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The vertices of primitive zonotopes

Antoine Deza, Lionel Pournin, and Rado Rakotonarivo

Abstract. Primitive zonotopes arise naturally in various research areas, such

as discrete geometry, combinatorial optimization, and theoretical physics. We
provide geometric and combinatorial properties for these polytopes that allow
us to estimate the size of their vertex sets. In particular, we show that the
logarithm of the complexity of convex matroid optimization is quadratic, and
we improve the bounds on the number of generalized retarded functions from
quantum field theory. We also give a sharp asymptotic estimate for the number
of vertices of a primitive zonotope that, in terms of Minkowski sums, is an
intermediate between the permutohedra of types A and B.

1. Introduction

For any positive integers d and p, denote by Gq(d, p) the set of the points g
in Z

d\{0} whose greater common divisor of coordinates is equal to 1, whose last
non-zero coordinate is positive, and whose q-norm satisfies ‖g‖q ≤ p. Consider
the Minkowski sum Hq(d, p) of the segments incident to 0 on one end and to a
point in Gq(d, p) on the other. The resulting polytopes, introduced in [4, 5], are
called primitive zonotopes. The elements of Gq(d, p) will be referred to as the
generators of Hq(d, p). In [4, 5], the first non-zero coordinate of the generators
of Hq(d, p) is positive instead of the last. However, the polytopes resulting from
these two definitions are translates of one another, and the convention we take
here will simplify the exposition. A second family of primitive zonotopes, denoted
by H+

q (d, p), is introduced in [4,5]. The set G+
q (d, p) of their generators is made

up of the points in Gq(d, p) whose all coordinates are non-negative. As above,
H+

q (d, p) is the Minkowski sum of the segments between 0 and a generator. Observe
that primitive zonotopes can be equivalently defined as the set of all the linear
combinations of their generators with coefficients in the unit segment [0, 1], or as
the convex hull of all the possible subsums of their generators.

We estimate the number of vertices of primitive zonotopes. Our results follow
from geometric and combinatorial properties of these polytopes that we establish
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Figure 1. The primitive zonotopes H+
1 (3, 2) (top), H+

∞(3, 1)
(right), H1(3, 2) (left), and H∞(3, 1) (bottom) ordered by the in-
clusion of their sets of generators.

in Section 2. Denote by aq(d, p) the number of vertices of H+
q (d, p) whose none of

the coordinates is equal to 0. Further denote aq(0, p) = 1 as a convention. The
first result of Section 2 is the following expression for the number f0

(
H+

q (d, p)
)
of

vertices of the primitive zonotope H+
q (d, p).

Theorem 1.1.

f0
(
H+

q (d, p)
)
=

d∑
i=0

(
d

i

)
aq(i, p).

While the proof of Theorem 1.1 is rather straightforward, we shall see that
it admits several interesting consequences. The remainder of Section 2 is devoted
to studying the geometry of the primitive zonotopes H1(d, 2), H

+
1 (d, 2), H∞(d, 1),

and H+
∞(d, 2), whose coordinates of generators belong to {−1, 0, 1}. These primi-

tive zonotopes, depicted in Fig. 1 when d = 3, are of particular interest in various
research areas and exhibit additional structural properties. For instance, slicing
H+

1 (d, 2) with the hyperplanes of Rd wherein the last coordinate is a fixed integer
results in the Minkowski sums of H+

1 (d− 1, 2) with the (d− 1)-dimensional hyper-
simplices. In Section 3, we derive from Theorem 1.1 an implicit expression for the
number of vertices of H+

1 (d, 2) that allows for a sharp asymptotic estimate.

Theorem 1.2.

f0
(
H+

1 (d, 2)
)
∼ d!

(ln 2)d+1
.

In terms of Minkowski sums, H+
1 (d, 2) can be thought of as an intermediate

between the permutohedra of types A and B. Indeed, as mentioned in [4], H+
1 (d, 2)

is the Minkowski sum of the permutohedron of type A with the hypercube [0, 1]d.
Moreover, the primitive zonotope H1(d, 2) is homothetic to the permutohedron of
type B [4] and since G+

1 (d, 2) is a subset of G1(d, 2), it can be obtained as the
Minkowski sum of H+

1 (d, 2) with a zonotope. This is reflected in the estimate given
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d f0(H
+
∞(d, 1)) a∞(d, 1)

1 2 1
2 6 3
3 32 19
4 370 271
5 11 292 9 711
6 1 066 044 1 003 281
7 347 326 352 340 089 233
8 419 172 756 930 416 423 387 255

Table 1

by Theorem 1.2, that lies between the number of vertices of the permutohedron of
type A (d!) and that of the permutohedron of type B (d!2d).

As shown in [4], the worst case complexity of d-criteria, p-bounded convex ma-
troid optimization (see [11–13]) is equal to the number of vertices of the primitive
zonotope H∞(d, p). It is shown in [4,11] that

d!2d ≤ f0(H∞(d, 1)) ≤ O
(
3d(d−1)

)
.

We improve the lower bound in Section 4 and the upper bound in Section 5.

Theorem 1.3.
d−1∏
i=0

(
3i + 1

)
≤ f0(H∞(d, 1)) ≤ 2

(
3d−1 + 1

)d−1
.

The number of vertices of H+
∞(d, 1) appears in several contexts [2,3,7,9,14].

It is, for instance, the number of generalized retarded functions on d+ 1 variables
in quantum field theory [7] and the number of maximal unbalanced families of
subsets of {1, 2, ..., d + 1} in combinatorics [2]. The values of f0(H

+
∞(d, 1)) have

been computed up to d = 8 [7,9,15], and can be found in the Online Encyclopedia
of Integer Sequences. We report them in Table 1 as well as the corresponding values
of a∞(d, 1), obtained from Theorem 1.1. It is shown in [2] that

d−1∏
i=0

(
2i + 1

)
≤ f0

(
H+

∞(d, 1)
)
< 2d

2

.

We will refine both of these bounds. While the improvement is not significant,
this illustrates the benefits of looking at the problem in terms of primitive zonotopes.
Our lower bound, established in Section 4, is another consequence of Theorem 1.1
and our upper bound, proven in Section 5, is obtained by identifying large regions
of the hypercube [0, 2d−1]d that do not contain any vertex of H+

∞(d, 1).

Theorem 1.4. For any d ≥ 3,

6

d−2∏
i=1

(
2i+1 + i

)
≤ f0

(
H+

∞(d, 1)
)
≤ 2(d+ 4)2(d−1)(d−2).

Recently, Gutekunst, Mészáros, and Petersen [8] have further significantly im-
proved the lower bound on f0(H

+
∞(d, 1)) and shown that the upper bound is the

right asymptotic estimate. Note that the number of vertices of H+
∞(d, 1) is the sum
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of the Betti numbers of its dual hyperplane arrangement. The first two non-trivial
of these Betti numbers have been recently determined by Lukas Kühne [10].

2. Geometric and combinatorial properties

We denote by x1 to xd the coordinates of a point x in R
d. Moreover, if i < d,

we will think of Ri as the subspace of Rd spanned by the first i coordinates.

Proposition 2.1. The intersection of H+
q (d, p) with a facet of the cone [0,+∞[d

is isometric to H+
q (d− 1, p) by a permutation of the coordinates.

Proof. By definition, the intersection of H+
q (d, p) with the cone [0,+∞[d−1 is

preciselyH+
q (d−1, p). As shown in [4], H+

q (d, p) is invariant under any permutation
of the coordinates and the desired result holds. �

Proof of Theorem 1.1. Consider an i-dimensional face F of [0,+∞[d. Us-
ing Proposition 2.1 recursively, one obtains that the intersection of H+

q (d, p) with F

can be recovered from H+
q (i, p) by a permutation of the coordinates. Here, we will

take the convention that H+
q (0, p) is equal to {0}. As a consequence, the number

of vertices of H+
q (d, p) contained in F , but not in any face of [0,+∞[d of dimension

less than i, is exactly aq(i, p). In particular, the face complex of [0,+∞[d induces
a partition of the vertex set of H+

q (d, p) into subsets of size aq(i, p), where i ranges
from 0 to d. In this partition, the number of subsets of size aq(i, p) is equal to the

number of i-dimensional faces of the cone [0,+∞[d. Since this cone has
(
d
i

)
faces

of dimension i, we obtain the desired result. �

Consider the intersection of a primitive zonotope with the hyperplane S(d, h)
of R

d made up of all the points x such that xd is equal to an integer h. We
will characterize this intersection as a Minkowski sum for the families of primitive
zonotopes whose set of generators is a subset of {−1, 0, 1}d.

Proposition 2.2. Consider a primitive zonotope Z. If the set of the generators
of Z is a subset of {−1, 0, 1}d then, for any integer h, the polytope obtained as the
intersection of Z and S(d, h) shares all of its vertices with Z.

Proof. First consider a vertex v of Z ∩ S(d, h) and assume that v is not a
vertex of Z. In this case, v must be the intersection of the hyperplane S(d, h) with
an edge of Z whose vertices a and b satisfy ad < h and bd > h. In particular,
bd−ad ≥ 2. By the definition of primitive zonotopes, b−a is a generator of Z, and
therefore, the set of the generators of Z cannot be a subset of {−1, 0, 1}d. �

There are four families of primitive zonotopes whose set of generators is a subset
of {−1, 0, 1}: H1(d, 2), H

+
1 (d, 2), Hq(d, 1), and H+

q (d, 1). Note that the latter two
families are distinct only when q = ∞ and, when they coincide, they are equal to
the hypercube [0, 1]d. In the remainder of the section, we consider any of these four
families and denote by H(d) its d-dimensional member. We will characterize the
polytopes obtained by slicing H(d) with the hyperplane S(d, h) as the Minkowski
sums of H(d−1) with well-defined polytopes where, as a convention, H(0) is taken
equal to {0}. Denote by κ(H(d))the largest possible value for the last coordinate of
a vertex of H(d). In other words, κ(H(d)) is the sum of the last coordinates of the
generators of H(d). For instance, κ

(
H+

1 (d, 2)
)
is equal to d, κ(H+

∞(d, 1)) to 2d−1,
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and κ(H∞(d, 1)) to 3d−1 [4]. Further note that κ
(
H+

q (d, p)
)
is the smallest integer

r such that H+
q (d, p) is contained in the hypercube [0, r]d.

Lemma 2.3. For any integer h such that 0 < h ≤ κ(H(d)), the intersection of
H(d) with S(d, h) is the Minkowski sum of H(d − 1) with the convex hull of the
sums of exactly h generators of H(d) whose last coordinate is equal to 1.

Proof. Denote by G(d) the set of the generators of H(d). Recall that R
d−1

is identified with the hyperplane of Rd spanned by the first d − 1 coordinates. In
particular, the generators of H(d− 1) coincide with the generators of H(d) whose
last coordinate is equal to 0. Therefore, we think of G(d− 1) as a subset of G(d).
As mentioned above, G(d) is a subset of {−1, 0, 1}d. By the definition of primitive
zonotopes, the last non-zero coordinate of any generator of H(d) is positive. Hence,
G(d)\G(d− 1) is exactly the set of the points in G(d) whose last coordinate is equal
to 1. Now pick an integer h such that 0 ≤ h ≤ κ(H(d))and denote by P the convex
hull of the sums of exactly h elements of G(d)\G(d− 1).

Recall that the primitive zonotope H(d) is the convex hull of all the possible
subsums of its generators. It therefore follows from Proposition 2.2 that the in-
tersection of H(d) with S(d, h) is the convex hull of all the possible subsums of
elements of G(d) such that exactly h of them belong to G(d)\G(d − 1). In such
a sum, the terms from G(d − 1) sum to a point in H(d − 1), and the terms from
G(d)\G(d−1) sum to a point in P . As a consequence, the intersection of H(d) with
S(d, h) is a subset of H(d− 1)+P . Inversely, H(d− 1)+P is the convex hull of all
the sums whose terms are any number of points from G(d− 1) and exactly h points
from G(d)\G(d−1). Since any such sum is a point in the intersection H(d)∩S(d, h),
the Minkowski sum of H(d− 1) with P is a subset of that intersection. �

Recall that the (d−1)-dimensional standard hypersimplices are the convex hulls
of the vertices of the hypercube [0, 1]d whose coordinates sum to a fixed integer h
such that 0 < h < d. Therefore, by Lemma 2.3, the intersections H+

1 (d, 2)∩S(d, h)
are, up to translation, the Minkowski sums of H+

1 (d − 1, 2) with the orthogonal
projection on R

d−1 of the (d− 1)-dimensional standard hypersimplices.

3. An asymptotic estimate for the number of vertices of H+
1 (d, 2)

We first establish, as a consequence of Lemma 2.3, the following result on the
placement of the vertices of H+

1 (d, 2).

Lemma 3.1. Every vertex of H+
1 (d, 2) belongs to a facet of [0, d]d.

Proof. We proceed by induction on d. Note that H+
1 (1, 2) = [0, 1] and that

H+
1 (2, 2) is the hexagon obtained as the convex hull of all the lattice points in the

square [0, 2]2 except for two opposite vertices of this square. Hence, the lemma
holds when d is equal to 1 or 2. Now assume that d ≥ 3 and consider a vertex x
of H+

1 (d, 2). For any positive integer i less than d, denote by gi the generator of
H+

1 (d, 2) whose two non-zero coordinates are gii and gid. Further denote by g0 the
point in G+

1 (d, 2) whose last coordinate is equal to 1, and whose all other coordinates
are equal to 0. By Lemma 2.3, there exists a vertex y of H+

1 (d− 1, 2) satisfying

x = y +
∑
i∈I

gi,
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where I is a subset of exactly xd elements of {0, 1, ..., d−1}. By induction, y admits
a coordinate equal to 0 or a coordinate equal to d− 1. Let us first study the latter
case. We can assume without loss of generality that y1 = d − 1. If I = {0}, then
x = y + g0. In this case, consider the triangle with vertices y + g1, y + g2 and g0.
This triangle is contained in H+

1 (d, 2) and, since y �= 0, the point y + g0 belongs
to its relative interior. Hence, x cannot be a vertex of H+

1 (d, 2). Now assume that
I �= {0}. Assume, in addition, that y1 �= d. In this case, I does not contain 1. Yet,
it must contain a positive integer and we assume without loss of generality that
2 belongs to I. By symmetry, the point y′ obtained by exchanging the first and
second coordinates of y is a vertex of H+

1 (d, 2) [4] and the point

x′ = y′ +
∑
i∈I

gi

necessarily belongs to H+
1 (d, 2). Observe that x− g2+ g1 also belongs to H+

1 (d, 2).
By construction, x is in the relative interior of the segment with extremities x′ and
x− g2 + g1 and it cannot be a vertex of H+

1 (d, 2), a contradiction. This shows that
1 belongs to I and, as a consequence, that xd is equal to d.

Now assume that one of the coordinates of y, say yj , is equal to 0. In this case,
xj is equal to 0 or to 1. Since H+

1 (d, 2) is centrally-symmetric with respect to the
center of the hypercube [0, d]d [4], the symmetric x′ of x with respect to the center
of that hypercube is a vertex of H+

1 (d, 2). Therefore, by Lemma 2.3, there exists a
vertex y′ of H+

1 (d− 1, 2) such that

x′ = y′ +
∑
i∈I′

gi,

where I ′ is a subset of {0, 1, ..., d − 1}. By symmetry, x′
j is equal to d − 1 or to

d. Therefore, y′j must be equal to d− 1. As shown above, in this case x′
j must be

equal to d and, by symmetry, x belongs to a facet of the hypercube [0, d]d. �
Theorem 3.2.

f0
(
H+

1 (d, 2)
)
= 2a1(d, 2).

Proof. Consider a vertex x of H+
1 (d, 2). It follows from Lemma 3.1 that some

coordinate of x must be equal to 0 or to d. By proposition 2.1 and Lemma 3.1, if a
coordinate of x is equal to 0 then none of its coordinates can be greater than d− 1.
Therefore, the vertices of H+

1 (d, 2) with at least one coordinate equal to 0 and the
vertices of H+

1 (d, 2) with at least one coordinate equal to d form a partition of the
vertex set of H+

1 (d, 2). Since H+
1 (d, 2) is centrally-symmetric with respect to the

center of the hypercube [0, d]d, the number of vertices of H+
1 (d, 2) is equal to twice

the number of its vertices with at least one coordinate equal to d, or equivalently,
to twice the number of its vertices whose all coordinates are positive. �

The following result is a consequence of Theorems 1.1 and 3.2.

Corollary 3.3.

a1(d, 2) =

d−1∑
i=0

(
d

i

)
a1(i, 2).

Recall that, as a convention a1(0, 2) is equal to 1. In this case, the recursive
expression provided by Corollary 3.3 results in a well known integer sequence, the
Fubini numbers. Coincidently, a1(d, 2) is therefore also equal to the number of
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non-empty faces of the (d− 1)-dimensional permutohedron. This observation and
Theorem 3.2 immediately provide the following statement.

Corollary 3.4. The number of vertices of the primitive zonotope H+
1 (d, 2) is

equal to twice the d-th Fubini number.

The following asymptotic estimate is proven in [1].

a1(d, 2) ∼
d!

2(ln 2)d+1
.

Theorem 1.2 is obtained from this estimate and from Theorem 3.2.

4. Lower bounds on the number of vertices of H∞(d, 1) and H+
∞(d, 1)

The lower bound on the number of vertices of H∞(d, 1) provided by Theo-
rem 1.3 is a rather straightforward consequence of Lemma 2.3.

Theorem 4.1.

f0(H∞(d, 1)) ≥
d−1∏
i=0

(
3i + 1

)
.

Proof. It is shown in [4] that κ(H∞(d, 1)) is equal to 3d−1. Since G∞(d, 1) is
a subset of {−1, 0, 1}d, it follows from Lemma 2.3 that, for any integer h such that
0 < h ≤ 3d−1, the intersection of H∞(d, 1) with S(d, h) has at least f0(H∞(d−1, 1))
vertices. Indeed, the Minkowski sum of two polytopes has at least as many vertices
as any of them. Moreover, according to Proposition 2.2, the vertex sets of the
intersections H∞(d, 1)∩ S(d, h), when h ranges from 0 to 3d−1, form a partition of
the vertex set of H∞(d, 1). As a consequence,

f0(H∞(d, 1)) ≥ (3d−1 + 1)f0(H∞(d− 1, 1)).

Since H∞(1, 1) has two vertices, we obtain the desired inequality. �

As a consequence, the order of the logarithm to base 3 of d-criteria, 1-bounded
convex matroid optimization is quadratic in d.

We now turn our attention to H+
∞(d, 1). As shown in [4], κ(H+

∞(d, 1)) is equal
to 2d−1 and we can use the same argument as in the proof of Theorem 4.1 in order
to recover the lower bound on f0(H

+
∞(d, 1)) from [2]. In order to improve on this,

we derive a lower bound on a∞(d, 1) from Lemma 2.3.

Theorem 4.2. If d ≥ 2, then

(4.1) a∞(d, 1) ≥ 2d−2
[
f0
(
H+

∞(d− 1, 1)
)
+ a∞(d− 1, 1)

]
.

Proof. Recall that κ(H+
∞(d, 1))= 2d−1. Hence, by Lemma 2.3, any vertex x

of H+
∞(d, 1) belongs to the hypercube[

0, 2d−2 + xd

]d−1 ×{xd}.
Since H+

∞(d, 1) is centrally-symmetric with respect to the center of [0, 2d−1]d,
a vertex of H+

∞(d, 1) whose last coordinate is greater than 2d−2 only has positive
coordinates. Since the Minkowski sum of two polytopes has at least as many vertices
as either of them, it follows from Proposition 2.2 and Lemma 2.3 that the number
of vertices of H+

∞(d, 1) whose last coordinate is greater than 2d−2 is at least

2d−2f0
(
H+

∞(d− 1, 1)
)
.
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This quantity is the first term in the right-hand side of (4.1). Now, let h be
an integer such that 0 < h ≤ 2d−2. We will prove that S(d, h) contains at least
a∞(d− 1, 1) vertices of H+

∞(d, 1) whose all coordinates are positive.
According to Lemma 2.3,

(4.2) H+
∞(d, 1) ∩ S(d, h) = H+

∞(d− 1, 1) +Q,

where Q is a polytopes contained in the positive orthant [0,+∞[d. Observe that
there exists an injection φ from the vertex set of H+

∞(d− 1, 1) into the vertex set of
the Minkowski sum H+

∞(d− 1, 1)+Q that sends every vertex of H+
∞(d− 1, 1) to its

sum with a vertex of Q (see for instance Lemma 2.3 from [6]). In particular, if x is
a vertex of H+

∞(d−1, 1) whose all coordinates are positive, then all the coordinates
of φ(x) are also necessarily positive. Since φ is an injection, H+

∞(d − 1, 1) + Q
admits at least a∞(d − 1, 1) vertices whose all coordinates are positive. By (4.2)
and Proposition 2.2, all the vertices of H+

∞(d− 1, 1) + Q are vertices of H+
∞(d, 1).

Hence, the number of vertices of H+
∞(d, 1) whose all coordinates are positive and

whose last coordinate does not exceed 2d−2 must be at least

2d−2a∞(d− 1, 1).

This quantity is the second term in the right-hand side of (4.1). �

We now establish the lower bound stated by Theorem 1.4.

Theorem 4.3. For all d ≥ 3,

f0
(
H+

∞(d, 1)
)
≥ 6

d−2∏
i=1

(
2i+1 + i

)
.

Proof. One can check using the values of f0(H
+
∞(d, 1)) reported in Table 1

that the theorem holds when d is equal to 3 or 4.
We will prove that, for all d ≥ 5,

(4.3) a∞(d, 1) ≥ 6

d−2∏
i=1

(
2i+1 + i

)
.

Since f0(H
+
∞(d, 1)) ≥ a∞(d, 1), the theorem will follow. We proceed by induc-

tion on d. First observe that (4.3) holds when d is equal to 5 or to 6, as can be
checked using the values of a∞(5, 1) and a∞(6, 1) reported in Table 1.

Now assume that d ≥ 7. By Theorem 1.1,

f0
(
H+

∞(d− 1, 1)
)
≥ a∞(d− 1, 1) + (d− 1)a∞(d− 2, 1).

Combining this with (4.1), we obtain

a∞(d, 1) ≥ 2d−1a∞(d− 1, 1) + 2d−2(d− 1)a∞(d− 2, 1).

Observe that 2d−2 ≥ (d− 2)(d− 3). Therefore,

(4.4) a∞(d, 1) ≥ 2d−1a∞(d− 1, 1) + (d− 2)
[
2d−2 + d− 3

]
a∞(d− 2, 1).

By induction, a∞(d− 1, 1) and a∞(d− 2, 1) can be bounded below using (4.3).
Combining these bounds with (4.4) completes the proof. �
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5. Upper bounds on the number of vertices of H∞(d, 1) and H+
∞(d, 1)

Recall that the primitive zonotope H+
∞(d, 1) is contained in the hypercube

[0, 2d−1]d. In particular, the number of vertices of H+
∞(d, 1) is at most the number

of lattice points in this hypercube. Since at most two vertices can differ only in the
last coordinate, this bound can be improved into twice the number of lattice points
in the hypercube [0, 2d−1]d−1. Therefore, we obtain the inequality

(5.1) f0
(
H+

∞(d, 1)
)
≤ 2

(
2d−1 + 1

)d−1
,

that improves the upper bound of 2d
2

from [2]. The number of vertices of H∞(d, 1)
can be bounded above using the same argument. Indeed, this polytope is contained,
up to translation, in the hypercube [0, 3d−1]d. Therefore, the number of its vertices
is at most twice the number of lattice points in [0, 3d−1]d−1. This results in the
upper bound stated by Theorem 1.3.

Theorem 5.1.

f0(H∞(d, 1)) ≤ 2
(
3d−1 + 1

)d−1
.

The upper bound provided by Theorem 1.4 essentially divides by 2d the right-
hand side of (5.1). Our strategy consists in identifying large portions of the hyper-
cube [0, 2d−1]d disjoint from H+

∞(d, 1).

Lemma 5.2. If x is a vertex of H+
∞(d, 1) and i �= j, then |xi − xj | ≤ 2d−2.

Proof. Consider a vertex x of H+
∞(d, 1). By symmetry, we can assume that

xi ≥ xj . Observe that G+
∞(d, 1) = {0, 1}d. Hence, it follows from the definition of

H+
∞(d, 1) that there is a subset A of {0, 1}d whose sum of elements is equal to x.

Let B denote the elements x in A such that xi = 1 and xj = 0. Further denote by
C the complement of B in A. The following holds.

xi − xj =
∑
g∈B

(gi − gj) +
∑
g∈C

(gi − gj).

Note that gi − gj is equal to 1 when g ∈ B and to 0 or to −1 when g ∈ C.
Hence, xi−xj is, at most, the number of elements of B. Since there are 2d−2 points
g in {0, 1}d such that gi = 1 and gj = 0, the lemma is proven. �

We are now ready to complete the proof of Theorem 1.4. The upper bound
stated by this theorem can be roughly estimated as the number of lattice points in
2d copies of the (d− 1)-dimensional hypercube [0, 2d−2]d−1.

Theorem 5.3.

f0
(
H+

∞(d, 1)
)
≤ 2(d+ 4)2(d−1)(d−2).

Proof. Observe that the theorem holds when d is equal to 1. We therefore
assume in the remainder of the proof that d ≥ 2. Denote by u the lattice vector
in R

d whose all coordinates are equal to 1 and by Q the union of the facets of the
cone [0,+∞[d. Now consider a point x in N

d, and its projection on Q along u,
which we denote by π(x). In other words, π(x) is the unique point in Q such that
x− π(x) = ku for some non-negative integer k. It follows from Lemma 5.2 that, if
x is a vertex of H+

∞(d, 1), then π(x) is in the intersection of Q with the hypercube
[0, 2d−2]d. By convexity, a point in this intersection cannot be the image by π of
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more than two vertices of H+
∞(d, 1). Therefore, f0(H

+
∞(d, 1)) is bounded above by

twice the number of lattice points in Q ∩ [0, 2d−2]d; that is,

f0
(
H+

∞(d, 1)
)
≤ 2

d−1∑
i=0

(
d

i

)
2i(d−2).

Factoring the largest term in the right-hand side of this inequality yields

f0
(
H+

∞(d, 1)
)
≤ 2d2(d−1)(d−2)

[
1 +

1

d

d−2∑
i=0

(
d

i

)
2(i−d+1)(d−2)

]
.

Since (i− d+ 1)(d− 2) ≤ 2− d when i ≤ d− 2, we obtain

f0
(
H+

∞(d, 1)
)
≤ 2d2(d−1)(d−2)

[
1 +

22−d

d

d−2∑
i=0

(
d

i

)]
.

Bounding above the sum of binomial coefficients in the right-hand side by 2d

and then rearranging the terms provide the desired result. �
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