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Abstract

The solitaire cone SB is the cone of all feasible fractional Solitaire Peg games. Valid in-
equalities over this cone, known as pagoda functions, were used to show the infeasibility of
various peg games. The link with the well studied dual metric cone and the similarities between
their combinatorial structures (see [3]) leads to the study of a dual cut cone analogue; that is,
the cone generated by the {0; 1}-valued facets of the solitaire cone. This cone is called binary
solitaire cone and denoted as BSB. We give some results and conjectures on the combinatorial
and geometric properties of the binary solitaire cone. In particular we prove that the extreme
rays of SB are extreme rays of BSB strengthening the analogy with the dual metric cone whose
extreme rays are extreme rays of the dual cut cone. Other related cones are also considered.
? 2001 Elsevier Science B.V. All rights reserved.

1. Introduction and basic properties

1.1. Introduction

Peg solitaire is a peg game for one player which is played on a board containing a
number of holes. The most common modern version uses a cross shaped board with 33
holes—see Fig. 1—although a 37 hole board is common in France. Computer versions
of the game now feature a wide variety of shapes, including rectangles and triangles.
Initially the central hole is empty, the others contain pegs. If in some row (column,
respectively) two consecutive pegs are adjacent to an empty hole in the same row
(column, respectively), we may make a move by removing the two pegs and placing
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one peg in the empty hole. The objective of the game is to make moves until only
one peg remains in the central hole. Variations of the original game, in addition to
being played on diDerent boards, also consider various alternate starting and Enishing
conEgurations.

The game itself has uncertain origins, and diDerent legends attest to its discovery by
various cultures. An authoritative account with a long annotated bibliography can be
found in the comprehensive book of Beasley [4]. The book mentions an engraving of
Berey, dated 1697, of a lady with a Solitaire board. The modern mathematical study of
the game dates to the 1960s at Cambridge University. The group was led by Conway
who has written a chapter in [5] on various mathematical aspects of the subject. One of
the problems studied by the Cambridge group is the following basic feasibility problem
of peg solitaire:

For a given board B, starting conEguration c and Enishing conEguration c′, de-
termine if there is a legal sequence of moves from c to c′.

The complexity of the feasibility problem for the game played on a n by n board
was shown by Uehara and Iwata [11] to be NP-complete, so easily checked necessary
and suHcient conditions for feasibility are unlikely to exist. One of the tools used to
show the infeasibility of certain starting and Enishing conEgurations is a polyhedral
cone called the solitaire cone SB, corresponding to some given board B.

1.2. Basic properties

For ease of notation, we will mostly be concerned with rectangular boards which we
represent by 0–1 matrices. A zero represents an empty hole and a one represents a peg.
For example, let c= [1 0 1 1] and c′ = [0 0 1 0] be starting and Enishing positions
for the 1 by 4 board. This game is feasible, involving two moves and the intermediate
position [1 1 0 0]. For any move on an m by n board B we can deEne an m by n
move matrix which has 3 nonzero entries: two entries of −1 in the positions from
which pegs are removed and one entry of 1 for the hole receiving the new peg. The
two moves involved in the previous example are represented by m1 = [0 1 − 1 − 1]
and m2 = [− 1 − 1 1 0]. Clearly c′ = c+m1 +m2. By abuse of language, we use the
term move for both the move itself and the move matrix. In general it is easily seen

Fig. 1. A feasible English solitaire peg game with possible Erst and last moves.
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that if c; c′ deEne a feasible game of k moves there exist move matrices m1; : : : ; mk
such that

c′ − c=
k∑
i=1

mi: (1.1)

Clearly, Eq. (1.1) is necessary but not suHcient for the feasibility of a peg game. For
example, take c= [1 1 1 1] and c′ = [0 0 0 1]. We have c′ − c= [− 1 − 1 1 0] +
[0 1 − 1 − 1] + [0 − 1 − 1 1], but c; c′ do not deEne a feasible game; in fact
there are no legal moves! Let us relax the conditions of the original peg game to
allow a fractional (positive or negative) number of pegs to occupy any hole. We
call this game the fractional game, and call the original game the 0–1 game (in a
0–1 game we require that in every position of the game a hole is either empty or
contains a single peg). A fractional move matrix is obtained by multiplying a move
matrix by any positive scalar and is deEned to correspond to the process of adding
a move matrix to a given position. For example, let c= [1 1 1], c′ = [1 0 1]. Then
c′ − c= [0 − 1 0]= 1

2 [ − 1 − 1 1] + 1
2 [1 − 1 − 1] is a feasible fractional game

and can be expressed as the sum of two fractional moves, but is not feasible as a 0
–1 game.

Let B be a board and nB the total number of possible moves on the board. The
solitaire cone SB is the set of all nonnegative combinations of the nB corresponding
move matrices. Thus c′ − c∈ SB if:

c′ − c=
nB∑
i=1

yimi; yi¿ 0; i=1; : : : ; nB: (1.2)

In the above deEnition it is assumed that the hB holes in the board B are ordered in
some way and that c′−c and mi are hB-vectors. When B is a rectangular m by n board
Bm;n it is convenient to display c′ − c and mi as m by n matrices, although of course
all products should be interpreted as dot products of the corresponding mn-vectors. For
n¿ 4 or m¿ 4, the solitaire cone Sm;n associated to the m by n board is a pointed
full-dimensional cone and the moves of the solitaire cone are extreme rays; see [3] for
a detailed study of the solitaire cone. The following result obtained in 1961 is credited
to Boardman (who apparently has not published anything on the subject) by Beasley
[4, p. 87]. We identify c′ − c with the fractional game deEned by c and c′.

Proposition 1.1. Eq. (1:2) (c′−c∈ SB) is necessary and su;cient for the feasibility of
the fractional game; that is; the solitaire cone SB is the cone of all feasible fractional
games.

The condition c′ − c∈ SB is therefore a necessary condition for the feasibility of
the original peg game and, more usefully, provides a certiEcate for the infeasibility of
certain games. The certiEcate of infeasibility is any inequality valid for SB which is
violated by c′ − c. According to [4, p. 71], these inequalities “were developed by J.H.
Conway and J.M. Boardman in 1961, and were called pagoda functions by Conway: : :”.
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They are also known as resource counts, and are discussed in some detail in [5]. The
strongest such inequalities are induced by the facets of SB.

Other tools to show the infeasibility of various peg games include the so-called
rule-of-three which simply amounts to color the board by diagonals of �, 
 and �
(in either direction). Then, with #� (#
; #� resp.) denoting the number of pegs in an
�-colored (
; � resp.) holes, one can check that the parity of #� − #
, #
 − #� and
#�− #� is an invariant for the moves. The rule-of-three was apparently Erst published
in 1841 by Suremain de Missery; see Beasley’s book [4] for a detailed historical
background. Another necessary condition generalizing the rule-of-three—the solitaire
lattice criterion—is to check if c′ − c belong to the solitaire lattice generated by all
integer linear combinations of moves, that is:

c′ − c=
nB∑
i=1

yimi; yi ∈Z; i=1; : : : ; nB:

While the lattice criterion is shown to be equivalent to the rule-of-three for the classical
English 33-board and French 37-board as well as for any m × n board, the lattice
criterion is stronger than the rule-of-three for games played on more complex boards.
In fact, for a wide family of boards the lattice criterion exponentially outperforms the
rule-of-three, see [7].

The solitaire cone is generated by a set of extreme rays, each of which is all zero
except for three nonzero components which are 1;−1;−1. In [3], the solitaire cone is
related to another cone with the same property, the <ow cone which is dual to the
much studied metric cone which arises in the study of multicommodity Rows; see, for
example, [1,6,8,10].

2. Facets of the solitaire cone

For simplicity we consider rectangular boards and, to avoid the special eDects created
by the boundary, we study their toric closures which are simply called toric boards.
In other words, the toric m by n board is an m by n rectangular board with additional
jumps which traverse the boundary. Note that the associated toric solitaire cone Sm×n
is pointed and full-dimensional for m¿ 3 or n¿ 3. Let B be a rectangular m by n
board, with m¿ 3 or n¿ 3. Using the notation described following Eq. (1.2), we will
represent the coeHcients of the facet inducing inequality

az6 0 (2.3)

by the m by n array a= [ai; j]. Inequality (2.3) holds for every z ∈ Sm×n. It is a conve-
nient abuse of terminology to refer to a as a facet of Sm×n. Three consecutive row or
column elements of an m by n array are denoted by (t1; t2; t3) and called a consecutive
triple of row or column indices. For example both t1 = i; j, t2 = i; j+1, t3 = i; j+2 and
t1 = i+2; j, t2 = i+1; j, t3 = i; j are consecutive triples. Using this notation we see that
a move matrix for B is an m by n matrix that is all zero except for elements of some
consecutive triple which take the values 1;−1;−1. Each consecutive triple deEnes a
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triangle inequality

at1 6 at2 + at3 : (2.4)

The deEnition of consecutive triple is extended by allowing row indices to be taken
modulo m and column indices to be taken modulo n. For example, for a 4 by 4 toric
board both t1 = 3; 1, t2 = 3; 2, t3 = 3; 4 and t1 = 3; 4, t2 = 4; 4, t3 = 1; 4 are consecutive
triples (see Fig. 2). Similarly we extend the deEnition of a consecutive string of entries
to include strings that traverse the boundary.

The {0; 1}-valued facets the solitaire cone are considerably more complex than the
0–1 facets of the dual metric cone, which are generated by cuts in the complete graph.
For a toric board B, a complete characterization of 0–1 facets of Sm×n was given in
[3]. Let a be an m by n 0–1 matrix. We deEne the 1-graph Ga on a as follows:
vertices of Ga correspond to the ones, and two ones are adjacent if the corresponding
coeHcients are in some consecutive triple where the remaining coeHcient is zero.
Note that in fact there must be at least two such triples since if (t1; t2; t3) is such a
triple then so is (t3; t2; t1). Theorem 2.1 characterizes {0; 1}-valued facets of Sm×n, see
Fig. 3 for an illustration.

Theorem 2.1. Let B be the m by n toric board. A m by n 0–1 matrix a is a facet of
Sm×n if and only if (i) no nonzero row or column contains two consecutive zeroes;
and (ii) the 1-graph Ga is connected.

Theorem 2.1 is proved in [3], and we give only a brief outline here. For the suH-
ciency, a facet generating procedure is used that makes use of the fact that any zero
in the matrix a causes the two elements on either side to be equal, by the triangle
inequalities, implying an edge in Ga. It is shown that conditions (i) and (ii) ensure the
procedure terminates with a facet. For the necessity, if condition (i) fails a violates
a triangle inequality. If condition (ii) fails, another matrix is generated that is not a
scalar multiple of a, yet satisEes the same tight triangle inequalities, contradicting the
fact that a is a facet. Theorem 2.1 is useful for proving large classes of 0–1 matrices

Fig. 2. Moves on the 4 by 4 toric board.

Fig. 3. Two pagoda functions of S4×4, only the Erst one being a facet.
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are facets. Let x=(x1; : : : ; xm) and y=(y1; : : : ; yn) be two vectors. We say the m by
n matrix a is the product of x and y if for all 16 i6m and 16 j6 n ai; j = xiyj. A
simple application of Theorem 2.1 gives:

Corollary 2.2

1. A 0–1 n-vector is a facet of the 1 by n toric board if and only if it has no pair of
consecutive zeroes; no string of ?ve or more ones; and at most one string of four
ones.

2. The product of two 0–1 facets of the 1 by m and 1 by n toric boards gives a 0–1
facet of the m by n toric board.

Proposition 2.2. Let h(n) be the number of {0; 1}-valued facets of S1×n. For n¿ 7,
(n+ 18)1:46n−86 h(n)6 (n+ 19)1:47n−6.

Proof. The formula can be veriEed directly for n6 11 by referring to the 5th column
of Table 1. We deEne an f-vector to be a {0; 1}-valued vector of length n with no 2
consecutive zeroes, no string of 4 or more ones and starting and ending with a one.
We Erst count f(n), the number of f-vectors. Direct calculation shows that: f(2)= 1,
f(3)= 2, f(4)= 2, f(5)= 4. For n¿ 6, a f-vector has the form [1 0 1 ... 1], [ 1 1
0 1 ... 1 ] or [ 1 1 1 0 1 ... 1], where the string 1 ... 1 is an f-vector. In other words,
we have f(n)=f(n− 2) + f(n− 3) + f(n− 4). It is easy to show by induction that
for n¿ 6,

1:46n−26f(n)6 1:47n: (5)

Now, for n¿ 12, by Item (1) of Corollary 3, the number h(n) of {0; 1}-valued facets
of S1×n is the number of toric {0; 1}-valued vectors of length n with no 2 consecutive
zeroes, no string of 5 or more ones, and at most one string of 4 ones. Call such
vectors h-vectors. If an h-vector has no string of 4 ones, then it either starts with
[ 0 1 ... 1], [ 1 0 1 ... ], [ 1 1 0 1 ... 1 0 ], [ 1 1 0 1 ... 1 0 1 ] or [ 1 1
1 0 1 ... 1 0 ] where the string 1 ... 1 is an f-vector. In other words, we have
2f(n − 1) + f(n − 4) + 2f(n − 5)=2f(n − 3) + 3f(n − 4) + 4f(n − 5) h-vectors
without a string of 4 ones. We have nf(n− 6) h-vectors with one string of 4 ones as
each is of the form [ ... 1 0 1 1 1 1 0 1 ...]. Therefore, the total number of h-vectors
for n¿ 8 is given by

h(n)= 2f(n− 3) + 3f(n− 4) + 4f(n− 5) + nf(n− 6): (6)

The proposition follows by substituting the asymptotic bounds for f obtained above
in this equation.

3. The binary solitaire cone and other relatives

The link with the dual metric cone and the similarities between their combinatorial
structures—see [3]—leads to the study of a dual cut cone analogue; that is, the binary
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solitaire cone BSB generated by the {0; 1}-valued facets of the solitaire cone. We
give some results and conjectures on the combinatorial and geometric properties of the
binary solitaire cone. In particular we prove that the extreme rays of SB are extreme
rays of BSB strengthening the analogy with the dual metric cone, for which the extreme
rays are also extreme rays of the dual cut cone. Other related cones are also considered.

3.1. The binary solitaire cone

The dual cut cone is generated by the {0; 1}-valued facets of the dual metric cone.
Similarly, we consider the cone generated by the {0; 1}-valued facets of the solitaire
cone. This cone is called binary solitaire cone and denoted BSB.

We present in details some small dimensional cases and give some results and
conjectures on the combinatorial and geometric properties of the binary solitaire cone.
In particular, we investigate the diameter, adjacency and incidence relationships of the
binary solitaire cone BSm×n and its dual BS∗m×n. Two extreme rays (resp. facets) of a
polyhedral cone are adjacent if they belong to a face of dimension (resp. codimension)
two. The number of rays (resp. facets) adjacent to the ray r (resp. facet F) is denoted
Ar (resp. AF). A ray and a facet are incident if the ray belongs to the facet. We denote
by Ir (resp. IF) the number of facets (resp. rays) incident to the ray r (resp. facet F).
The diameter of BSB (its dual BS∗B resp.), that is, the smallest number � such that
any two vertices can be connected by a path with at most � edges, is �(BSB) (�(BS∗B)
resp.); see Fig. 4.

Finding all extreme rays of the cone BSB (such as the 930 048 rays of BS4×4) is an
example of a convex hull or vertex enumeration problem, for which various computer
programs are available. The computational results in this paper were obtained using
the double description method cdd implemented by Fukuda [9], and the reverse search
method lrs implemented by Avis [2]. The diameters of cones were computed using
graphy implemented by Fukuda [9].

Fig. 4. Small binary toric boards.
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Theorem 3.1. The extreme rays of the solitaire cone; that is; the moves; are extreme
rays of the binary solitaire cone.

Proof. Given any extreme ray (move) c of Sm×n, let F be the intersection of all the
facets of BSm×n containing c. We want to prove that any vector r ∈F is a scalar
multiple of c.
Case m6 2: First, take m=1. For n=3; : : : ; 12 Theorem 3.1 was checked by com-

puter so we can assume that n¿ 13. All extreme rays of S1×n being equivalent up to
scrolling and reversing, we can assume that c= [−1 −1 1 0 : : : 0]. For j=4; : : : ; n,
consider the two inequalities deEned by f1

1jr6 0 and f0
1jr6 0 as given below where

the boxed value is the jth coordinate

f1
1j =1; 0; 1; 0; 1; 0; : : : ; 0; 1; 0; 1; 1 ; 1; 0; 1; 0; : : :

f0
1j =1; 0; 1; 0; 1; 0; : : : ; 0; 1; 0; 1; 0 ; 1; 0; 1; 0; : : :

Since the associated 1-graphs Gf1
1j

and Gf0
1j

are connected, Theorem 2.1 gives that

those inequalities induce 2 facets F1
1j and F0

1j of BS1×n. As clearly f1
1jc=f

0
1jc=0,

we have F1
1j ∩ F0

1j ⊂ F. Therefore, any vector r ∈F satisEes f1
1jr=f

0
1jr=0 for

j=4; : : : ; n. This implies rj =0 for j=4; : : : ; n. Moreover, the two inequalities deEned
by f1;1r6 0 and f1;2r6 0 as given below

f1;1 = 0; 1; 1; 0; 1; 0; 1; : : : f1;2 = 1; 0; 1; 0; 1; 0; 1; : : :

clearly induce 2 facets also belonging to F. It implies f1;1r=f1;2r=0, that is, r2 +
r3 = r1 + r3 = 0. In other words r= r3 × c, which completes the proof. Since the case
m=2 is almost equivalent to the case m=1, we next consider case m=3.

Case m=3: For n=3; 4; 5 Theorem 3.1 was checked by computer so we can assume
that n¿ 6. The two cases c′1;1 = c

′
1;2 =− c′1;3 =− 1 and c′′1;1 = c

′′
2;1 =− c′′3;1 =− 1 being

essentially the same, we can assume that c= c′. For i=1; 2; 3 and j=4; : : : ; n, consider
the inequalities deEned by f1

ijr6 0 (f0
ijr6 0 resp.) as given below where the boxed

value is the ijth coordinate. The coordinates of f0
ij diDer from f1

ij only for the ijth
coordinate which is set to 0.

f1
ij =



1 0 1 1 : : : 1 0 1 1 0 1 1 1 0 1 1 0 : : :

0 1 1 0 : : : 0 1 1 0 1 1 1 0 1 1 0 1 : : :

1 1 0 1 : : : 1 1 0 1 1 1 0 1 1 0 1 1 : : :


 :

Similarly to the case m6 2, the associated 1-graphs Gf1
ij
and Gf0

ij
are connected and,

up to a rotation along the axis i=2, we have f1
ijc

′ =f0
ijc

′ =0; that is, the induced
facets satisfy F1

ij ∩ F0
ij ⊂ F. Therefore, any vector r ∈F satisEes f1

ijr=f
0
ijr=0 for

i=1; 2; 3 and j=4; : : : ; n. This implies rij =0 for i=1; 2; 3 and j=4; : : : ; n. Slightly
modiEed f1

ij and f0
ij for i=2; 3 and j=1; 2; 3 give rij =0 for i=2; 3 and j=1; 2; 3.
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Moreover, the two inequalities deEned by f1;1r6 0 and f1;2r6 0 as given below

f1;1 =



1 0 1 0 1 : : : 0 1 0 : : :
0 0 0 0 0 : : : 0 0 0 : : :
1 0 1 0 1 : : : 0 1 0 : : :


 f1;2 =



0 1 1 0 1 : : : 1 0 1 : : :
0 0 0 0 0 : : : 0 0 0 : : :
0 1 1 0 1 : : : 1 0 1 : : :




implies r1;1 = r1;2 =− r1;3, that is, r= r3 × c′, which completes the proof.
Case m¿ 4: Theorem 3.1 was checked by computer for n=4 so we can assume

that n¿ 5. We can take cij =0 except c1;1 = c1;2 = − c1;3 = − 1. For i=3; : : : ; m − 1
or j=4; : : : ; n, consider the inequalities deEned by f1

ijr6 0 (f0
ijr6 0 resp.) as given

below where the boxed value is the ijth coordinate. The coordinates of f0
ij diDer from

f1
ij only for the ijth coordinate which is set to 0.

f1
ij =




1 0 1 0 : : : 0 1 0 1 0 1 1 1 0 1 0 0 : : :
0 0 0 0 : : : 0 0 0 0 0 0 0 0 0 0 0 0 : : :
...

...
...

... · · · ...
...

...
...

...
...

...
...

...
...

...
... · · ·

1 0 1 0 : : : 0 1 0 1 0 1 1 1 0 1 0 0 : : :
0 0 0 0 : : : 0 0 0 0 0 0 0 0 0 0 0 0 : : :
1 0 1 0 : : : 0 1 0 1 0 1 1 1 0 1 0 0 : : :

1 0 1 0 : : : 0 1 0 1 0 1 1 1 0 1 0 0 : : :

1 0 1 0 : : : 0 1 0 1 0 1 1 1 0 1 0 0 : : :
0 0 0 0 : : : 0 0 0 0 0 0 0 0 0 0 0 0 : : :
1 0 1 0 : : : 0 1 0 1 0 1 1 1 0 1 0 0 : : :
...

...
...

... · · · ...
...

...
...

...
...

...
...

...
...

...
... · · ·




:

Clearly, we have f1
ijc=f

0
ijc=0. By Elling the gaps with the following {0; 1}-valued

matrices (or their transposes), the associated 1-graphs Gf1
ij
and Gf0

ij
are both connected.

Therefore, any vector r ∈F satisEes rij =0 for i=3; : : : ; m− 1 or j=4; : : : ; n.



1 0 1 0 : : : 1 0 1 1 1 0 1 0 : : :
0 0 0 0 : : : 0 0 0 0 0 0 0 0 : : :
1 0 1 0 : : : 1 0 1 1 1 0 1 0 : : :
0 0 0 0 : : : 0 0 0 0 0 0 0 0 : : :
...

...
...

... · · · ...
...

...
...

...
...

...
... · · ·







1 0 1 0 : : : 1 0 1 1 1 0 1 0 : : :
1 0 1 0 : : : 1 0 1 1 1 0 1 0 : : :
0 0 0 0 : : : 0 0 0 0 0 0 0 0 : : :
1 0 1 0 : : : 1 0 1 1 1 0 1 0 : : :
...

...
...

... · · · ...
...

...
...

...
...

...
... · · ·



:

Slightly modiEed f1
ij and f0

ij for i=2; m and j=1; 2; 3 give rij =0 for i=2; m and
j=1; 2; 3. For example, the following inequalities set r2;2 to 0

f1
2;2 =




0 1 1 1 0 1 0 1 : : :

1 1 1 0 1 0 1 0 : : :

0 1 0 1 0 1 0 1 : : :
1 0 1 0 1 0 1 0 : : :
0 1 0 1 0 1 0 1 : : :
...

...
...

...
...

...
...

... · · ·




f0
2;2 =




0 1 1 1 0 1 0 1 : : :

1 0 1 0 1 0 1 0 : : :

0 1 0 1 0 1 0 1 : : :
1 0 1 0 1 0 1 0 : : :
0 1 0 1 0 1 0 1 : : :
...

...
...

...
...

...
...

... · · ·




:
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Finally, the following two inequalities set r1;1 = r1;2 =− r1;3,

f1;1 =




1 0 1 0 1 : : :
0 0 0 0 0 : : :
1 0 1 0 1 : : :
...

...
...

...
... · · ·

0 0 0 0 0 : : :




f1;2 =




0 1 1 0 1 : : :
0 0 0 0 0 : : :
0 1 1 0 1 : : :
...

...
...

...
... · · ·

0 0 0 0 0 : : :




that is, r= r3 × c, which completes the proof.

Corollary 3.2. The binary solitaire cone is full-dimensional.

Out of the 930 048 extreme rays of BS4×4, the 64 extreme rays of S4×4, that is,
the moves, reached the highest incidence Imax

r =168 which is almost three times larger
than the second highest incidence I submax

r =57. Similarly, out of the 101 444 extreme
rays of BS3×5, the 15 vertical moves of S3×5, reached the highest adjacency Amax

r =14
607 while the average adjacency is Aave

r 	 33:16. These computational results and other
similarities with the metric cone—see [3]—lead us to the following conjectures:

Conjecture 3.3

1. For n¿3 and m¿3; the moves form a dominating set in the skeleton of BSm×n.
2. The incidence of the moves is maximal in the skeleton of BSm×n.
3. For m; n large enough; at least one ray r of BSm×n is simple; (that is; Ir =mn−1).

Item (1) of Conjecture 3.3 holds for BS3×4 and is false for m6 2. The smallest 1
by n board for which the conjecture fails is the 1 by 10 board. Item (2) holds for all
cones presented in Fig. 4 and is false if we replace the incidence by the adjacency as,
for example, for BS3×5. If true, item (3) would imply that the edge connectivity, the
minimal incidence and the minimal adjacency of the skeleton of BSm×n are equal to
nm− 1. This holds for BS3×4, BS3×5 and BS4×4.

3.2. The trellis solitaire cone

The {0; 1}-valued facets of the solitaire cone have much less structure than the set
of cut metrics. In fact, the cut metrics are related to products of vectors of length n.
This motivates the next deEnition. Let f and g be {0; 1}-valued vectors of length m
and n respectively, and let cij =fi · gj for i=1; : : : ; m, j=1; : : : ; n. If c · x6 0 deEnes
a facet of BSm×n, we call it a trellis facet. The trellis solitaire cone TSB is generated
by all of the trellis facets of the binary solitaire cone BSB. See Item (2) of Corollary
2.2 for an easy construction of trellis facets. For example, among the two facets of
BS3×5 given in Fig. 5, only the right one is a trellis facet.

Conjecture 3.4. The binary trellis solitaire cone is full-dimensional.
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Fig. 5. A facet and a trellis facet of BS3×5.

Fig. 6. The extreme ray r of CS1×5 corresponding to the move from c to c′.

Fig. 7. Small complete toric boards.

3.3. The complete solitaire cone

The complete solitaire cone CSB is induced by a variation of the Solitaire game. To
the classical moves we add the moves which consist of removing two pegs surrounding
an empty hole and placing one peg in this empty hole as shown in Fig. 6. The incidence
and adjacency relationships and diameters of small dimensional complete solitaire cones
are presented in Fig. 7.

Two rays are called strongly con<icting in there exist two pairs i; j and k; l such
that the two rays have nonzero coordinates of distinct signs at positions i; j and k; l
(respectively i; j). We have CS3×3 = S3×3 and, by analogy with the classical solitaire
cone case, we conjecture:

Conjecture 3.5. For n¿ 7 and m¿ 7 a pair of extreme rays of CSm×n are adjacent
if and only if they are not strongly con<icting.

If true, Conjecture 3.5 would imply that �(CSm×n)= 2.

3.4. The binary complete solitaire cone

In the same way as we did for the solitaire cone, we consider the cone generated by
the facets of the complete solitaire cone CSB whose coordinates are, up to a constant
multiplier, {0; 1}-valued. This cone is called complete binary solitaire cone and denoted
as BCSB. The incidence and adjacency relationships of small dimensional complete
binary solitaire cones BCSB are presented in Fig. 8.



14 D. Avis, A. Deza /Discrete Applied Mathematics 115 (2001) 3–14

Fig. 8. Small binary complete toric boards.

4. Conclusion

Theorem 3.1 strengthens the analogy of the solitaire cone with the dual metric cone,
for which the extreme rays are also extreme rays of the dual cut cone. On the other
hand, so far we have not yet found an analogue of the hypermetric facets of the cut
cone, that generalize the triangle inequalities. Another open question is the determina-
tion of a tighter relaxation of the solitaire cone SB by some cuts analogue. The trellis
solitaire cone TSB is a candidate as well as the cone generated by the {0; 1}-valued
facets with the minimal number of ones. For S4×4 and S3×i: i=3; 4; 5, these facets
have maximal incidence and adjacency in the skeleton of S∗m×n.
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