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On the Skeleton of the Dual Cut Polytope

ANTOINE DEZA AND MICHEL DEZA

ABSTRACT. The cut polytope is the (7)-dimensional convex polytope gen-
erated by all cuts of the complete graph on n nodes. One of the applications
of the cut polytope, the polyhedral approach to the maximum cut problem,
leads to the study of its facets which are known only up to n = 7 where
they number 116 764. For n < 7, we describe the skeleton of the dual of the
cut polytope, in particular, we give its adjacency relations and diameter.
‘We also give similar results for a relative of the cut polytope, the cut cone,
and new results on the size of the facets of the cut polytope.

1. Introduction .

We first recall the definitions of the cut polytope CutP, and its relative the
cut cone Cut,,. Then we present some applications in combinatorial optimization
and some geometric and combinatorial properties of the cut polytope.

Given a subset S of V,, = {1,2,...,n}, the cut determined by S consists of the
pairs (,7) of elements of V,, such that exactly one of 4, j is in S. §(5) denotes
both the cut and its incidence vector in JR(Z), that is, §(5);; = 1 if exactly one
of 4, jis in S and 0 otherwise for 1 <17 < j < n. By abuse of language, we use
the term cut for both the cut itself and its incidence vector. The cut polytope
CutP, is the convex hull of all 27~ cuts, and the cut cone COut,, is the conic hull
of all 2»~! — 1 nonzero cuts.

Those polyhedra were considered by many authors, see [2, 5, 8, 10-16] and
references there. One of the motivations for the study of the cut polytope and
cut cone comes from their applications in combinatorial optimization, see for
instance [11]. Given a graph G = (V,,, E) and nonnegative weight w., e € E,
assigned to its edges, the maz-cut problem consists of finding a cut 6(.S) whose
weight ) . 5(5) We is as large as possible. By setting w, = 0 if e is not an edge
of ‘G, we can consider the complete graph on V,,. Then the max-cut problem
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can be stated as a linear programming problem over the cut polytope CutP, as

follows:

max w’-z

z € CutP,.
This polyhedral approach to the max-cut problem leads to the study of the facets
of the cut polytope OutP,. »

CutP, is a (g)—dimensional 0—1 polytope with 27! vertices. The polytope
CutPs3 is combinatorially equivalent to the tetrahedron and Cut P, is combina-
torially equivalent to the 6-dimensional cyclic polytope with 8 vertices. More
generally, CutP, is a 3-neighbourly polytope [14]. Another remarkable feature
of the cut polytope CutP, is the high number of isometric symmetries it €enjoys.
The symmetry group of the cut polytope Is(CutP,) is induced, see [8], by per-
mutations on V,, = {1,...,n} and switching reflections which were introduced in
(2, 5]. Given a cut §(S) and a facet F induced by the inequality v -z < v, the
switching reflection of F' by the cut §(S) is the facet induced by the inequality
vz < vy —v-8(S), where Ufj = —uv;; if (¢,7) € 6(S) and Ufj = v;; otherwise.
The group I's(QutP,) is isomorphic to Aut(1,,), the automorphism group of the
folded n-cube. We recall that the folded n-cube is the graph whose vertices are
the partitions of {1,...,n} into two subsets, two partitions being adjacent when
their common refinement contains a set of size one [3]. The symmetries of CutP,
preserve adjacency and linear independence. Throughout this paper we use the
fact that the facets of CutP, are partitioned into orbits of its symmetry group,
that is, into classes of facets equivalent under permutation or switching.

The paper is organized as follows. In §2 we present some results on the facets
of the cut polytope. Then in §3 and §4, we describe the skeleton of the dual
cut polytope CutP; for n < 7, respectively the skeleton of the dual cut cone
Cuty, for n < 6. In §5, we give some results and conjectures on the size and the
adjacencies of the facets of the CutP,. A general reference for the graph theory
used in this paper is [3].

2. Facets of the Cut Polytope

Even if the determination of all the facets of the cut polytope CutP, and the
cut cone Cut, for any n seems to be hopeless, a wide range of facets has been
already found. In particular, they are all known for n < 7, see [1, 4, 5, 10, 15].
Since it turns out that the facets of the cut polytope CutP, are switchings of
the facets of the cut cone Cut,, see [2], it is enough to determine all the facets
of Cut,, to obtain all the facets of CutP,,.

'To ease the notation we define the following two functions of z € RG). For
b= (b1,...,bm) € IN™, m < n, and C a cycle with nodeset a subset of {1,...,n}:
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1<i<j<n
and K(C) - = E Tij

(i5)eC

With this notation, the following 11 inequalities define facets of the cut polytope
CutP,, for n > m:

(1) Q(1,1,1) -z < 2.

(2) Q(1,1,1,1,1) -z <6.

(3) Q(2,1,1,1,1,1) - z < 12.

(4) Q(1,1,1,1,1,1,1) - z < 12.

(5) Q(2,2,1,1,1,1,1) - = < 20.

(6) Q(3,2,2,1,1,1,1) -z — K(1,2,3) -z < 28.

(7) Q(3,1,1,1,1,1,1) - z < 20.

(8) QULLLL21L1) -z~ Y mr— Y <12
2=1,3,5,6 1=2,4,5,7

(9) Q(1,1,1,1,1,1,1) -z — K(1,2,3,4,5) - z < 10.

(10) Q(1,1,1,1,1,1,1) - 2—K(1,...,7) - 2—2(za5 + To 7 + T47) < 6.

(11) Q(2,2,1,1,1,1,1) -z — K(1,2,3,4) - z < 18.

For m < n, let F* denote the facet of CutP, induced by the inequality (),
and OF denote the orbit of F*, that is, the class of facets of QutP, which are
equivalent to F}* under permutation and switching. For computational purpose
we choose the above 11 representatives F* such that the right hand side of the
inequality (i) is maximal. Tt turns out that, up to permutation, they are unique
such representatives of O} ... 07 except for O, which contains two nonzero
switchings of F; with right hand side equal to 6. The 16 facets of CutP; form
the orbit Of, the 56 facets CQutPs are partitioned into the 2 orbits O and O3,
the 368 facets of Cut Ps are partitioned into the 3 orbits O%, O and Of, and the
116 764 facets of QutP; are partitioned into the 11 orbits O], OF, ..., o71,.

Before describing €2,,, the skeleton of the dual cut polytope, for n < 7 in the
next section, we present an equality found by Michel Deza, Martin Grotschel
and Monique Laurent relating the number of facets of the cut polytope CutP,
and the cut cone Cut,,:

LEMMA 2.1. For any facet F' containing the origin, with |F| denoting the size
of I, that 1s the number of cuts belonging to F', we have:

[OF)] - |F| = [O(F)in cut, |- 2"
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PrOOF. Let {F},...,F,} be an ordering of O(F) and b;s = 1 if the cut
6(S) € F; and 0 otherwise, then we have:

D bis =Y bis)=> O big)
7,S S 1 S 7
=Y (0FE)in cutal) = 10(F)in cut, | - 2771,
S

and also,

D bis =Y O bis)=> (IF]
0.8 s :

= 3 (F) = [0(F)]- |F|

which completes the proof.

3. Skeleton of the Dual Cﬁt Polytope for n < 7

Any pair of facets of CutP, are adjacent in {2,, the skeleton of the dual cut
polytope CutP}, if and only if their intersection is a face of codimension 2.
For n < 7, the size of the orbits of the facets in the cut polytope CutP, was
deduced from their corresponding size in the cut cone Cut,, found in [12] using
Lemma 2.1. Since permutations and switching reflections preserve adjacency
and linear independence, we can describe the properties of facets of CutP, by
considering a representative facet of each orbit O}, we choose the facets F;* for
n< 7.

3.1. Skeleton of QutPj. The polytope CutPy is combinatorially equivalent
to the 6-dimensional cyclic polytope with 8 vertices. A pair of facets of CutPy
are adjacent in {24 if and only if they are non-conflicting. Two facets are called
conflicting if there exists a pair 7, j such that the two facets have nonzero coor-
dinates of distinct signs at the position %, j. For example, the facets induced by
the inequalities Q(1,1,1) -z < 2 and Q(—1,1,1) - z < 0 are conflicting at pair
(1,2). The notion of conflicting facets was introduced in [16, 17]. The graph
Q4 formed by the 16 facets of CutPy, is the (4 x 4)-grid, see [6], that is, the
line graph L(K4 4) which is also L(13 4). This graph is a strongly regular graph
with parameters v = 16, £k = 6, A = 2 and pu = 2, where v denotes the number
of nodes, k the valency of each node, A the number of nodes adjacent to two
adjacent nodes and p the number of nodes adjacent to two non-adjacent nodes.
The diameter 6(24) of CutPy, is 2. Since CutP, is simplicial, all of its faces,
including the 16 facets and 48 faces of codimension 2, are simplices.

3.2. Skeleton of CutP;. The 10-dimensional polytope CutPs has 16 vertices
and 56 facets which are partitioned into the 2 orbits O3 and O3. As for QutPy, a
pair of facets of QutPs are adjacent in 25 if and only if they are non-conflicting.
In Figure 1 we give the adjacency table of 25, Vg the valency and |F| the size
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0} |03 | Vp
FeO}| 24| 4 | 28
Feo3|10| 0 |10

i 1| 2
|O?] | 40 | 16
[F?| |12 | 10

FIGURE 1. Adjacencies in the skeleton of Cut PS5

of the facets, and |O?| the size of the orbits of CutPs, see [6]. For example, in
the left column of the upper table in Figure 1, 10 means that any facet F of O3
is adjacent to 10 facets of OF. The neighbours of F¥y are the 10 permutations of
F?. The diameter 6(€2s) of CutPZ is 2. The simplex facets of CutPs are all the
16 facets of the orbit OF and, among its 640 faces of codimension 2, exactly 400
are simplices.

3.3. Skeleton of CutP;. The 15-dimensional polytope CutPs contains 32
vertices and 368 facets which are partitioned into the 3 orbits Of, Of and Of.
Using switching reflections and permutations it is only tedious but easy to obtain,
as for CutPs, the tables given in Figure 2. The simplex facets of CutFs are all
the 192 facets of the orbit Of.

o$ | 05| 0% | Ve
FeOf | 58|60 | 24 | 142
FeOf |50 | 10| 10 | 70
FeOf|10]| 5| 0 |15

i 112 3
|O¢| 80 | 96 | 192
|FS| | 24|20 15

FIGURE 2. Adjacencies in the skeleton of Cut P

COROLLARY 3.1. QutPs has exactly 10 480 faces of codimension 2.

PrROOF. The number of faces of codimension 2 of a polytope is half of the
total valency of the skeleton of its dual. Since we know the valency of all the
368 nodes of €)g, the result is a straightforward calculation. Moreover, one can
check that exactly 4 800 of these faces of codimension 2 are simplices.

COROLLARY 3.2. The diameter 6(§2g) of CutPg is 3.
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PROOF. For any pair of facets F' and F’ of CutPs; we have to find a path in
{26 of length shorter than 3. Since the diameter of the restriction of g to Oi"
is 2, see [6], we can assume that F' and F’ do not belong to O8. If they both
belong to Of then, since they both have more than half the size of 0% neighbours
in 0%, we can find a facet in O% adjacent to F and F'. If F € 0%, for example
F = F¢ and F' € Of, then one can easily check that the facet induced by
either the inequality Q(1,0,0,1,1)-z < 2 or the inequality Q(0,0,1,1,1)-z < 2
is adjacent to F' and F’. If they both belong to 0§, we can suppose without
loss of generality that F, respectively F”, is the facet induced by the inequality
Q(2,1,1,1,1,1) - z < 12, respectively the inequality Q(—1,2,-1,1,1,1) -z < 2.
Then one can check that F' and F’ have no common neighbour and that the
facets G and G, respectively induced by the inequality Q(1,0,0,1,1)-z < 2 and
Q(—1,1,1) - z < 0, are adjacent and respectively adjacent to F' and F".

REMARK 3.3. While the restriction of Qg to the facets of O% forms a graph of
diameter 2, see [6], its restriction to the facets of OS forms a graph of diameter
3 with parameters v = 96,k = 10, \ = 4 and p € {0,1,2}, which is locally K5,5.
More generally, the inequality Zl§i<j§2t+1 Ti; < t(t 4 1) induces a facet F, of
CutPoiyo and the facets belonging to the orbit O, of Fy form a graph which is

localy the complement of Koy y1,0¢41; two facets of O, being adjacent if and only
if they are non-conflicting.

3.4 Skeleton of CutP;.

of|ojl o |[oj]l or ] o Toi] of O} 03, o1, Vi
FeOf |112 264 | 672 | 64 | 240 | 432 | 48 | 3456 | 1728 | 2304 | 2112 | 11432
FeO] (110 180 ] 100 | 4 | 40 | 120 | 0 840 240 480 480 | 2594
FeOf | 70 | 25 10 2 10 20 2 60 0 0 40 239
FeOf (140 21| 42 [o ]| 21 0 0 0 252 0 420 896
FeOf {25 | 10] 106 |1 0 10 0 0 0 0 20 7
FeOl | s | 6 4 0 2 0 0 0 0 0 0 21
FeOl |15 0 6 0 ] 0 0 0 0 0 0 21
Feof |12 ]| 7 2 0 0 0 0 0 0 0 0 21
Feog | 15| 3, 0 1 0 0 0 0 0 0 0 21
FeOl,| 14| 7 0 0 0 0 0 0 0 0 0 21
FeO, |11 ] 6 2 1 1 0 0 0 0 0 0 21
i 1 2 3 4 5 6 7 8 9 10 11
|O7| | 140 [ 336 | 1344 | 64 | 1344 | 6720 | 448 | 40320 | 16128 | 32 040 | 26 880
[FT] 48 | 40 | 30 |35 26 21 | 21 21 21 21 21

FIGURE 3. Adjacencies in the skeleton of Cut Py




ON THE SKELETON OF THE DUAL CUT POLYTOPE 107

The 21-dimensional polytope CutP; contains 64 vertices and 116 764 facets
which are partitioned into the 11 orbits O, OF ... O7,. The adjacencies for the 6
orbits of simplex facets OF, O ... 07, could be derived from the list of facets of
the simplex facets of Cut; given in [13]. The adjacencies for the orbit O] and O}
can be deduced from the results given respectively in [6] and [7], the remaining
adjacencies were checked by computer. The complete adjacency table is given
in Figure 3. The simplex facets of CutP; are all the 113 536 facets of the orbits
Of, OT...0],. The local graph induced by a simplex facet F' of CutP; is the
clique Ky for F' € OF,0f or OYy, Koy — Ko for F' € Of or O], and Ky — K3
for F' € Of.

COROLLARY 3.4. QutP; has ezactly 2 668 512 faces of codimension 2.

Proor. As for CutPs, since we know the valencies of €7, the result is a
straightforward calculation. Moreover, using a computer, we found that exactly
2 438 016 of these faces of codimension 2 are simplices.

COROLLARY 3.5. The diameter 6(827) of CutP5 satisfies: 3 < 6(07) < 4.

PRrOOF. The diameter of the restriction of Q7 to O7 is 2, see [6]. Then, since
every facet of CutP; is adjacent to a facet of O7, we have §(Q27) < 4. The two
facets, respectively induced by the inequality Q(3,1,1,1,1,1,1) -z < 20 and
Q(-1,3,—-1,1,1,1,1) - < 6, having no common neighbour, we have §(27) > 3.

REMARK 3.6. It was conjectured in [6] that the facets of O7 form a domi-
nating set in $2,, that is, every facet of the cut polytope 1s adjacent to a facet
belonging to the orbit OT. Since the diameter of the restriction of €1, to O 15 2
[6], it would imply that the diameter of the dual cut polytope satisfies 6(§1,) < 4.

4. Skeleton of the Dual Cut Cone for n < 6

The results about €2/, the skeleton of the dual cut cone Cut},, are similar to
the ones concerning the cut polytope. The differences result from the fact that
the symmetry group of the cut cone Cut, is not fully determined. Clearly all
permutations of {1,... ,n} are isometric symmetries of Cut,, that is, we have
Sym(n) C Is(Cuty), and the equality probably holds.

Then, as for the cut polytope, we can use the fact that the facets of the cut
cone are partitioned into the orbits of Sym(n). We choose the 4 representatives

T, G%, G% and G%, defined by the following inequalities, and denote by U* the
orbit of the facet G7,

) Q(—1,1,1) -z <0,

2) Q(—1,-1,1,1,1) -z < 0.

) Q(—2,-1,1,1,1,1) -z < 0.
(3) Q(2,1,1,-1,—1,-1) -z < 0.
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Uy | U3 | Vp
GeUp | 19| 3 | 22
GeUs| 910109

) 1 2
U] 130110
IG} j11] 9

FIGURE 4. Adjacencies in the skeleton of Cut?

Skeleton of Cut; and Cutf. The graph ) formed by the 12 facets of Cuty
is the (4x3)-grid, see [6], that is, the line graph L(K, 3). This graph is a regular
graph with parameters v = 12, k = 5, A = 2 or 1 and g = 2. The diameter
of Cuty is 2. The 40 facets of Cuts are partitioned into the 2 orbits UP and
U3. The adjacency table of 2L, the valency and size of the facets, and the size
of the orbits Cuts are given in Figure 4. §(92{) = 2 and Cuts has 375 faces of
codimension 2. The simplex facets of Cuts are all the 10 facets of the orbit U3,

Skeleton of Cutg. The 210 facets of Cutg are partitioned into the 4 orbits
UP, U, U and US,. The adjacencies of Qf are given in Figure 5, §(€2) = 3 and
Cutg has 5 190 faces of codimension 2. The simplex facets of Cutg are all the 90
facets of the orbits US and US,.

U (US| US| US| Vp
GeUf | 45139 | 5 | 9 | 98
GeU$ 39| 8 | 2| 5 |54
GeU§ |10 4 | 0| 0 |14
GeUS | 915 |0 0|14

i 123 |%
US| |60 |60 | 30| 60
IGY| 23 119 | 14 | 14

FIGURE 5. Adjacencies in the skeleton of Cut;

REMARK 4.1. The 38 780 facets of Qut; are partitioned into 36 orbits of
Sym(7).
5. On the Shape of the Cut Polytope

In this section, we give a tight upper bound and some conjectures on the size
and the adjacency of the facets of the cut polytope.
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LEMMA 5.1. Any facet F' of the cut polytope satisfies | F'| < 3.2773 with equal-
ity if and only if ' € OF.

PROOF. Let F' be a facet of CutP, induced by the inequality:

(1) Z VijTi; < a,

1<i<j<n

vk & nonzero coordinate of F', and F'(.S) the value of the left hand side of (1) on
the cut 6(S). With SN {i, 5} = 0, we have:

FSU{i}) + F(SU{j}) = F(S) = F(SU{i,j}) = 2 vz #0.

This implies that no more than 3 of any such 4 cuts belong to F', and therefore
that no facet contains more than % 271 = 32773 vertices. Reversely, let F
be a facet of CutP, containing 3.2" 3 vertices. Without loss of generality, we
can assume that a, the right hand side of (1) is 0. We first show that any
facet F' of CutP, has at least 3 nonzero coordinates. If F' has only 2 nonzero
coordinates, since Cut P, lies in the positive orthant of R(g), we can assume that
F'is induced by the inequality v;; — awg; < 0 with @ > 1. The point p with
all coordinates equal to %, except pr; = 3%, belongs to both the facet F' and
the relative interior of P, which is impossible. Then we prove that a facet F'
containing 3.2"~2 vertices has at most 3 nonzero coordinates. Let consider any 3
nonzero coordinates of F' v;;, vk and vg. Suppose that the six indices i, 7, k, [, s
and ¢ are distinct, that is, {1, 7, k,l, s,t}| = 6. In that case, we have:

(2) for SN{i,j}=0, F(SU{i})+F(SU{j})-F(S)-F(SU{i,j})=2v; #0,
(3) for SN{k,1}=0, F(SU{k}+F(SU{l})—F(S)—F(SU{k,1})=2vs #0,
(4) for SN{s,t}=0, F(SU{sH+F(SU{t})—F(S)—F(SU{s,t})=2vs # 0.

Since F' contains 3/4 of the total number of vertices of CutP,, exactly 3 terms of
the left hand side of the equations (2), (3) or (4) are null. Suppose that v;; and
vg; have the same sign (otherwise we consider v;; and v or vy and ve). Then
the equations (2) with S = 0 and (3) with S = {i} imply that F'({1}) cannot be
the only nonzero term of both the equations (2) and (3), that is F'({¢}) = 0. In
the same way, the equations (2) with S = {s}, respectively S = {t} and {k,!},
and (3) with S = {4, s}, respectively S = {4,¢} and {j}, imply that F({i,s}),
respectively F'({,t}) and F'({3,s,t}), is null, which contradicts the equation (4)
with § = {¢}. Similarly [{7,7,k,1,s,t}| = 5 or 4 also leads to a contradiction.
Therefore I has exactly 3 nonzero coordinates v;;, vir, and vj,. We have:

(5) for SN{s,5}=0, F(SU{i})+F(SU{j})-F(S)—F(SU{i,j})=2v;; #0,

(6) for SN {i,k}=0, F(SU{EN+F(SU{k})—F(S)—F(SU{i, k})=2vs # 0,
(7) for SN {j,k}=0, F(SU{N+F(SU {k})—F(S)—F(SU{j, k})=2v;, # 0.
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Then, the equations (5) with § = {k} and (6) with § = {7} imply that v;j = v;
(6) with S =0 and (7) with S = {4} imply that v;, = —vj. This means that F
is the facet of O} induced by the inequality T — z;; — 2 < 0.

REMARK 5.2. The 4(;) facets of QutP,, belonging to O} contain 3.27—3 cuts,
that is 3/4 of the total number of vertices of the cut polytope. Those facets are the
extreme dpposite of being simplices. We think that the shape of the cut polytope 1is
essentially given by its non-simplex facets, in particular by the facets of O} (see
Remark 3.6), and that the huge mdjority of the Jacets of QutP,, are simplices
which only "polish” it. This belief is shared by designers of the cutting plane
methods who hope that the ”few nice” classes of facets they use will be sufficient
to prove the optimality or provide excellent bounds, and that the facets they have
no access to contribute very little to the computational behavior of such methods.

CONJECTURE 5.3. Forn > 5, any two simplez facets of the cut polytope are
not adjacent in §),. It holds for n < 7.

CONJECTURE 5.4. The cut polytope CutP,, is asymptotically simplicial. In
fact, more than 97% of the facets of CutPy and 91% of its faces of codimension
2 are simplices.

Acknowledgements. The authors would like to thank Komei Fukuda who
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Cut Py
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