On the Skeleton of the Dual Cut Polytope

ANTOINE DEZA AND MICHEL DEZA

ABSTRACT. The cut polytope is the \(\binom{n}{2} \)-dimensional convex polytope generated by all cuts of the complete graph on \(n \) nodes. One of the applications of the cut polytope, the polyhedral approach to the maximum cut problem, leads to the study of its facets which are known only up to \(n = 7 \) where they number 116 764. For \(n \leq 7 \), we describe the skeleton of the dual of the cut polytope, in particular, we give its adjacency relations and diameter. We also give similar results for a relative of the cut polytope, the cut cone, and new results on the size of the facets of the cut polytope.

1. Introduction

We first recall the definitions of the cut polytope \(\text{Cut}P_n \) and its relative the cut cone \(\text{Cut}_n \). Then we present some applications in combinatorial optimization and some geometric and combinatorial properties of the cut polytope.

Given a subset \(S \) of \(V_n = \{1, 2, \ldots, n\} \), the cut determined by \(S \) consists of the pairs \((i, j) \) of elements of \(V_n \) such that exactly one of \(i, j \) is in \(S \). \(\delta(S) \) denotes both the cut and its incidence vector in \(\mathbb{R}^{\binom{n}{2}} \); that is, \(\delta(S)_{ij} = 1 \) if exactly one of \(i, j \) is in \(S \) and 0 otherwise for \(1 \leq i < j \leq n \). By abuse of language, we use the term cut for both the cut itself and its incidence vector. The cut polytope \(\text{Cut}P_n \) is the convex hull of all \(2^{n-1} \) cuts, and the cut cone \(\text{Cut}_n \) is the conic hull of all \(2^{n-1} - 1 \) nonzero cuts.

Those polyhedra were considered by many authors, see \([2, 5, 8, 10-16]\) and references there. One of the motivations for the study of the cut polytope and cut cone comes from their applications in combinatorial optimization, see for instance \([11]\). Given a graph \(G = (V_n, E) \) and nonnegative weight \(w_e, e \in E \), assigned to its edges, the max-cut problem consists of finding a cut \(\delta(S) \) whose weight \(\sum_{e \in \delta(S)} w_e \) is as large as possible. By setting \(w_e = 0 \) if \(e \) is not an edge of \(G \), we can consider the complete graph on \(V_n \). Then the max-cut problem

1991 Mathematics Subject Classification. Primary 52B05, 52B12; Secondary 05C12, 05C99.
can be stated as a linear programming problem over the cut polytope $\text{Cut}P_n$ as follows:

$$\begin{align*}
\max & \quad w^T \cdot x \\
\text{subject to} & \quad x \in \text{Cut}P_n.
\end{align*}$$

This polyhedral approach to the max-cut problem leads to the study of the facets of the cut polytope $\text{Cut}P_n$.

$\text{Cut}P_n$ is a $\binom{n}{2}$-dimensional 0–1 polytope with 2^{n-1} vertices. The polytope $\text{Cut}P_3$ is combinatorially equivalent to the tetrahedron and $\text{Cut}P_4$ is combinatorially equivalent to the 6-dimensional cyclic polytope with 8 vertices. More generally, $\text{Cut}P_n$ is a 3-neighbourly polytope [14]. Another remarkable feature of the cut polytope $\text{Cut}P_n$ is the high number of isometric symmetries it enjoys. The symmetry group of the cut polytope $\text{Is}P_n$ is induced, see [8], by permutations on $V_n = \{1, \ldots, n\}$ and switching reflections which were introduced in [2, 5]. Given a cut $\delta(S)$ and a facet F induced by the inequality $v \cdot x \leq v_0$, the switching reflection of F by the cut $\delta(S)$ is the facet induced by the inequality $v^S \cdot x \leq v_0 - v \cdot \delta(S)$, where $v^S_{ij} = -v_{ij}$ if $(i, j) \in \delta(S)$ and $v^S_{ij} = v_{ij}$ otherwise. The group $\text{Is}(\text{Cut}P_n)$ is isomorphic to $\text{Aut}(\square_n)$, the automorphism group of the folded n-cube. We recall that the folded n-cube is the graph whose vertices are the partitions of $\{1, \ldots, n\}$ into two subsets, two partitions being adjacent when their common refinement contains a set of size one [3]. The symmetries of $\text{Cut}P_n$ preserve adjacency and linear independence. Throughout this paper we use the fact that the facets of $\text{Cut}P_n$ are partitioned into orbits of its symmetry group, that is, into classes of facets equivalent under permutation or switching.

The paper is organized as follows. In §2 we present some results on the facets of the cut polytope. Then in §3 and §4, we describe the skeleton of the dual cut polytope Cut^*P_n for $n \leq 7$, respectively the skeleton of the dual cut cone Cut^*_n for $n \leq 6$. In §5, we give some results and conjectures on the size and the adjacencies of the facets of the $\text{Cut}P_n$. A general reference for the graph theory used in this paper is [3].

2. Facets of the Cut Polytope

Even if the determination of all the facets of the cut polytope $\text{Cut}P_n$ and the cut cone Cut_n for any n seems to be hopeless, a wide range of facets has been already found. In particular, they are all known for $n \leq 7$, see [1, 4, 5, 10, 15]. Since it turns out that the facets of the cut polytope $\text{Cut}P_n$ are switchings of the facets of the cut cone Cut_n, see [2], it is enough to determine all the facets of Cut_n to obtain all the facets of $\text{Cut}P_n$.

To ease the notation we define the following two functions of $x \in R^{n\choose 2}$. For $b = (b_1, \ldots, b_m) \in N^m$, $m \leq n$, and C a cycle with nodeset a subset of $\{1, \ldots, n\}$:
ON THE SKELETON OF THE DUAL CUT POLYTOPE

\[Q(b) \cdot x = \sum_{1 \leq i < j \leq n} b_i b_j x_{ij} \]

and \[K(C) \cdot x = \sum_{(ij) \in C} x_{ij} \]

With this notation, the following 11 inequalities define facets of the cut polytope \(\text{Cut}P_n \) for \(n \geq m \):

1. \[Q(1,1,1) \cdot x \leq 2. \]
2. \[Q(1,1,1,1) \cdot x \leq 6. \]
3. \[Q(2,1,1,1,1) \cdot x \leq 12. \]
4. \[Q(1,1,1,1,1) \cdot x \leq 12. \]
5. \[Q(2,2,1,1,1,1) \cdot x \leq 20. \]
6. \[Q(3,2,2,1,1,1) \cdot x - K(1,2,3) \cdot x \leq 28. \]
7. \[Q(3,1,1,1,1,1) \cdot x \leq 20. \]
8. \[Q(1,1,1,1,2,1,1) \cdot x - \sum_{i=1,3,5,6} x_{i7} - \sum_{i=2,4,5,7} x_{i6} \leq 12. \]
9. \[Q(1,1,1,1,1,1) \cdot x - K(1,2,3,4,5) \cdot x \leq 10. \]
10. \[Q(1,1,1,1,1,1,1) \cdot x - K(1,\ldots,7) \cdot x - 2(x_{2,5} + x_{2,7} + x_{4,7}) \leq 6. \]
11. \[Q(2,2,1,1,1,1,1) \cdot x - K(1,2,3,4) \cdot x \leq 18. \]

For \(m \leq n \), let \(F^n_i \) denote the facet of \(\text{Cut}P_n \) induced by the inequality \((i)\), and \(O^n_i \) denote the orbit of \(F^n_i \), that is, the class of facets of \(\text{Cut}P_n \) which are equivalent to \(F^n_i \) under permutation and switching. For computational purpose we choose the above 11 representatives \(F^n_i \) such that the right hand side of the inequality \((i)\) is maximal. It turns out that, up to permutation, they are unique such representatives of \(O^n_1 \ldots O^n_{11} \) except for \(O^n_{10} \) which contains two nonzero switchings of \(F^n_{10} \) with right hand side equal to 6. The 16 facets of \(\text{Cut}P_4 \) form the orbit \(O^4_1 \), the 56 facets \(\text{Cut}P_5 \) are partitioned into the 2 orbits \(O^5_1 \) and \(O^5_2 \), the 368 facets of \(\text{Cut}P_6 \) are partitioned into the 3 orbits \(O^6_1, O^6_2 \) and \(O^6_3 \), and the 116 764 facets of \(\text{Cut}P_7 \) are partitioned into the 11 orbits \(O^7_1, O^7_2,\ldots, O^7_{11} \).

Before describing \(\Omega_n \), the skeleton of the dual cut polytope, for \(n \leq 7 \) in the next section, we present an equality found by Michel Deza, Martin Grötschel and Monique Laurent relating the number of facets of the cut polytope \(\text{Cut}P_n \) and the cut cone \(\text{Cut}_n \):

Lemma 2.1. For any facet \(F \) containing the origin, with \(|F| \) denoting the size of \(F \), that is the number of cuts belonging to \(F \), we have:

\[|O(F)| \cdot |F| = |O(F)_{in \ \text{Cut}_n}| \cdot 2^{n-1} \]
PROOF. Let \(\{F_1, \ldots, F_m\} \) be an ordering of \(O(F) \) and \(b_i \delta(S) = 1 \) if the cut \(\delta(S) \in F_i \) and 0 otherwise, then we have:

\[
\sum_{i,S} b_i \delta(S) = \sum_S (\sum_i b_i \delta(S)) = \sum_S (\sum_i b_i) = \sum_S (|O(F)_{in \text{ Cut}_n}|) = |O(F)_{in \text{ Cut}_n}| \cdot 2^{n-1},
\]

and also,

\[
\sum_{i,S} b_i \delta(S) = \sum_i (\sum_S b_i) = \sum_i (|F_i|) = \sum_i (|F|) = |O(F)| \cdot |F|,
\]

which completes the proof.

3. Skeleton of the Dual Cut Polytope for \(n \leq 7 \)

Any pair of facets of \(\text{OutP}_n \) are adjacent in \(\Omega_n \), the skeleton of the dual cut polytope \(\text{CutP}_n^* \), if and only if their intersection is a face of codimension 2. For \(n \leq 7 \), the size of the orbits of the facets in the cut polytope \(\text{CutP}_n \) was deduced from their corresponding size in the cut cone \(\text{Cut}_n \) found in [12] using Lemma 2.1. Since permutations and switching reflections preserve adjacency and linear independence, we can describe the properties of facets of \(\text{CutP}_n \) by considering a representative facet of each orbit \(O_i^n \), we choose the facets \(F_i^n \) for \(n \leq 7 \).

3.1. Skeleton of \(\text{CutP}_4^* \). The polytope \(\text{CutP}_4 \) is combinatorially equivalent to the 6-dimensional cyclic polytope with 8 vertices. A pair of facets of \(\text{CutP}_4 \) are adjacent in \(\Omega_4 \) if and only if they are non-conflicting. Two facets are called conflicting if there exists a pair \(i,j \) such that the two facets have nonzero coordinates of distinct signs at the position \(i,j \). For example, the facets induced by the inequalities \(Q(1,1,1) \cdot x \leq 2 \) and \(Q(-1,1,1) \cdot x \leq 0 \) are conflicting at pair \((1,2) \). The notion of conflicting facets was introduced in [16, 17]. The graph \(\Omega_4 \) formed by the 16 facets of \(\text{CutP}_4 \), is the \((4 \times 4) \)-grid, see [6], that is, the line graph \(L(K_{4,4}) \) which is also \(L(\square_4) \). This graph is a strongly regular graph with parameters \(v = 16, k = 6, \lambda = 2 \) and \(\mu = 2 \), where \(v \) denotes the number of nodes, \(k \) the valency of each node, \(\lambda \) the number of nodes adjacent to two adjacent nodes and \(\mu \) the number of nodes adjacent to two non-adjacent nodes. The diameter \(\delta(\Omega_4) \) of \(\text{CutP}_4^* \), is 2. Since \(\text{CutP}_4 \) is simplicial, all of its faces, including the 16 facets and 48 faces of codimension 2, are simplices.

3.2. Skeleton of \(\text{CutP}_5^* \). The 10-dimensional polytope \(\text{CutP}_5 \) has 16 vertices and 56 facets which are partitioned into the 2 orbits \(O_1^5 \) and \(O_2^5 \). As for \(\text{CutP}_4 \), a pair of facets of \(\text{CutP}_5 \) are adjacent in \(\Omega_5 \) if and only if they are non-conflicting. In Figure 1 we give the adjacency table of \(\Omega_5 \), \(V_F \) the valency and \(|F| \) the size
ON THE SKELETON OF THE DUAL CUT POLYTOPE

<table>
<thead>
<tr>
<th></th>
<th>O^5_1</th>
<th>O^5_2</th>
<th>V_F</th>
</tr>
</thead>
<tbody>
<tr>
<td>$F \in O^5_1$</td>
<td>24</td>
<td>4</td>
<td>28</td>
</tr>
<tr>
<td>$F \in O^5_2$</td>
<td>10</td>
<td>0</td>
<td>10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>i</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>$</td>
<td>O^5_i</td>
<td>$</td>
</tr>
<tr>
<td>$</td>
<td>F^5_i</td>
<td>$</td>
</tr>
</tbody>
</table>

Figure 1. Adjacencies in the skeleton of $CutP^*_5$

of the facets, and $|O^5_i|$ the size of the orbits of $CutP_5$, see [6]. For example, in the left column of the upper table in Figure 1, 10 means that any facet F of O^5_2 is adjacent to 10 facets of O^5_1. The neighbours of F^5_2 are the 10 permutations of F^5_1. The diameter $\delta(\Omega_5)$ of $CutP^*_5$ is 2. The simplex facets of $CutP_5$ are all the 16 facets of the orbit O^5_2 and, among its 640 faces of codimension 2, exactly 400 are simplices.

3.3. Skeleton of $CutP^*_6$

The 15-dimensional polytope $CutP_6$ contains 32 vertices and 368 facets which are partitioned into the 3 orbits O^6_1, O^6_2 and O^6_3. Using switching reflections and permutations it is only tedious but easy to obtain, as for $CutP_5$, the tables given in Figure 2. The simplex facets of $CutP_6$ are all the 192 facets of the orbit O^6_3.

<table>
<thead>
<tr>
<th></th>
<th>O^6_1</th>
<th>O^6_2</th>
<th>O^6_3</th>
<th>V_F</th>
</tr>
</thead>
<tbody>
<tr>
<td>$F \in O^6_1$</td>
<td>58</td>
<td>60</td>
<td>24</td>
<td>142</td>
</tr>
<tr>
<td>$F \in O^6_2$</td>
<td>50</td>
<td>10</td>
<td>10</td>
<td>70</td>
</tr>
<tr>
<td>$F \in O^6_3$</td>
<td>10</td>
<td>5</td>
<td>0</td>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>i</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>$</td>
<td>O^6_i</td>
<td>$</td>
<td>80</td>
</tr>
<tr>
<td>$</td>
<td>F^6_i</td>
<td>$</td>
<td>24</td>
</tr>
</tbody>
</table>

Figure 2. Adjacencies in the skeleton of $CutP^*_6$

Corollary 3.1. $CutP_6$ has exactly 10 480 faces of codimension 2.

Proof. The number of faces of codimension 2 of a polytope is half of the total valency of the skeleton of its dual. Since we know the valency of all the 368 nodes of Ω_6, the result is a straightforward calculation. Moreover, one can check that exactly 4 800 of these faces of codimension 2 are simplices.

Corollary 3.2. The diameter $\delta(\Omega_6)$ of $CutP^*_6$ is 3.
PROOF. For any pair of facets F and F' of $CutP_6$ we have to find a path in Ω_6 of length shorter than 3. Since the diameter of the restriction of Ω_6 to O_1^6 is 2, see [6], we can assume that F and F' do not belong to O_1^6. If they both belong to O_2^6 then, since they both have more than half the size of O_1^6 neighbors in O_2^6, we can find a facet in O_1^6 adjacent to F and F'. If $F \in O_2^6$ and $F' \in O_1^6$, then one can easily check that the facet induced by either the inequality $Q(1,0,0,0,1,1) \cdot x \leq 2$ or the inequality $Q(0,0,1,1,1) \cdot x \leq 2$ is adjacent to F and F'. If they both belong to O_2^6, we can suppose without loss of generality that F, respectively F', is the facet induced by the inequality $Q(2,1,1,1,1,1) \cdot x \leq 2$, respectively the inequality $Q(-1,2,-1,1,1,1) \cdot x \leq 2$. Then one can check that F and F' have no common neighbor and that the facets G and G', respectively induced by the inequality $Q(1,0,0,1,1) \cdot x \leq 2$ and $Q(-1,1,1) \cdot x \leq 0$, are adjacent and respectively adjacent to F and F'.

REMARK 3.3. While the restriction of Ω_6 to the facets of O_1^6 forms a graph of diameter 2, see [6], its restriction to the facets of O_2^6 forms a graph of diameter 3 with parameters $v = 96$, $k = 10$, $\lambda = 4$, and $\mu \in \{0,1,2\}$, which is locally $K_{5,5}$. More generally, the inequality $\sum_{1 \leq i < j \leq 2t+1} x_{ij} \leq t(t + 1)$ induces a facet F_t of $CutP_{2t+2}$ and the facets belonging to the orbit O_t of F_t form a graph which is locally the complement of $K_{2t+1,2t+1}$; two facets of O_t being adjacent if and only if they are non-conflicting.

3.4 Skeleton of $CutP_7^*$

$$
\begin{array}{cccccccccccc}
\text{Facets} & O_1^7 & O_2^7 & O_3^7 & O_4^7 & O_5^7 & O_6^7 & O_7^7 & O_8^7 & O_9^7 & O_{10}^7 & O_{11}^7 & V_F \\
F \in O_1^7 & 112 & 264 & 672 & 64 & 240 & 432 & 48 & 3456 & 1728 & 2304 & 2112 & 11432 \\
F \in O_2^7 & 110 & 180 & 100 & 4 & 40 & 120 & 0 & 840 & 240 & 480 & 480 & 2594 \\
F \in O_3^7 & 70 & 25 & 10 & 2 & 10 & 20 & 2 & 60 & 0 & 0 & 40 & 239 \\
F \in O_4^7 & 140 & 21 & 42 & 0 & 21 & 0 & 0 & 252 & 0 & 420 & 896 \\
F \in O_5^7 & 25 & 10 & 10 & 1 & 10 & 0 & 0 & 0 & 0 & 20 & 76 \\
F \in O_6^7 & 9 & 6 & 4 & 0 & 2 & 0 & 0 & 0 & 0 & 0 & 21 \\
F \in O_7^7 & 15 & 0 & 6 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 21 \\
F \in O_8^7 & 12 & 7 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 21 \\
F \in O_9^7 & 15 & 5 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 21 \\
F \in O_{10}^7 & 14 & 7 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 21 \\
F \in O_{11}^7 & 11 & 6 & 2 & 1 & 1 & 0 & 0 & 0 & 0 & 21 \\
\end{array}
$$

$$
\begin{array}{cccccccccccc}
\text{Facets} & O_1^7 & O_2^7 & O_3^7 & O_4^7 & O_5^7 & O_6^7 & O_7^7 & O_8^7 & O_9^7 & O_{10}^7 & O_{11}^7 & V_F \\
F \in O_1^7 & 112 & 264 & 672 & 64 & 240 & 432 & 48 & 3456 & 1728 & 2304 & 2112 & 11432 \\
F \in O_2^7 & 110 & 180 & 100 & 4 & 40 & 120 & 0 & 840 & 240 & 480 & 480 & 2594 \\
F \in O_3^7 & 70 & 25 & 10 & 2 & 10 & 20 & 2 & 60 & 0 & 0 & 40 & 239 \\
F \in O_4^7 & 140 & 21 & 42 & 0 & 21 & 0 & 0 & 252 & 0 & 420 & 896 \\
F \in O_5^7 & 25 & 10 & 10 & 1 & 10 & 0 & 0 & 0 & 0 & 20 & 76 \\
F \in O_6^7 & 9 & 6 & 4 & 0 & 2 & 0 & 0 & 0 & 0 & 0 & 21 \\
F \in O_7^7 & 15 & 0 & 6 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 21 \\
F \in O_8^7 & 12 & 7 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 21 \\
F \in O_9^7 & 15 & 5 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 21 \\
F \in O_{10}^7 & 14 & 7 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 21 \\
F \in O_{11}^7 & 11 & 6 & 2 & 1 & 1 & 0 & 0 & 0 & 0 & 21 \\
\end{array}
$$

Figure 3. Adjacencies in the skeleton of $CutP_7^*$
ON THE SKELETON OF THE DUAL CUT POLYTOPE

The 21-dimensional polytope Cut$_7$ contains 64 vertices and 116 764 facets which are partitioned into the 11 orbits O_1^7, O_2^7 \ldots O_{11}^7. The adjacencies for the 6 orbits of simplex facets O_6^7, O_7^7 \ldots O_{11}^7 could be derived from the list of facets of the simplex facets of Cut$_7$ given in [13]. The adjacencies for the orbit O_1^7 and O_4^7 can be deduced from the results given respectively in [6] and [7], the remaining adjacencies were checked by computer. The complete adjacency table is given in Figure 3. The simplex facets of Cut$_7$ are all the 113 536 facets of the orbits O_6^7, O_7^7 \ldots O_{11}^7. The local graph induced by a simplex facet F of Cut$_7$ is the clique K_{21} for $F \in O_7^7$, O_9^7 or O_{10}^7, $K_{21} - K_2$ for $F \in O_6^7$ or O_{11}^7, and $K_{21} - K_3$ for $F \in O_8^7$.

Corollary 3.4. Cut$_7$ has exactly 2 668 512 faces of codimension 2.

Proof. As for Cut$_6$, since we know the valencies of Ω_7, the result is a straightforward calculation. Moreover, using a computer, we found that exactly 2 438 016 of these faces of codimension 2 are simplices.

Corollary 3.5. The diameter $\delta(\Omega_7)$ of Cut$_7^n$ satisfies: $3 \leq \delta(\Omega_7) \leq 4$.

Proof. The diameter of the restriction of Ω_7 to O_1^7 is 2, see [6]. Then, since every facet of Cut$_7$ is adjacent to a facet of O_1^7, we have $\delta(\Omega_7) \leq 4$. The two facets, respectively induced by the inequality $Q(3, 1, 1, 1, 1, 1, 1) \cdot x \leq 20$ and $Q(-1, 3, -1, 1, 1, 1) \cdot x \leq 6$, having no common neighbour, we have $\delta(\Omega_7) \geq 3$.

Remark 3.6. It was conjectured in [6] that the facets of O_1^n form a dominating set in Ω_n, that is, every facet of the cut polytope is adjacent to a facet belonging to the orbit O_1^n. Since the diameter of the restriction of Ω_n to O_1^n is 2 [6], it would imply that the diameter of the dual cut polytope satisfies $\delta(\Omega_n) \leq 4$.

4. **Skeleton of the Dual Cut Cone for $n \leq 6$**

The results about Ω'_n, the skeleton of the dual cut cone Cut$_n^*$, are similar to the ones concerning the cut polytope. The differences result from the fact that the symmetry group of the cut cone Cut$_n$ is not fully determined. Clearly all permutations of $\{1, \ldots, n\}$ are isometric symmetries of Cut$_n$, that is, we have $Sym(n) \subset Is(Cut_n)$, and the equality probably holds.

Then, as for the cut polytope, we can use the fact that the facets of the cut cone are partitioned into the orbits of $Sym(n)$. We choose the 4 representatives G_1^n, G_2^n, G_3^n and $G_3'n$, defined by the following inequalities, and denote by U_i^n the orbit of the facet G_i^n,

\begin{align*}
(1) & \quad Q(-1, 1, 1) \cdot x \leq 0. \\
(2) & \quad Q(-1, -1, 1, 1, 1) \cdot x \leq 0. \\
(3) & \quad Q(-2, -1, 1, 1, 1) \cdot x \leq 0. \\
(3') & \quad Q(2, 1, 1, -1, -1) \cdot x \leq 0.
\end{align*}
Skeleton of Cut_4^* and Cut_5^*. The graph Ω_4 formed by the 12 facets of Cut_4 is the (4×3)-grid, see [6], that is, the line graph $L(K_{4,3})$. This graph is a regular graph with parameters $v = 12$, $k = 5$, $\lambda = 2$ or 1 and $\mu = 2$. The diameter of Cut_4^* is 2. The 40 facets of Cut_5 are partitioned into the 2 orbits U_1^5 and U_2^5. The adjacency table of Ω_5, the valency and size of the facets, and the size of the orbits Cut_5 are given in Figure 4. $\delta(\Omega_5) = 2$ and Cut_5 has 375 faces of codimension 2. The simplex facets of Cut_5 are all the 10 facets of the orbit U_2^5.

Skeleton of Cut_6^*. The 210 facets of Cut_6 are partitioned into the 4 orbits U_1^6, U_2^6, U_3^6 and $U_{3'}^6$. The adjacencies of Ω_6 are given in Figure 5, $\delta(\Omega_6) = 3$ and Cut_6 has 5 190 faces of codimension 2. The simplex facets of Cut_6 are all the 90 facets of the orbits U_3^6 and $U_{3'}^6$.

<table>
<thead>
<tr>
<th>U_i^6</th>
<th>U_2^6</th>
<th>U_3^6</th>
<th>$U_{3'}^6$</th>
<th>V_F</th>
</tr>
</thead>
<tbody>
<tr>
<td>$G \in U_1^6$</td>
<td>45</td>
<td>39</td>
<td>5</td>
<td>9</td>
</tr>
<tr>
<td>$G \in U_2^6$</td>
<td>39</td>
<td>8</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>$G \in U_3^6$</td>
<td>10</td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$G \in U_{3'}^6$</td>
<td>9</td>
<td>5</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>i</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>3'</th>
</tr>
</thead>
<tbody>
<tr>
<td>$</td>
<td>U_i^6</td>
<td>$</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>$</td>
<td>G_i^6</td>
<td>$</td>
<td>23</td>
<td>19</td>
</tr>
</tbody>
</table>

Figure 5. Adjacencies in the skeleton of Cut_6^*

Remark 4.1. The 38 780 facets of Cut_7 are partitioned into 36 orbits of $\text{Sym}(7)$.

5. On the Shape of the Cut Polytope

In this section, we give a tight upper bound and some conjectures on the size and the adjacency of the facets of the cut polytope.
Lemma 5.1. Any facet F of the cut polytope satisfies $|F| \leq 3.2^{n-3}$ with equality if and only if $F \in O_n$.

Proof. Let F be a facet of $CutP_n$ induced by the inequality:

$$\sum_{1 \leq i < j \leq n} v_{ij} x_{ij} \leq a,$$

v_{kl} a nonzero coordinate of F, and $F(S)$ the value of the left hand side of (1) on the cut $\delta(S)$. With $S \cap \{i, j\} = \emptyset$, we have:

$$F(S \cup \{i\}) + F(S \cup \{j\}) - F(S) - F(S \cup \{i, j\}) = 2v_{ij} \neq 0.$$

This implies that no more than 3 of any such 4 cuts belong to F, and therefore that no facet contains more than $\frac{3}{4} 2^{n-1} = 3.2^{n-3}$ vertices. Reversely, let F be a facet of $CutP_n$ containing 3.2^{n-3} vertices. Without loss of generality, we can assume that a, the right hand side of (1) is 0. We first show that any facet F of $CutP_n$ has at least 3 nonzero coordinates. If F has only 2 nonzero coordinates, since $CutP_n$ lies in the positive orthant of IR_+^{n}, we can assume that F is induced by the inequality $v_{ij} - \alpha v_{kl} \leq 0$ with $\alpha \geq 1$. The point p with all coordinates equal to $\frac{1}{3}$, except $p_{kl} = \frac{1}{3\alpha}$, belongs to both the facet F and the relative interior of P, which is impossible. Then we prove that a facet F containing 3.2^{n-3} vertices has at most 3 nonzero coordinates. Let consider any 3 nonzero coordinates of F v_{ij}, v_{kl} and v_{st}. Suppose that the six indices i, j, k, l, s and t are distinct, that is, $|\{i, j, k, l, s, t\}| = 6$. In that case, we have:

(2) for $S \cap \{i, j\} = \emptyset$, $F(S \cup \{i\}) + F(S \cup \{j\}) - F(S) - F(S \cup \{i, j\}) = 2v_{ij} \neq 0$,

(3) for $S \cap \{k, l\} = \emptyset$, $F(S \cup \{k\}) + F(S \cup \{l\}) - F(S) - F(S \cup \{k, l\}) = 2v_{kl} \neq 0$,

(4) for $S \cap \{s, t\} = \emptyset$, $F(S \cup \{s\}) + F(S \cup \{t\}) - F(S) - F(S \cup \{s, t\}) = 2v_{st} \neq 0$.

Since F contains $3/4$ of the total number of vertices of $CutP_n$, exactly 3 terms of the left hand side of the equations (2), (3) or (4) are null. Suppose that v_{ij} and v_{kl} have the same sign (otherwise we consider v_{ij} and v_{st} or v_{kl} and v_{st}). Then the equations (2) with $S = \emptyset$ and (3) with $S = \{i\}$ imply that $F(\{i\})$ cannot be the only nonzero term of both the equations (2) and (3), that is $F(\{i\}) = 0$. In the same way, the equations (2) with $S = \{s\}$, respectively $S = \{t\}$ and $\{k, l\}$, and (3) with $S = \{i, s\}$, respectively $S = \{i, t\}$ and $\{j\}$, imply that $F(\{i, s\})$, respectively $F(\{i, t\})$ and $F(\{i, s, t\})$, is null, which contradicts the equation (4) with $S = \{i\}$. Similarly $|\{i, j, k, l, s, t\}| = 5$ or 4 also leads to a contradiction. Therefore F has exactly 3 nonzero coordinates v_{ij}, v_{ik} and v_{jk}. We have:

(5) for $S \cap \{i, j\} = \emptyset$, $F(S \cup \{i\}) + F(S \cup \{j\}) - F(S) - F(S \cup \{i, j\}) = 2v_{ij} \neq 0$,

(6) for $S \cap \{i, k\} = \emptyset$, $F(S \cup \{i\}) + F(S \cup \{k\}) - F(S) - F(S \cup \{i, k\}) = 2v_{ik} \neq 0$,

(7) for $S \cap \{j, k\} = \emptyset$, $F(S \cup \{j\}) + F(S \cup \{k\}) - F(S) - F(S \cup \{j, k\}) = 2v_{jk} \neq 0$.

Then, the equations (5) with $S = \{k\}$ and (6) with $S = \{j\}$ imply that $v_{ij} = v_{ik}$; (6) with $S = \emptyset$ and (7) with $S = \{i\}$ imply that $v_{ik} = -v_{jk}$. This means that F is the facet of O^n_1 induced by the inequality $x_{jk} - x_{ij} - x_{ik} \leq 0$.

Remark 5.2. The $4(n\choose3)$ facets of $\text{Cut}P_n$ belonging to O^n_1 contain 3.2^{n-3} cuts, that is $3/4$ of the total number of vertices of the cut polytope. Those facets are the extreme opposite of being simplices. We think that the shape of the cut polytope is essentially given by its non-simplex facets, in particular by the facets of O^n_1 (see Remark 3.6), and that the huge majority of the facets of $\text{Cut}P_n$ are simplices which only "polish" it. This belief is shared by designers of the cutting plane methods who hope that the "few nice" classes of facets they use will be sufficient to prove the optimality or provide excellent bounds, and that the facets they have no access to contribute very little to the computational behavior of such methods.

Conjecture 5.3. For $n \geq 5$, any two simplex facets of the cut polytope are not adjacent in Ω_n. It holds for $n \leq 7$.

Conjecture 5.4. The cut polytope $\text{Cut}P_n$ is asymptotically simplicial. In fact, more than 97% of the facets of $\text{Cut}P_7$ and 91% of its faces of codimension 2 are simplices.

Acknowledgements. The authors would like to thank Komei Fukuda who helped us to complete the computation of the valencies of Ω_7, the skeleton of $\text{Cut}P^*_7$.

References

15. V. P. Grishukhin, All facets of the cut cone C_n for $n = 7$ are known, European Journal of Combinatorics 11 (1990), 115–117.
17. M. Laurent, Graphic vertices of the metric polytope, Research report No. 91737-OR, Institut für Diskrete Mathematik, Universität Bonn.

Université de Paris-Sud, centre d’Orsay, 95 405 France

Current address: Tokyo Institute of Technology, Department of Information Sciences, Tokyo 152, Japan

E-mail address: deza@waka.c.u-tokyo.ac.jp

CNRS-LIENS, Ecole Normale Supérieure, 45 rue d’Ulm, Paris, France

E-mail address: deza@dmi.ens.fr