, is the polyhedral cone made up of all the linear combinations
with non-negative coefficients of the points in A. This cone, which we denote by cone(A), is pointed when it admits 0 as
a vertex. In particular, when A is made up of a single non-zero point, cone(A) is a half-line incident to 0.

Note that, if A contains a pair of linearly dependent points, then the cone spanned by A is not affected if one of these
points is removed from A. Hence, we can assume that any two points in A are linearly independent.
3

A. Deza and L. Pournin Computational Geometry: Theory and Applications 100 (2022) 101809
The following proposition is the conic counterpart to Proposition 1.

Proposition 3. Consider a finite subset A of pairwise linearly independent points of Rd\{0} that spans a pointed cone. The half-line
spanned by a point x in A is a ray of the cone spanned by A if and only if the line through 0 and x is disjoint from conv(A\{x}).

Proof. Consider a point x contained in A and assume that the half-line cone{x} is a ray of cone(A). Further consider a
supporting hyperplane H of cone(A) such that

cone(A) ∩ H = cone{x}.

Since any two points in A are linearly independent, x is the only element of A contained in cone{x} and, therefore, in H .
As a consequence, A\{x} is contained in one of the open half-spaces of Rd bounded by H and its convex hull is necessarily
disjoint from the line through 0 and x.

Now assume that the line through 0 and x is disjoint from the convex hull of A\{x}. By Proposition 2, conv{0, x} is an
edge of conv(A ∪ {0}). Consider a supporting hyperplane H of conv(A ∪ {0}) such that

conv(A∪ {0}) ∩ H = conv{0, x}.

Since conv(A ∪ {0})\conv{0, x} is contained in one of the open half-spaces bounded by H , and since H contains 0, then
cone(A)\cone({x}) is also contained in that half-space. Hence, H is a supporting hyperplane of the cone spanned by A and
it intersects this cone along the half-line spanned by x. In other words, that half-line is a ray of the cone spanned by A. �

Now observe that the line through 0 and a point x in A is disjoint from the convex hull of A\{x} if and only if
(L OA∪{0},{0,x}) is infeasible. Again, this feasibility problem is polynomial time solvable in |A|, d, and L. In particular, it
follows from Proposition 3 that solving this problem allows to tell whether the half-line spanned by x is a ray of the conic
hull of A. By these observations, we recover the following.

Theorem 2. Consider a finite subset A of pairwise linearly independent points of Rd\{0} that spans a pointed cone. The rays of
cone(A) can be computed in polynomial time in |A|, d, and L.

The input of some of the algorithms we describe in the sequel are polytopes given as the set V of their vertices. In fact,
these polytopes could also be given as any finite set A of points they are the convex hull of. In this case, the complexity of
these algorithms would be in terms of |A| instead of |V|.

3. Combinatorial properties of Minkowski additions

When P and Q are polyhedra, the faces of P + Q are exactly the Minkowski sums of a face F of P and a face G of Q
such that, for some non-zero vector c in Rd , the linear functional x 	→ c·x is maximized at F in P and at G in Q , see for
instance Proposition 12.1 in [18] or Lemma 2.1 in [11]. As already mentioned, a zonotope, is the Minkowski sum of a finite
set of line segments. In fact, a zonotope Z contained in Rd is uniquely obtained, up to translation, as the Minkowski sum of
a finite set of pairwise non-homothetic line segments incident to 0 and whose first non-zero coordinate of the other vertex
is positive. We refer to these particular line segments as the generators of Z .

Now recall that a summand of a polytope P is a polytope Q such that P is obtained as the Minkowski sum of Q
with another polytope. We recall the following decomposability characterization from [11] that we will use to compute the
1-dimensional summands of a polytope efficiently.

Lemma 1 ([11, Theorem 2.5]). A polytope P has a summand homothetic to a polytope Q if and only if P and P + Q have the same
number of vertices.

Lemma 1 is illustrated in Fig. 3 in the case when P is the quadrilateral T +e, that admits a line segment e as a summand,
and Q is a line segment f homothetic to e. As can be seen, T + e + f is still a quadrilateral.

We also recall classic counting arguments that will be used to speedup the computations. If P is a polytope and s is a
line segment, we denote by 〈s〉P the set of the edges of P homothetic to s or, equivalently, parallel to s.

Lemma 2. Consider a d-dimensional polytope P and a line segment s, both contained in Rd. If s is a summand of P , then

(i) At least d edges of P are contained in 〈s〉P .
(ii) All the edges of P in 〈s〉P are at least as long as s.

(iii) Every shortest element of 〈s〉P is a summand of P .
4

A. Deza and L. Pournin Computational Geometry: Theory and Applications 100 (2022) 101809
Fig. 3. A triangle T , its Minkowski sum with a horizontal line segment e, and the Minkowski sum of T + e with a line segment f homothetic to e.

Proof. Assume that P is the Minkowski sum of a polytope Q with s and consider the orthogonal projection

π : Rd → aff(s)⊥.

Note that the image by π of any element of 〈s〉P is a vertex of π(P). In fact, π induces a bijection between 〈s〉P and
the vertex set of π(P). Indeed, first observe that, by convexity, π cannot send distinct elements of 〈s〉P to the same point.
Further consider a vertex v of π(P) and a vector c contained in aff(s)⊥ such that the map x 	→ c·x is maximized at v in
π(P). Observe that π(P) coincides, up to translation, with π(Q). Hence, x 	→ c·x is maximized at a vertex of π(Q) and,
therefore, at a vertex or an edge of Q parallel to s. Denote by Q v this vertex or edge of Q . Since c is contained in aff(s)⊥ ,
the map x 	→ c·x is constant within s. Hence, according to Lemma 2.1 in [11],

π−1({v}) ∩ P = Q v + s. (4)

In other words, the set of the points in P that π sends to v is an edge of P obtained as the Minkowski sum of Q v

and s. Therefore, this edge belongs to 〈s〉P and cannot be shorter than s. In particular Assertion (ii) holds.
Since π(Q) is a polytope of dimension d − 1, it has at least d vertices. As π projects distinct segments in 〈s〉P to distinct

points, 〈s〉P cannot contain less than d elements. In other words, Assertion (i) holds.
Now observe that, if Q v is an edge of Q for every vertex v of π(P), then Q still admits a summand homothetic to s.

In this case, P has a summand homothetic to s that is longer than s. We can assume without loss of generality that s is a
longest such summand of P . It follows that Q v is a vertex of Q for some vertex v of π(P). By Equality (4), some edge of
P is a translate of s. According to Assertion (ii), all the shortest edges of P in 〈s〉P must be translates of s and, therefore,
summands of P , which proves Assertion (iii). �

In the case of zonotopes, the statement of Lemma 2 can be refined. Let us first recall a well-known property of zonotopes.

Proposition 4. A d-dimensional zonotope has at least 2d vertices.

Proof. Consider a zonotope Z contained in Rd . If Z is d-dimensional, then it admits d generators that are not all contained
in a hyperplane of Rd . The Minkowski sum of these generators is a d-dimensional combinatorial hypercube C . By construc-
tion, C is a summand of Z . Therefore, according to Lemma 2.3 from [11], there exists an injection from the vertex set of C
into the vertex set of Z . Since C has 2d vertices, the proposition follows. �

Lemma 2 can be improved as follows in the case of zonotope.

Lemma 3. For every generator g of a d-dimensional zonotope Z , |〈g〉Z | ≥ 2d−1 and all the elements of 〈g〉Z are translates of g.

Proof. Consider a d-dimensional polytope Z contained in Rd and a generator g of Z . By the definition, two distinct gen-
erators of Z cannot be parallel. Since the faces of a Minkowski sum of polytopes are Minkowski sums of their faces, every
edge of Z is a translate of one of its generators. As a consequence, every element of 〈g〉Z is necessarily a translate of g .

Consider the orthogonal projection

π : Rd → aff(g)⊥.

Observe that π(Z) is a zonotope of dimension d − 1 obtained, up to translation, as the Minkowski sum of the images by
π of the generators of π(Z). By the argument in the proof of Lemma 2, π induces a bijection between 〈g〉Z and the vertex
set of π(Z). Since π(Z) is a (d − 1)-dimensional zonotope, the desired result therefore follows from Proposition 4. �

By Lemma 3, |〈g〉Z | is at least 2d−1 when g is a generator of a d-dimensional zonotope Z. Note that |〈g〉Z | is not
necessarily a multiple of 2d−1 in general. For instance, the rhombic dodecahedron is a 3-dimensional zonotope whose
exactly 6 edges are obtained as translates of each generator.
5

A. Deza and L. Pournin Computational Geometry: Theory and Applications 100 (2022) 101809
4. An efficient algorithm to compute zonotopes

Throughout this section, Z is a fixed zonotope contained in Rd . Recall that a zonotope is, up to translation, the
Minkowski sum of its generators. In this section, we assume that Z is exactly the Minkowski sum of its generators, which
can be done without loss of generality by translating Z , if needed. Denote by G the set of the non-zero vertices of the
generators of Z . The purpose of the section is to give an algorithm to recover the vertex set of Z from G . Since Z is the
Minkowski sum of its generators, it is also equal to the convex hull of all the possible subsums of G; that is,

Z = conv

{∑
x∈X

x : X ⊂ G
}

,

where, by convention, the sum of the elements of X is equal to 0 when X is empty. In particular, every vertex of Z is the
sum of a unique subset of G . However, not all the subsets of G sum to a vertex of Z . The following theorem characterizes
the subsets of G that have this property.

Theorem 3. The sum of the points in a subset X of G is a vertex of Z if and only if [−X] ∪ [G\X] spans a pointed cone.

Proof. Consider the zonotope ZX equal to the Minkowski sum of the line segments incident to 0 and whose other vertex
is a point in [−X] ∪ [G\X]. Note that Z and ZX are translates of one another. More precisely,

Z = ZX + x,

where x denotes the sum of the points in X . As a consequence, x is a vertex of Z if and only if 0 is a vertex of ZX . Since
ZX is the Minkowski sum of its generators, it is equal to the convex hull of all the possible subsums of [−X] ∪ [G\X]. In
particular ZX admits [−X] ∪ [G\X] as a subset. Hence, if 0 is a vertex of ZX , then [−X] ∪ [G\X] is contained in one of
the open half-spaces limited by a hyperplane through 0 and therefore spans a pointed cone.

Since ZX is the convex hull of all the subsums of [−X] ∪[G\X], it must contain 0 and be contained in the cone spanned
by [−X] ∪ [G\X]. Hence, if [−X] ∪ [G\X] spans a pointed cone, then 0 is a vertex of ZX . �

Let us illustrate Theorem 3 by showing that 0 is a vertex of Z . Since the first non-zero coordinate of every point in G is
positive, 0 is not a convex combination of G . In this case, according to Proposition 1, the convex hull of G ∪ {0} admits 0 as
a vertex. As a consequence, the cone spanned by G is pointed and, by Theorem 3, 0 is a vertex of Z .

It is worth noting that the condition in Theorem 3 can be checked efficiently. More precisely, the cone spanned by
[−X] ∪ [G\X] is pointed if and only if the following system of |G| linear inequalities is feasible.

c·g ≥ 1 for all g ∈ X , (5)

−c·g ≥ 1 for all g ∈ G\X . (6)

Indeed, the feasibility of this system is equivalent to the existence of a vector c ∈ Rd such that the map x 	→ c·x is
maximized exactly at 0 within the cone spanned by [−X] ∪ [G\X]. In other words, this cone admits 0 as a vertex.

Theorem 3 already provides a way to compute the vertices of Z . Indeed, in order to do that, it suffices to check, for each
subset X of G whether 0 is contained in the convex hull of [−X] ∪ [G\X]. It is possible though, that many of these subsets
do not sum to a vertex of Z . In order to avoid considering these subsets, we will use the following lemma.

Lemma 4. Consider a subset X of G . If X sums to a vertex x of Z , then the vertices of Z adjacent to x are the sums of x with any
element of [−X] ∪ [G\X] that spans an extreme ray of the conic hull of [−X] ∪ [G\X].

Proof. Assume that the sum of the points in X is a vertex x of Z . In this case, according to Theorem 3, [−X] ∪ [G\X]
spans a pointed cone. As in the proof of Theorem 3, we consider the zonotope ZX whose generators are incident to 0 on
one end and to a point in [−X] ∪ [G\X] on the other. This zonotope is a translate of Z . More precisely,

Z = ZX + x.

According to this, in order to prove the lemma, we only need to show that the vertices of ZX adjacent to 0 are exactly
the points in [−X] ∪ [G\X] that span an extreme ray of the conic hull of [−X] ∪ [G\X].

By construction, ZX is the Minkowski sum of its generators. Hence, ZX is the convex hull of all the possible subsums
of [−X] ∪ [G\X]. In particular, it is contained in the cone spanned by [−X] ∪ [G\X]. Now recall that the edges of a
zonotope are translates of its generators. As a consequence, the vertices of ZX adjacent to 0 must be among the points
from [−X] ∪ [G\X]. Consider a point y in [−X] ∪ [G\X]. The segment with vertices 0 and y is an edge of ZX if and only
if there exists a supporting hyperplane H of ZX that satisfies
6

A. Deza and L. Pournin Computational Geometry: Theory and Applications 100 (2022) 101809
Algorithm 1: Computing V from G .

1 T ← {0}
2 ξ(0) ← ∅
3 V ← ∅
4 while T �= ∅ do
5 Pick an element x of T
6 for every point y in x +G\ξ(x) do
7 if y does not belong to T ∪V then
8 if y − x spans a ray of cone([−ξ(x)] ∪ [G\ξ(x)]) then
9 T ← T ∪ {y} and ξ(y) ← ξ(x) ∪ {y − x}

10 end
11 end
12 end
13 T ← T \{x} and V ← V ∪ {x}
14 end
15 Return V

ZX ∩ H = conv{0, y}.

Since the points of the cone spanned by [−X] ∪ [G\X] are precisely the multiples by a non-negative coefficient of the
points contained in ZX , this is equivalent to

cone([−X] ∪ [G\X]) ∩ H = cone{y}.

In other words, cone{y} is an extreme ray of the cone spanned by [−X] ∪ [G\X]. �
By Theorem 2, the condition in the statement of Lemma 4 can be checked efficiently using the oracle described in Sec-

tion 2. As discussed above, this condition can also be checked by solving the feasibility problem made up of the inequalities
(5) and (6) for each generator g of Z , where X is replaced by X ∪ {g} if g does not belong to X and by G\{g} otherwise.

Let us now give an informal description of our algorithm that computes the vertices of Z from G . Recall that Z admits 0
as a vertex. Our algorithm starts from that vertex and computes all the vertices of Z adjacent to it. According to Lemmas 2
and 4, this can be done in polynomial time in |G|, d, and the binary size L required to store G . Then the procedure is
repeated and computes the vertices of Z adjacent to the new vertices of Z that have been discovered, and so on until
the neighbors of all the discovered vertices have been computed. Since the graph of a polytope (made up of its vertices
and edges) is connected, this indeed computes all the vertices of Z . In order to further speedup our algorithm, we use the
following proposition that allows to compute only a subset of the neighbors of each vertex.

Proposition 5. Consider a non-empty subset X of G . If the elements of X sum to a vertex x of Z , then there exists a vertex y of Z
adjacent to x such that x − y belongs to X .

Proof. The proof proceeds by induction on the dimension of Z . If Z has dimension 0, then G is empty and the desired result
immediately holds. Assume that the dimension of Z is positive, and that the desired statement holds for any zonotope of
dimension less than the dimension of Z .

Consider a non-empty subset X of G that sums to a vertex x of Z . Since X is non-empty and the first non-zero
coordinate of any point it contains is positive, then x is necessarily distinct from 0 and its first non-zero coordinate must
be positive. We will review two cases.

Assume that the first coordinate of x is positive. As Z contains 0, Z must have an edge incident to x whose first
coordinate of the other vertex is less than that of x. By Lemma 4, the other vertex y of this edge is such that either x − y
belongs to X or to −[G\X]. Since the first coordinate of the points in G is non-negative, x − y must belong to X , as desired.

Now assume that the first coordinate of x is equal to 0. Since the first coordinate of the points in G is non-negative,
it follows that the first coordinate of all the points in X must be equal to 0. Moreover, the zonotope generated by the
elements of G whose first coordinate is equal to 0 is a proper face of Z . Hence, the proposition holds by induction. �

Consider a vertex x of Z and the subset X of G it is the sum of. A consequence of Proposition 5 is that x can be reached
from 0 by a path in the graph of Z that visits only vertices equal to subsums of X . In other words, in order to discover
new vertices of Z from x in the algorithm sketched above, one only needs to check the points y such that y − x belongs to
G\X , and the algorithm will still compute all the vertices of Z . This is what Algorithm 1 does.

Let us give a detailed description of Algorithm 1 that explores the graph of the zonotope as for example reverse-search
does [3]. In this algorithm, T is the set of the vertices of Z that have been discovered, but not treated yet in the sense that
their neighbors in the graph of Z are still to be computed. The set of the vertices that have been treated, in the same sense
is denoted by V . Initially, T only contains 0 and V is empty. Upon completion of the algorithm, V is the set of the vertices
of Z . For each point x in T ∪ V , the subset of G that sums to x is denoted by ξ(x). For instance, ξ(0) is equal to ∅.
7

A. Deza and L. Pournin Computational Geometry: Theory and Applications 100 (2022) 101809
While T is non-empty, the algorithm picks a point x from T , and considers all the points y that are the sum of x with
an element of G\ξ(x). By Proposition 5, one can restrict to only consider these points to enumerate the vertex set of Z . In
Line 7, the algorithm first checks whether y has not been discovered yet (which can be done in logarithmic time in the
number of vertices of Z using an appropriate data structure). If y has not been discovered, the algorithm checks in Line 9
whether y is a vertex of Z , using the condition stated by Lemma 4. According to Theorem 2, this can be done in polynomial
time in |G|, d, and the binary size L required to store G . If y is a vertex of Z , then it is inserted in T and ξ(y) is computed
in Line 10. Once x has been treated, it is removed from T and placed in V in Line 14.

Theorem 4. There exists a polynomial function p :R3 → R such that the vertex set of any zonotope can be computed from its set of
generators in time O (n p(m, d, L)), where n is the number of vertices of the zonotope, m the number of its generators, d its dimension,
and L the number of bits required to store all the generators of the zonotope.

Proof. By Theorem 2, there exists a polynomial function q : R3 → R such that the test in Line 9 of Algorithm 1 can be
done in time O (q(m, d, L)) for a d-dimensional zonotope with m generators, where L is the binary size required to store
these generators. Hence, according to the description of the algorithm, the vertex set of a d-dimensional zonotope with n
vertices and m generators can be computed from the set of its generators in time

O (nm[q(m,d, L) + log n]).

Since n is at most 2m , we obtain the desired result. �
5. The greatest zonotopal summand of a polytope

We introduce the greatest zonotopal summand of a polytope in this section. We also discuss some of its properties and
give an efficient algorithm to compute it for a polytope given as the set of its vertices. In the remainder of the section P is
a fixed d-dimensional polytope with n vertices.

Denote by E the set made up of the edges of P that are also summands of P and consider a segment e in E . We refer
to as e� the unique translate of e whose one vertex is incident to 0 and whose first non-zero coordinate of the other vertex
is positive. According to Lemma 2, any edge f of P in the intersection E ∩ 〈e〉P has the same length as e and, therefore, e�

and f � must coincide. In the remainder of the section, we consider the set

G = {e� : e ∈ E}.

Note that while G was a set of points in Section 4, here the elements of G are line segments. However, in both cases, G
describes the generators of a zonotope.

Definition 1. We call greatest zonotopal summand of P and denote by z(P) the Minkowski sum of the line segments in G .

By definition, z(P) is a zonotope. We show that z(P) is a summand of P and the greatest such zonotope.

Theorem 5. Consider a polytope P . There exists a polytope r(P) that does not admit a 1-dimensional summand such that the
Minkowski sum of z(P) with r(P) is equal to P .

Proof. Note that distinct line segments in G cannot be parallel. Hence, none of these segments admit a summand homo-
thetic to another. Since each line segment in G is a summand of P , their Minkowski sum is necessarily a summand of P .
Therefore, there exists a polytope r(P) such that

P = z(P) + r(P). (7)

Now assume that r(P) has a 1-dimensional summand s. In this case, s is also a summand of P and, according to
Lemma 2, so are the shortest elements of 〈s〉P . Let e be a shortest element of 〈s〉P . By construction, e� must belong to G
and is therefore a generator of z(P). According to (7), e� + s is then a summand of P . However, by Lemma 2, e� + s cannot
be longer than e, proving that s cannot be a summand of r(P) in the first place. �
Corollary 1. If P admits a zonotope Z as a summand, then z(P) necessarily also admits Z as a summand.

Proof. According to Theorem 5,

P = z(P) + r(P),

where r(P) does not admit a 1-dimensional summand. Therefore, if a zonotope is a summand of P , then all of its generators
must be summands of z(P). Hence, that zonotope is itself a summand of z(P). �
8

A. Deza and L. Pournin Computational Geometry: Theory and Applications 100 (2022) 101809
Recall that n denotes the number of vertices of P . The edges of P are quadratically-many in n and, as shown in Section 2
they can all be computed in polynomial time in n, d, and the binary size L required to store all the vertices of P . It turns
out that the vertex set of the Minkowski sum of P with a line segment can also be computed in polynomial time in n, d,
and L. In fact, we have the following more general observation.

Remark 1. Consider two finite subsets A and B of Rd . According to Theorem 1, the graph of conv(A) + conv(B) can be
computed in polynomial time in |A||B|, d, and the number of bits required to store the points in A and in B. Indeed, this
amounts to compute the graph of the convex hull of A +B, a subset of at most |A||B| points of Rd .

As a consequence of this remark, the set G of the generators of z(P) can be computed in polynomial time in n, d, and L
as well. Algorithm 2 is a polynomial time algorithm in n, d, and L that not only computes G , but also the vertex set of r(P).
This vertex set is denoted by W in the algorithm. The vertex set of P , denoted by V , is the only input of the algorithm.
Algorithm 2 is split in two parts. The first part, from Line 1 to Line 14 computes a set R of candidates for membership
in G . In other words, R admits G as a subset. More precisely, R is obtained by selecting and then translating edges of P
such that no two of them are parallel. In addition, any such selected edge e is shortest in 〈e〉P . Note that the translation
takes place in Lines 8 and 11 where e� is stored in R instead of e. In this first part of the algorithm, a map μ : R →N is
also computed in Lines 6 and 11 such that μ(s) = |〈s〉P | for every segment s in R.

In the second part of Algorithm 2, from Line 15 to Line 26, W is initially equal to V and G to the empty set. The
segments in R that are summands of P are placed in G in Line 20 and subtracted from W by the loop in Lines 21
to 23. Lines 18 and 19 check whether a segment s in R is a summand of P using its Minkowski sum with conv(W)

instead of its Minkowski sum with P , allowing for some speedup. This is valid because during the execution of the
loop at Line 16, the 1-dimensional summands of P remain summands of conv(W) until they are found and subtracted
from W .

Let us explain how the subtraction, in Lines 21 to 23 of Algorithm 2, works. By construction, 0 is a vertex of every
segment in R. For any segment s in R, let s+ stand for the non-zero vertex of s. If the convex hull of W admits s as a
summand; that is, if it coincides with R + s for some polytope R , then W is naturally partitioned into the points that are
vertices of R (because they are the Minkowski sum of a vertex of R with 0) and the points equal to the sum of a vertex
of R with s+ . The latter subset is precisely made up of the points in W that are further displaced by another s+ when the
vertex set X of conv(W) + s+ is computed in Line 18. Therefore, in order to recover the vertex set of R , one only needs to
subtract s+ from any point in W\X , which is done in Line 22, and to keep all the other points in W .

Algorithm 2: Computing G and W from V .

1 R ← ∅
2 for every subset {x, y} of V such that x �= y do
3 E ← conv{x, y}
4 if e is an edge of P then
5 if some segment s in R is parallel to e then
6 μ(s) ← μ(s) + 1
7 if e is shorter than s then
8 s ← e�

9 end
10 else
11 R ← R ∪ {e�} and μ(e�) ← 1
12 end
13 end
14 end
15 W ← V and G ← ∅
16 for every segment s in R do
17 if μ(s) ≥ d then
18 Compute the vertex set X of conv(W) + s
19 if |X | = |W| then
20 G ← G ∪ {s}
21 for every point x in W\X do
22 Replace x in W by x − s+
23 end
24 end
25 end
26 end
27 Return G and W
9

A. Deza and L. Pournin Computational Geometry: Theory and Applications 100 (2022) 101809
As explained above, all the computations carried out by Algorithm 1 are polynomial and they are carried out at most a
quadratic number of times. In addition, we have seen in Section 4 that the vertex set of a zonotope can also be computed
from its generators in polynomial time. We therefore obtain the following.

Theorem 6. Consider a polytope P . The vertex sets of z(P) and r(P) can be computed in polynomial time in n, d, and the binary size
required to store all the vertices of P .

6. Deciding whether a polytope is a zonotope

Throughout this section, P is a fixed d-dimensional polytope with n vertices, just as in Section 5. Observe that, when P
is a zonotope, z(P) is a translate of P and r(P) shrinks to a single point. In particular, Algorithm 2 allows to decide whether
a polytope P is a zonotope: this will be the case when the set W of the vertices of r(P) returned by this algorithm is made
up of a single point. In order to solve this decision problem, we can give an alternative algorithm that terminates faster in
case the polytope is not a zonotope. Note that, however, the worst case complexity the same as that of Algorithm 2.

Just as Algorithm 2, Algorithm 3 takes as its only input the vertex set V of P . The algorithm returns 0 when P is not
a zonotope. When P is a zonotope, it coincides, up to translation, with z(P). In this case, Algorithm 3 returns the set G of
the generators of z(P). This algorithm consists in three parts. The first part, from Line 1 to Line 14 computes a set of line
segments that are candidate generators of P . Note that this set of line segments is already denoted G since, if P turns out
to be a zonotope, then this set is precisely the set of the generators of z(P). The computation of G in Algorithm 3 is very
similar to the computation of R in Algorithm 2, except that the algorithm terminates in Line 7 if it finds two parallel edges
of P of different lengths. The map μ : G →N such that, for any segment s in G , μ(s) = |〈s〉P | is computed in Lines 9 and
11 like the map μ :R →N is in Algorithm 2.

In the second part of Algorithm 3, from Line 15 to Line 19, every line segment in G is checked, and the algorithm
terminates in Line 17 if, for such a segment s, μ(s) is less than 2d−1. Indeed according to Lemma 3, P cannot be a zonotope
in this case. In the third part of the algorithm, from Line 20 to Line 25, the vertex sets of the Minkowski sums of P with
the line segments contained in G are computed, and the algorithm terminates in Line 23 if for such a segment s, P does
not have the same number of vertices than its Minkowski sum with s.

Observe that, if Algorithm 3 does not return 0 (in Lines 7, 17, or 23) then, for every edge e of P , all of the line segments
contained in 〈e〉P are translates of e. Moreover, in this case every edge of P is a summand of P because any translate of a
summand of P remains a summand of P . Therefore, the set G returned by Algorithm 3 in Line 26 is indeed the set of the
generators of z(P). As a consequence, P is a zonotope.

Finally, observe that a zonotope is always centrally-symmetric and, therefore, has an even number of vertices. This very
simple test can be done at the beginning of the algorithm to allow for some further speedup.

Algorithm 3: Deciding whether P is a zonotope.

1 G ← ∅
2 for every subset {x, y} of V such that x �= y do
3 e ← conv{x, y}
4 if e is an edge of P then
5 if some segment s in G is parallel to E then
6 if e and s have different lengths then
7 Return 0
8 end
9 μ(s) ← μ(s) + 1

10 else
11 G ← G ∪ {e�} and μ(e�) ← 1
12 end
13 end
14 end
15 for every segment s in G do
16 if μP (s) < 2d−1 then
17 Return 0
18 end
19 end
20 for every segment s in G do
21 Compute the vertex set of P + s
22 if the number of vertices of P and P + s is different then
23 Return 0
24 end
25 end
26 Return G
10

A. Deza and L. Pournin Computational Geometry: Theory and Applications 100 (2022) 101809
Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Acknowledgement

The authors thank the anonymous referees for providing valuable comments and suggestions.

References

[1] T. Illés, T. Terlaky, Pivot versus interior point methods: pros and cons, Eur. J. Oper. Res. 140 (2002) 170–190.
[2] D. Avis, D. Bremner, R. Seidel, How good are convex hull algorithms?, Comput. Geom. 7 (1997) 265–301.
[3] D. Avis, K. Fukuda, A pivoting algorithm for convex hulls and vertex enumeration of arrangements and polyhedra, Discrete Comput. Geom. 8 (1992)

295–313.
[4] F. Preparata, M. Shamos, Computational Geometry: an Introduction, Springer, 1985.
[5] J. Block, S. Weinberger, Aperiodic tilings, positive scalar curvature, and amenability of spaces, J. Am. Math. Soc. 5 (1992) 907–918.
[6] A. Deza, G. Manoussakis, S. Onn, Primitive zonotopes, Discrete Comput. Geom. 60 (2018) 27–39.
[7] S.C. Gutekunst, K. Mészáros, T.K. Petersen, Root cones and the resonance arrangement, Electron. J. Comb. 28 (2021) P1.12.
[8] M. Melamed, S. Onn, Convex integer optimization by constantly many linear counterparts, Linear Algebra Appl. 447 (2014) 88–109.
[9] D. Avis, K. Fukuda, Reverse search for enumeration, Discrete Appl. Math. 65 (1992) 21–46.

[10] H. Edelsbrunner, J. O’Rourke, R. Seidel, Constructing arrangements of lines and hyperplanes with applications, SIAM J. Comput. 15 (1986) 341–363.
[11] A. Deza, L. Pournin, Diameter, decomposability, and Minkowski sums of polytopes, Can. Math. Bull. 62 (2019) 741–755.
[12] M. Kallay, Decomposability of polytopes, Isr. J. Math. 41 (1982) 235–243.
[13] W. Meyer, Indecomposable polytopes, Trans. Am. Math. Soc. 190 (1974) 77–86.
[14] K. Przesławski, D. Yost, Decomposability of polytopes, Discrete Comput. Geom. 39 (2008) 460–468.
[15] G.C. Shephard, Decomposable convex polyhedra, Mathematika 10 (1963) 89–95.
[16] M. Grötschel, L. Lovász, A. Schrijver, Geometric Algorithms and Combinatorial Optimization, Algorithms and Combinatorics, vol. 2, Springer, 1993.
[17] K. Clarkson, More output-sensitive geometric algorithms, in: FOCS 1994, 35th Annual IEEE Symposium on Foundations of Computer Science, 1994,

pp. 695–702.
[18] K. Fukuda, Polyhedral computation, ETH research collection, Zürich, Switzerland, https://www.research -collection .ethz .ch /bitstream /handle /20 .500 .

11850 /426218 /PolyCompBook20200829 .pdf, 2020.
11

http://refhub.elsevier.com/S0925-7721(21)00065-1/bibDC522BC9CA4C864520CCB2ADDDB9AD7As1
http://refhub.elsevier.com/S0925-7721(21)00065-1/bib81CF023E98F39F9462A97FCB22EAB9CCs1
http://refhub.elsevier.com/S0925-7721(21)00065-1/bibC671F3FF1B130FFE019E603A43630832s1
http://refhub.elsevier.com/S0925-7721(21)00065-1/bibC671F3FF1B130FFE019E603A43630832s1
http://refhub.elsevier.com/S0925-7721(21)00065-1/bib6E940CB3D9250CFADD551450FED7EB24s1
http://refhub.elsevier.com/S0925-7721(21)00065-1/bibE2B147757C81DBB489AF36DACE8DFC84s1
http://refhub.elsevier.com/S0925-7721(21)00065-1/bibEF0F05C3F46B23A6C1F20830E538EFDCs1
http://refhub.elsevier.com/S0925-7721(21)00065-1/bib62F558AFC96EE605C84FD3339648060Es1
http://refhub.elsevier.com/S0925-7721(21)00065-1/bib0F9963431548DFCB3BDB7F4033E8D798s1
http://refhub.elsevier.com/S0925-7721(21)00065-1/bibC20262C33C8EB0D6FA37FC57155C0E86s1
http://refhub.elsevier.com/S0925-7721(21)00065-1/bib9E46572015B2C6A044F571A06C2E5E38s1
http://refhub.elsevier.com/S0925-7721(21)00065-1/bib03C01A5D5AF001CE373D4DBA3786B9AFs1
http://refhub.elsevier.com/S0925-7721(21)00065-1/bib69449840B31FEC5FEAA3DB48983912CDs1
http://refhub.elsevier.com/S0925-7721(21)00065-1/bib24BE15986070C7600AC25903D1A674F6s1
http://refhub.elsevier.com/S0925-7721(21)00065-1/bibC511C4DF98327F330E1D9692D21B724Fs1
http://refhub.elsevier.com/S0925-7721(21)00065-1/bibE681D3A25596042A452CB4BABCBF6721s1
http://refhub.elsevier.com/S0925-7721(21)00065-1/bibEBE0891E824D9507912F2D103FB854F4s1
http://refhub.elsevier.com/S0925-7721(21)00065-1/bib97794BEE6061B7C6E12D7FAC73633F9Fs1
http://refhub.elsevier.com/S0925-7721(21)00065-1/bib97794BEE6061B7C6E12D7FAC73633F9Fs1
https://www.research-collection.ethz.ch/bitstream/handle/20.500.11850/426218/PolyCompBook20200829.pdf
https://www.research-collection.ethz.ch/bitstream/handle/20.500.11850/426218/PolyCompBook20200829.pdf

	A linear optimization oracle for zonotope computation
	1 Introduction
	2 A linear optimization oracle
	3 Combinatorial properties of Minkowski additions
	4 An efficient algorithm to compute zonotopes
	5 The greatest zonotopal summand of a polytope
	6 Deciding whether a polytope is a zonotope
	Declaration of competing interest
	Acknowledgement
	References

