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a b s t r a c t

As shown in Deza et al. (2018), for a periodic review Assemble-To-Order (ATO) system
that aims to maximize reward, lowering the degree of component commonality may
yield a higher Type-II service level. This is achieved via separating inventories of all the
shared components for different products. We further study the optimal bill-of-materials
(BOM) structure for two-product ATO systems with arbitrary number of components.
The inventory of a common component can be dedicated or shared between different
products. We show that an optimal BOM can be found between the following two
extremal configurations: either two products share all common components, or they
do not share any common component.

Crown Copyright© 2019 Published by Elsevier B.V. All rights reserved.

1. Introduction

Akçay and Xu [2] studied a periodic review assemble-to-order (ATO) system with an independent base stock policy and
a first-come-first-served (FCFS) allocation rule. They formulated a two-stage stochastic integer nonlinear program where
the base stock levels and the component allocation are optimized jointly. They showed that the component allocation
problem is an NP-hard multidimensional knapsack problem and proposed an order-based component allocation heuristic
rule that commits a component to an order only if it leads to the fulfillment of the order within the committed time
window. They concluded that their order-based component allocation rule outperforms the component-based allocation
rules, such as the fixed-priority and fair-shared rules, see [1,11]. Huang and de Kok [7] studied periodic-review ATO
systems with linear holding and backlogging costs, installation stock policy, and a FCFS allocation rule. They introduced the
concept of multimatching which refers to the coupling of multiple component units and product units. They showed that
the FCFS allocation rule decouples the problem of optimal component allocation over time into deterministic period-by-
period component allocation optimization problems. Huang [6] evaluated the impact of two non-FCFS allocation rules in a
periodic review ATO system with component base stock policy; i.e., the last-come-first-served-within-one-period rule and
the product-based-priority-within-time-windows rule. He proposed three benchmark mathematical programming models
to test the non-FCFS allocation rules and concluded that both rules can not only outperform FCFS allocation rule in certain
areas, but also better address the differences in customer service requirements. Doğru et al. [5] investigated a continuous
review W system and concluded that the FCFS base stock policy is typically suboptimal. They also provided a lower bound
for the optimal objective value and developed a policy attaining the lower bound under some symmetry condition for the
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cost parameters and a so-called balanced capacity condition for the solution. Jaarsveld and Scheller–Wolf [8] developed a
heuristic algorithm for large scale continuous review ATO systems which improves as the average newsvendor fractiles
increase. They showed that, for large scale ATO systems, the best FCFS rule is nearly optimal, and proposed a no-holdback
allocation rule which can outperform the best FCFS rule. Deza et al. [4] studied the impact of component commonality
on periodic review ATO systems. They showed that lowering component commonality may yield a higher type-II service
level. The lower degree of component commonality is achieved via separating inventories of the same component for
different products. They substantiated this property via computational and theoretical approaches. They showed that for
low service levels the use of separate inventories of the same component for different products could achieve a higher
reward than with shared inventory. Finally considering a simple ATO system consisting of one component shared by
two products, they characterized the budget ranges such that the use of separate inventories is beneficial, as well as the
budget ranges such that component commonality is beneficial. For more details and literature review, please refer to Deza
et al. [4] and Liang [10].

A natural research question arising from [4] is how to allocate inventories in ATO systems optimally to achieve higher
reward. In this paper, we study this problem for a periodic review ATO system with an independent base policy and a
FCFS allocation rule. We analyze the formulation of Akçay and Xu [2] which jointly optimizes the base stock levels and
the component allocation. In particular, we consider two-product stochastic models with arbitrary number of common
components and show that either full component commonality or non-component commonality does not work worse
than partial component commonality. Components with common function can be replaced by a single one; such universal
component is called common. A common component is called dedicated if it is used to assemble only one product, and
shared if it is shared by more than one product. A product-specific component that is irreplaceable is called non-common.
In Section 2, we detail the formulations. The main results are presented in Section 3, the proofs are given in Section 4,
and a few future directions are presented in Section 5.

2. The stochastic programming model

2.1. Akçay and Xu formulation

Following the model proposed by Akçay and Xu [2], we assume:

(1) a periodic review system,
(2) an independent base stock policy is used for each component,
(3) the product demands are satisfied by a FCFS rule,
(4) the product demands are correlated within each period, while the demands over different periods are independent,
(5) the replenishment lead time for each component is constant,
(6) a product reward is collected if the assembly is completed within the given time window.

In addition, the following sequence of events is assumed for each period: inventory position reviewed → new
replenishment order of components placed → earlier component replenishment order arrive → demand realized →

component allocated and product assembled → associated reward accounted for.
In this model, assembly takes zero time while component lead times are greater than zero. The model is based on a

multi-matching approach proposed by Huang [6] and Huang and de Kok [7] where multiple components are matched
with multiple products to satisfy demands. In each period within the time window, reward are collected by satisfying
product demands. We recall that the time window is the number of periods between the order receiving period and the
order fulfillment period. In particular, a time window equal to 0 means that the demand must be fulfilled within the
period the order is received; that is, we must have enough components to satisfy the demand within that period in order
to collect reward. The base stocks of the ATO system are constrained by a pre-set overall budget. The approach is based
on a two-stage decision model. The first stage consists of determining a base stock level for each component, and the
second stage consists of determining products that need to be assembled in each period with respect to some constraints
reflecting the inventory availability. The first stage decisions are made before the second stage decisions following a two-
stage stochastic programming framework, see Birge and Louveaux [3]. The objective of the approach is to maximize the
expected total reward collected from the products assembled within given time windows. Note that while all products are
eventually assembled within L+1 periods, the reward are collected only within the pre-set time windows. The notations
are summarized in Table 1.

The second stage corresponds to the allocation problem
(
Alloc(S, ξ )

)
, where S = (Si) is the vector representing base

stock levels, ξ = {Pj,k|j = 1, . . . ,m; k = 0, −1, . . . ,−L} is the vector representing random demands, and Oi,k is the
number of component i available at period k. Note that Oi,k = (Si − DLi−k

i )+ for 0 ≤ k ≤ Li where DLi−k
i =

∑Li−k
s=0 Di,−s, and

Oi,k = Di,0 for Li + 1 ≤ k ≤ L + 1 are inferred from the base stock policy and a FCFS rule, see Huang [6] and Huang and
de Kok [7].
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Table 1
Notations.
n Number of components
m Number of products
i, i′ Index of component
j Index of product
Si Base stock level of component i
ci Unit base stock level cost of component i
Li Lead time of component i
L Maximum lead time among all components; that is, L = maxi Li
wj Time window of product j
k Index of period k corresponding to the duration [k, k + 1); k = 0 implies the current period;

negative values of k imply previous periods
xj,k Number of product j assembled in period k
rj,k Reward for satisfying the demand for product j in period k
ai,j Number of component i used to assemble one unit of product j; that is, the bill-of-materials

(BOM)
B The budget, i.e.,

∑
i (ci Si) ≤ B

Pj,k Demand of product j at period k
Pj Demand of product j at the current period; that is, Pj,0
Di,k Demand of component i at period k; that is, Di,k =

∑
j

(
ai,j Pj,k

)
M Number of independent samples
N Number of realizations in one sample
l Index of sample l = 1, . . . ,M
h Index of realization h = 1, . . . ,N
d Number of dedicated components; d = 0, respectively d = n implies a full commonality,

respectively non-commonality, configuration
x+ The positive part of x; that is, x+

= (|x|+x)/2

max
m∑
j=1

wj∑
k=0

(rj,k xj,k)
(
Alloc(S, ξ )

)
wj∑
k=0

xj,k ≤ Pj j = 1, . . . ,m

k∑
µ=0

m∑
j=1

(ai,j xj,µ) ≤ Oi,k i = 1, . . . , n, k = 0, . . . , L + 1

xj,k ∈ Z+ j = 1, . . . ,m, k = 0, . . . , L + 1

The first set of constraints guarantees that assembly will satisfy customer demand. Please note that wj ≤ L + 1.
Consequently, replacing the constraint

∑wj
k=0 xj,k ≤ Pj by

∑L+1
k=0 xj,k = Pj would yield the same optimal reward. The second

set of constraints – called inventory availability constraints – guarantees that assembly could only happen when there are
enough component inventories. While an optimal allocation can be computed for a given base stock level S and demand ξ ,
we still need to determine the optimal base stock levels. Thus, we use the two-stage stochastic integer program

(
Joint(B)

)
where the first stage determines the base stock levels and the second stage maximizes the expectation of the component
allocations:

max IE[Alloc(S, ξ )]
(
Joint(B)

)
n∑

i=1

(ci Si) ≤ B

Si ∈ Z+ i = 1, . . . , n

We recall in Section 2.2 the sample average approximation method used to solve
(
Joint(B)

)
.

2.2. Sample average approximation method

The sample average approximation (SAA) method, see Kleywegt et al. [9], consists of the following steps:
(i) generate M independent samples for l = 1, . . . ,M with N realizations for each sample. The vector ξN

l =

(ξ (ω1
l ), ξ (ω

2
l ), . . . , ξ (ω

N
l )) represents the N realizations of the lth sample,

(ii) solve the optimization problem (INLP ) for each sample, which is the associated deterministic version of
(
Joint(B)

)
.

where the objective function is set to 1
N

∑N
h=1 Alloc(S, ξ (ω

h
l )) as described below. Note that (INLP ) is non-linear not only

due to the integrality constraints but also due to the right hand side of the inventory availability constraints. Let Ŝl denote
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the optimal base stock levels for (INLP ) and Ĝ(Ŝl) denote its optimal objective value.

max
1
N

N∑
h=1

m∑
j=1

wj∑
k=0

(rj,k xhj,k)
(
INLP

)
wj∑
k=0

xhj,k ≤ Ph
j j = 1, . . . ,m, h = 1, . . . ,N

k∑
µ=0

m∑
j=1

(ai,j xhj,µ) ≤ Oh
i,k i = 1, . . . , n, k = 0, . . . , L + 1, h = 1, . . . ,N

n∑
i=1

(ci Si) ≤ B

Si ∈ Z+ i = 1, . . . , n
xhj,k ∈ Z+ j = 1, . . . ,m, k = 0, . . . , L + 1, h = 1, . . . ,N

(iii) generate a different sample ξN ′

with N ′
≫ N realizations and compare the performance among all the base stock

vectors Ŝl solved in (ii) by solving
(
Alloc(S, ξN ′

)
)
with S = Ŝl. Let Ḡ(Ŝl) be the new optimal objective value.

(iv) select the optimal base stock vector Ŝ∗ achieving the best performance among all the base stock vectors; that is,
Ŝ∗

= argmax{Ḡ(Ŝl) : l = 1, . . . ,M}.
Let ĜM =

1
M

∑M
l=1 Ĝ(Ŝl), ḠN ′ = Ḡ(Ŝ∗), and G∗ be the optimal objective value of

(
Joint(B)

)
. Since ḠN ′ ≤ G∗

≤ ĜM under
certain conditions for N,M,N ′, see Birge and Louveaux [3], ḠN ′ and ĜM are, respectively, a lower and an upper bound for
G∗. For more details concerning the statistical testing of optimality for the SAA method, and the selection of N , M , and
N ′, see Kleywegt et al. [9]. Note that Oi,k = (Si − DLi−k

i )+ is a piecewise linear function; and we use the standard Big-M
method to check whether (Si − DLi−k

i ) is positive.

3. Theoretical results for two-product ATO systems

A few additional notations are required in the remainder of the paper. Let (BOMN
◦
), (BOMN

•
) and (BOMN

•
) denote,

respectively, non-commonality, full commonality, and partial commonality configurations. Let x◦h
j , x•h

j and x•h
j denote the

number of product j assembled at realization h for, respectively, (BOMN
◦
), (BOMN

•
) and (BOMN

•
). Let S◦

j_i and S•

j_i denote,
respectively, the base stock levels of dedicated component i for product j for (BOMN

◦
) and (BOMN

•
). Let S•

i′ and S•

i′ denote,
respectively, the base stock levels of common component i′ for (BOMN

•
) and (BOMN

•
). Finally, let cj_i denote the cost of

component i for product j.

3.1. Two-product system with full overlap

In the full overlap configuration, product 1 and product 2 use exactly the same set of components. To simplify the
analysis, all the product time windows are set to 0 and BOMs are set to 1. In other words, each unit product only contains
one unit component, and the reward can be collected only if the assembly happens in the same period of the arrival of
the demand.

3.1.1. Non-commonality configuration (BOMN
◦
)

The non-commonality configuration consists of two products, each comprising n different components, as shown in
Table 2 where C j

i denotes dedicated component i used to assemble product j.

Table 2
BOM: non-commonality configuration with full overlap.

C1
1 C2

1 C1
2 C2

2 . . . C1
n C2

n

P1 1 0 1 0 . . . 1 0
P2 0 1 0 1 . . . 0 1

The corresponding SAA formulation (BOMN
◦
) is as follows:

max
1
N

N∑
h=1

(r1 x◦h
1 + r2 x◦h

2 )
(
BOMN

◦

)
x◦h
1 ≤ (S◦

1_i − Dh
1)

+ i = 1, . . . , n, h = 1, . . . ,N

x◦h
2 ≤ (S◦

2_i − Dh
2)

+ i = 1, . . . , n, h = 1, . . . ,N

x◦h
1 ≤ Ph

1 , x◦h
2 ≤ Ph

2 h = 1, . . . ,N
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n∑
i=1

(
c1_i S◦

1_i + c2_i S◦

2_i

)
≤ B

x◦h
1 , x◦h

2 , S◦

1_i, S
◦

2_i ∈ Z+ i = 1, . . . , n, h = 1, . . . ,N

3.1.2. Full commonality configuration (BOMN
•
)

In the full commonality configuration, components C1
i and C2

i in (BOMN
◦
) are replaced by a common component Ci

where i = 1, . . . , n. Therefore there are n common components in total, see Table 3.

Table 3
BOM: full commonality configuration with full overlap.

C1 C2 C3 . . . Cn

P1 1 1 1 . . . 1
P2 1 1 1 . . . 1

The corresponding SAA formulation (BOMN
•
) is as follows:

max
1
N

N∑
h=1

(r1 x•h
1 + r2 x•h

2 )
(
BOMN

•

)
x•h
1 + x•h

2 ≤ (S•

i′ − Dh
1 − Dh

2)
+ i′ = 1, . . . , n, h = 1, . . . ,N

x•h
1 ≤ Ph

1 , x•h
2 ≤ Ph

2 h = 1, . . . ,N
n∑

i′=1

ci′ S•

i′ ≤ B

x•h
1 , x•h

2 , S•

i′ ∈ Z+ i′ = 1, . . . , n, h = 1, . . . ,N

3.1.3. Partial commonality configuration (BOMN
•
)

In a partial commonality configuration, let I be a nonempty and strict subset of {1, 2, . . . , n} such that components C1
i

and C2
i in (BOMN

◦
) are replaced by a common component Ci for i ∈ I . Without loss of generality, we can assume that 1 /∈ I

and n ∈ I , see Table 4 where d = n − |I| is the number of dedicated components.

Table 4
BOM: partial commonality configuration.

C1
1 C2

1 . . . C1
d C2

d Cd+1 Cd+2 . . . Cn−1 Cn

P1 1 0 . . . 1 0 1 1 . . . 1 1
P2 0 1 . . . 0 1 1 1 . . . 1 1

The corresponding SAA formulation (BOMN
•
) is as follows:

max
1
N

N∑
h=1

(r1 x•h
1 + r2 x•h

2 )
(
BOMN

•

)
x•h
1 ≤ (S•

1_i − Dh
1)

+ i = 1, . . . , d, h = 1, . . . ,N

x•h
2 ≤ (S•

2_i − Dh
2)

+ i = 1, . . . , d, h = 1, . . . ,N

x•h
1 + x•h

2 ≤ (S•

i′ − Dh
1 − Dh

2)
+ i′ = d + 1, . . . , n, h = 1, . . . ,N

x•h
1 ≤ Ph

1 , x•h
2 ≤ Ph

2 h = 1, . . . ,N
d∑

i=1

(
c1_i S•

1_i + c2_i S•

2_i

)
+

n∑
i′=d+1

ci′ S•

i′ ≤ B

x•h
1 , x•h

2 , S•

1_i, S
•

2_i, S
•

i′ ∈ Z+ i = 1, . . . , n, i′ = d + 1, . . . , n, h = 1, . . . ,N

3.2. Two-product system with partial overlap

In a partial overlap configuration, some components are used only for product 1 or product 2 by design, therefore
these components are not allowed to be replaced by common components.
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3.2.1. Non-commonality configuration (BOMN
◦
)

The non-commonality configuration consists of two products, product 1 comprising n1 different components and
product 2 comprising n2 different components, see Table 5.

Table 5
BOM: non-commonality configuration with partial overlap.

C1
n+1 . . . C1

n1 C1
1 C2

1 . . . C1
n C2

n C2
n+1 . . . C2

n2

P1 1 . . . 1 1 0 . . . 1 0 0 . . . 0
P2 0 . . . 0 0 1 . . . 0 1 1 . . . 1

Let B◦

1 =
∑n1

i1=n+1 c1_i1 S
◦

1_i1
, and B◦

2 =
∑n2

i2=n+1 c2_i2 S
◦

2_i2
. Then the corresponding SAA formulation (BOMN

◦
) is as follows:

max
1
N

N∑
h=1

(r1 x◦h
1 + r2 x◦h

2 )
(
BOMN

◦

)
x◦h
1 ≤ (S◦

1_i1 − Dh
1)

+ i1 = n + 1, . . . , n1, h = 1, . . . ,N

x◦h
2 ≤ (S◦

2_i2 − Dh
2)

+ i2 = n + 1, . . . , n2, h = 1, . . . ,N

x◦h
1 ≤ (S◦

1_i − Dh
1)

+ i = 1, . . . , n, h = 1, . . . ,N

x◦h
2 ≤ (S◦

2_i − Dh
2)

+ i = 1, . . . , n, h = 1, . . . ,N

x◦h
1 ≤ Ph

1 , x◦h
2 ≤ Ph

2 h = 1, . . . ,N
n∑

i=1

(
c1_i S◦

1_i + c2_i S◦

2_i

)
+ B◦

1 + B◦

2 ≤ B

x◦h
1 , x◦h

2 , S◦

1_i, S
◦

2_i, ∈ Z+ i = 1, . . . , n, h = 1, . . . ,N
S◦

1_i1 , S
◦

2_i2 , ∈ Z+ i1 = n + 1, . . . , n1, i2 = n + 1, . . . , n2

3.2.2. Full commonality configuration (BOMN
•
)

In the full commonality configuration, component C1
i and C2

i in (BOMN
◦
) are replaced by a common component Ci where

i = 1, . . . , n. Therefore there are n common components in total, see Table 6.

Table 6
BOM: full commonality configuration with partial overlap.

C1
n+1 . . . C1

n1 C1 C2 C3 . . . Cn C2
n+1 . . . C2

n2

P1 1 . . . 1 1 1 1 . . . 1 0 . . . 0
P2 0 . . . 0 1 1 1 . . . 1 1 . . . 1

Let B•

1 =
∑n1

i1=n+1 c1_i1 S
•

1_i1
, and B•

2 =
∑n2

i2=n+1 c2_i2 S
•

2_i2
. Then the corresponding SAA formulation (BOMN

•
) is as follows:

max
1
N

N∑
h=1

(r1 x•h
1 + r2 x•h

2 )
(
BOMN

•

)
x•h
1 ≤ (S•

1_i1 − Dh
1)

+ i1 = n + 1, . . . , n1, h = 1, . . . ,N

x•h
2 ≤ (S•

2_i2 − Dh
2)

+ i2 = n + 1, . . . , n2, h = 1, . . . ,N

x•h
1 + x•h

2 ≤ (S•

i′ − Dh
1 − Dh

2)
+ i′ = 1, . . . , n, h = 1, . . . ,N

x•h
1 ≤ Ph

1 , x•h
2 ≤ Ph

2 h = 1, . . . ,N
n∑

i′=1

ci′ S•

i′ + B•

1 + B•

2 ≤ B

x•h
1 , x•h

2 , S•

i′ ∈ Z+ i′ = 1, . . . , n, h = 1, . . . ,N
S•

1_i1 , S
•

2_i2 , ∈ Z+ i1 = n + 1, . . . , n1, i2 = n + 1, . . . , n2

3.2.3. Partial commonality configuration (BOMN
•
)

In a partial commonality configuration, let I be a nonempty and strict subset of {1, 2, . . . , n} such that components C1
i

and C2
i in (BOMN

◦
) are replaced by a common component Ci for i ∈ I . Without loss of generality, we can assume that 1 /∈ I

and n ∈ I , see Table 7 where d = n − |I| is the number of dedicated components.
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Table 7
BOM: partial commonality configuration with partial overlap.

C1
n+1 . . . C1

n1 C1
1 C2

1 . . . C1
d C2

d Cd+1 . . . Cn C2
n+1 . . . C2

n2

P1 1 . . . 1 1 0 . . . 1 0 1 . . . 1 0 . . . 0
P2 0 . . . 0 0 1 . . . 0 1 1 . . . 1 1 . . . 1

Let B•

1 =
∑n1

i1=n+1 c1_i1 S
•

1_i1
, and B•

2 =
∑n2

i2=n+1 c2_i2 S
•

2_i2
. Then the corresponding SAA formulation (BOMN

•
) is as follows:

max
1
N

N∑
h=1

(r1 x•h
1 + r2 x•h

2 )
(
BOMN

•

)
x•h
1 ≤ (S•

1_i1 − Dh
1)

+ i1 = n + 1, . . . , n1, h = 1, . . . ,N

x•h
2 ≤ (S•

2_i2 − Dh
2)

+ i2 = n + 1, . . . , n2, h = 1, . . . ,N

x•h
1 ≤ (S•

1_i − Dh
1)

+ i = 1, . . . , d, h = 1, . . . ,N

x•h
2 ≤ (S•

2_i − Dh
2)

+ i = 1, . . . , d, h = 1, . . . ,N

x•h
1 + x•h

2 ≤ (S•

i′ − Dh
1 − Dh

2)
+ i′ = d + 1, . . . , n, h = 1, . . . ,N

x•h
1 ≤ Ph

1 , x•h
2 ≤ Ph

2 h = 1, . . . ,N
d∑

i=1

(
c1_i S•

1_i + c2_i S•

2_i

)
+

n∑
i′=d+1

ci′ S•

i′ + B•

1 + B•

2 ≤ B

x•h
1 , x•h

2 ∈ Z+ h = 1, . . . ,N
S•

1_i, S
•

2_i, S
•

i′ ∈ Z+ i = 1, . . . , n, i′ = d + 1, . . . , n
S•

1_i1 , S
•

2_i2 , ∈ Z+ i1 = n + 1, . . . , n1, i2 = n + 1, . . . , n2

3.3. Main theorem and examples contrasting and comparing (BOMN
◦
) and (BOMN

•
)

Before stating Theorem 1 in Section 3.3.4, we provide some intuition via simple examples illustrating that a feasible
allocation for partial commonality can be infeasible for full commonality or non-commonality, and that non-commonality
can be beneficial over full commonality under some conditions.

3.3.1. An allocation feasible for partial commonality but infeasible for full commonality
Due to the plus sign in the (BOMN

•
) and (BOMN

•
) formulations, x•h

1 ≤ (S•

1_i − Dh
1)

+ and x•h
2 ≤ (S•

2_i − Dh
2)

+ do not always
imply that x•h

1 + x•h
2 ≤ (S•

i′ −Dh
1 −Dh

2)
+. Assume that S•

i′ > S•

1_i + S•

2_i in the (BOMN
•
) formulation and consider the following

example:
Partial commonality: Let S•

1_i − Dh
1 > 0, S•

2_i − Dh
2 ≤ 0 and S•

i′ − Dh
1 − Dh

2 > 0; then x•h
1 > 0 and x•h

2 = 0 forms a feasible
allocation for partial commonality.
Full commonality: Let S•

i′ = S•

1_i + S•

2_i < S•

i′ and then it is possible to have S•

i′ − Dh
1 − Dh

2 ≤ 0 for i′ = 1, . . . , d. Therefore,
x•h
1 = 0 and x•h

2 = 0 is the only feasible allocation for full commonality.

3.3.2. Non-commonality can be beneficial over full commonality
Consider an ATO system consisting of 2 components shared by 2 products, and assume that B = 10, c1 = c2 = r1 =

r2 = 1,N = 2,D1
1 = 1,D1

2 = 4, P1
1 = P1

2 = 1,D2
1 = 2,D2

2 = 3, and P2
1 = P2

2 = 1.
Full commonality: For both realizations, 5 units C1 and 5 units C2 are used to fulfill previous orders and, at the current
period, there is no component available for further assembly. Therefore, x•h

1 = x•h
2 = 0 and the optimal value is 0.

Non-commonality: Let S◦

1_1 = S◦

1_2 = 2 and S◦

2_1 = S◦

2_2 = 3. For the first realization, 1 unit C1
1 , 1 unit C1

2 and all 3 units C2
1

and 1 unit C2
2 are used to fulfill previous orders. At the current period, there are 1 unit C1

1 and 1 unit C1
2 still available.

Thus, x◦1
1 = 1. For the second realization, all components are used to fulfill previous orders. Thus, x◦2

1 = 0 = x◦2
2 = 0 and

the objective value is 1.

3.3.3. An allocation feasible for partial commonality but infeasible for non-commonality
Assume that S•

i′ < S•

1_i + S•

2_i in the (BOMN
•
) formulation and consider the following example:

Partial commonality: Let S•

1_i − Dh
1 > 0, S•

2_i − Dh
2 > 0 and S•

i′ − Dh
1 − Dh

2 > 0; then x•h
1 > 0 and x•h

2 > 0 forms a feasible
allocation for partial commonality.
Non-commonality: Let S◦

1_i + S◦

2_i = S•

i′ < S•

1_i + S•

2_i and then it is possible to have S◦

1_i − Dh
1 ≤ 0 for i = d + 1, . . . , n.

Therefore x◦h
1 = 0 and x◦h

2 > 0 is a feasible allocation for full commonality.
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All plus signs in the (BOMN
•
) formulation can be removed for this example. Thus, any feasible allocation for partial

commonality is feasible for full commonality; that is, full commonality performs at least as well as non-commonality for
such instances.

3.3.4. Main theorem
The existence of partial commonality structure makes possible ATO systems more challenging and significantly

increases the number of possible BOMs. Theorem 1 states that an optimal BOM can be found by assuming either the
full commonality or the non-commonality configuration. Consequently, a search through possibly exponential number of
BOMs can be avoided.

Theorem 1. Given a budget B, let x•h
1

∗ and x•h
2

∗ denote the optimal solutions of (BOMN
•
) for h = 1, . . . ,N. Then, x•h

1
∗ and

x•h
2

∗ are feasible solutions in either (BOMN
•
) or (BOMN

◦
).

4. Proof of Theorem 1

4.1. Two-product system with full overlap

Let xj,h, yj,h and zj,h denote, respectively, a feasible solution for product j in realization h for (BOMN
◦
), (BOMN

•
) and

(BOMN
•
). In (BOMN

•
), due to the symmetry of the structure, we can assume, at optimality, that the base stock levels of the

dedicated components for product 1 are equally distributed; that is, S•

1_iα
∗

= S•

1_iβ
∗, where 1 ≤ iα ≤ iβ ≤ d. This is also

true for the dedicated components for product 2 and shared components. The base stock levels are independent of the
component indexes i and i′, and therefore we use the following additional notations in Section 4. Let Yj and Y denote,
respectively, the base stock levels of any dedicated component for product j and any shared component. Recall that a
superscripted ∗ indicates an optimal solution. Let Y ∗

j denote an optimal base stock level of any dedicated component for
product j; that is, S•

1_i
∗

= Y ∗

1 and S•

2_i
∗

= Y ∗

2 for all i. Finally, let Y ∗ denote an optimal base stock level of any shared
component; that is, S•

C_i
∗

= Y ∗ for all i′.
We have the following assumptions:

1. While proving y∗

1,h and y∗

2,h are feasible in (BOMN
◦
), let S◦

1_i = Y ∗

1 and S◦

2_i = Y ∗

2 when i = 1, . . . , d; S◦

1_i + S◦

2_i = Y ∗,
S◦

1_iα = S◦

1_iβ
and S◦

2_iα = S◦

2_iβ
when i, iα, iβ = d+1, . . . , n. To simplify the notation, let Xj and Uj denote, respectively,

the base stock levels of dedicated components for product j for (BOMN
◦
) when i = 1, . . . , d and i = d + 1, . . . , n;

that is, Xj = Y ∗

j and U1 + U2 = Y ∗.
2. While proving y∗

1,h and y∗

2,h are feasible in (BOMN
•
), let S•

i′ = Y ∗

1 + Y ∗

2 when i′ = 1, . . . , d; and S•

i′ = Y ∗ when
i′ = d + 1, . . . , n. To simplify the notation, let Z and V denote, respectively, the base stock levels of shared
components for (BOMN

•
) when i′ = 1, . . . , d and i′ = d + 1, . . . , n; that is, Z = Y ∗

1 + Y ∗

2 and V = Y ∗.
3. The cost of a shared component is equal to the cost of the dedicated component it replaces. In the full overlap

configuration, all components are potential shared components; that is, c1_i = c2_i = ci′ for all indexes i and i′.

4.1.1. Case N = 1
We first consider the case N = 1; that is, only one realization is used in the SAA method. The associated formulations

(BOM1
◦
), (BOM1

•
) and (BOM1

•
) correspond to a deterministic demand where P1

1 and P1
2 represent the demands in the current

period for, respectively, product 1 and 2, and D1
1 and D1

2 represent the overall demands from all previous periods.

max r1 x1,1 + r2 x2,1
(
BOM1

◦

)
x1,1 ≤ (X1 − D1

1)
+

x1,1 ≤ (U1 − D1
1)

+

x2,1 ≤ (X2 − D1
2)

+

x2,1 ≤ (U2 − D1
2)

+

x1,1 ≤ P1
1 , x2,1 ≤ P1

2

X1

d∑
i=1

c1_i + X2

d∑
i=1

c2_i + U1

n∑
i=d+1

c1_i + U2

n∑
i=d+1

c2_i ≤ B

x1,1, x2,1, X1, X2,U1,U2 ∈ Z+

max r1 z1,1 + r2 z2,1
(
BOM1

•

)
z1,1 + z2,1 ≤ (Z − D1

1 − D1
2)

+

z1,1 + z2,1 ≤ (V − D1
1 − D1

2)
+
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z1,1 ≤ P1
1 , z2,1 ≤ P1

2

Z
d∑

i′=1

ci′ + V
n∑

i′=d+1

ci′ ≤ B

z1,1, z2,1, Z, V ∈ Z+

max r1 y1,1 + r2 y2,1
(
BOM1

•

)
y1,1 ≤ (Y1 − D1

1)
+

y2,1 ≤ (Y2 − D1
2)

+

y1,1 + y2,1 ≤ (Y − D1
1 − D1

2)
+

y1,1 ≤ P1
1 , y2,1 ≤ P1

2

Y1

d∑
i=1

c1_i + Y2

d∑
i=1

c2_i + Y
n∑

i′=d+1

ci′ ≤ B

y1,1, y2,1, Y1, Y2, Y ∈ Z+

First of all, we want to prove that with the constraint Y ∗

1
∑d

i=1 c1_i + Y ∗

2
∑d

i=1 c2_i + Y ∗
∑n

i′=d+1 ci′ ≤ B, either the
constraint X1

∑d
i=1 c1_i +X2

∑d
i=1 c2_i +U1

∑n
i=d+1 c1_i +U2

∑n
i=d+1 c2_i ≤ B or the constraint Z

∑d
i′=1 ci′ +V

∑n
i′=d+1 ci′ ≤ B

holds. The former can be proved by substituting assumptions 1 and 3, while the latter can be proved by substituting
assumptions 2 and 3.

Then, to show that y∗

1,1 and y∗

2,1 are feasible for either (BOM1
•
) or (BOM1

◦
), we consider the following three cases.

Case 1: Reward from both product 1 and 2 are 0, i.e. y∗

1,1 = 0 and y∗

2,1 = 0 and the point y∗

1,1 = 0 and y∗

2,1 = 0 is a feasible
solution for either (BOM1

•
) or (BOM1

◦
).

Take (BOM1
•
) as an example:

• y∗

1,1 + y∗

2,1 = 0 ≤ (Z − D1
1 − D1

2)
+, this is always true by the definition of +.

• y∗

1,1 + y∗

2,1 = 0 ≤ (V − D1
1 − D1

2)
+, this is always true by the definition of +.

• y∗

1,1 = 0 ≤ P1
1 , y∗

2,1 = 0 ≤ P1
2 , this is always true because P1

1 and P1
2 are both nonnegative.

• y∗

1,1, y
∗

2,1 ∈ Z+, this is always true because 0 is a nonnegative integer.

Note: If the optimal solution y∗

j,h is zero, then the point y∗

j,h = 0 is feasible for either (BOMN
•
) or (BOMN

◦
).

Case 2: We get some reward from exactly one of the products.
Case 2.1: Getting reward only from product 1, i.e. y∗

1,1 > 0, and y∗

2,1 = 0. We want to show that the point y∗

1,1 > 0,
and y∗

2,1 = 0 is a feasible solution for BOM1
◦
.

y∗

2,1 = 0 is a feasible solution of (BOM1
◦
). Since y∗

1,1 is an optimal solution of (BOM1
•
), the following inequalities are

valid:

y∗

1,1 ≤ (Y ∗

1 − D1
1)

+

y∗

1,1 ≤ (Y ∗
− D1

1 − D1
2)

+

To prove y∗

1,1 is feasible in (BOM1
◦
), we need to show that y∗

1,1 ≤ (X1 − D1
1)

+ and y∗

1,1 ≤ (U1 − D1
1)

+. Let U2 = 0; that is,
all the budget spent on the shared components is used to buy dedicated components for product 1.

y∗

1,1 ≤ (Y ∗

1 − D1
1)

+
= (X1 − D1

1)
+

⟨substitution⟩

y∗

1,1 ≤ (Y ∗
− D1

1 − D1
2)

+
= (U1 − D1

1 − D1
2)

+
≤ (U1 − D1

1)
+

⟨recall D1
2 ≥ 0⟩

Case 2.2: Getting reward only from product 2, i.e. y∗

1,1 = 0, and y∗

2,1 > 0. We want to show that the point y∗

1,1 = 0,
and y∗

2,1 > 0 is a feasible solution for (BOM1
◦
). The proof is the same as for Case 2.1 considering U1 = 0.

Case 3: We get reward from both products 1 and 2, i.e. y∗

1,1 > 0 and y∗

2,1 > 0. We want to show that the point y∗

1,1 > 0
and y∗

2,1 > 0 is a feasible solution for (BOM1
•
).

Since y∗

1,1 and y∗

2,1 is an optimal solution of (BOM1
•
), the following inequalities hold:

y∗

1,1 ≤ (Y ∗

1 − D1
1)

+

y∗

2,1 ≤ (Y ∗

2 − D2
1)

+

y∗

1,1 + y∗

2,1 ≤ (Y ∗
− D1

1 − D1
2)

+
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To prove y∗

1,1 and y∗

2,1 is feasible in (BOM1
•
), we need to show that y∗

1,1 + y∗

2,1 ≤ (Z − D1
1 − D1

2)
+ and y∗

1,1 + y∗

2,1 ≤

(V − D1
1 − D1

2)
+.

Since y∗

1,1 > 0 and y∗

2,1 > 0, all the plus signs can be removed.

y∗

1,1 ≤ Y ∗

1 − D1
1 and y∗

2,1 ≤ Y ∗

2 − D2
1

H⇒ y∗

1,1 + y∗

2,1 ≤ Y ∗

1 + Y ∗

2 − D1
1 − D1

2
H⇒ = Z − D1

1 − D1
2,

and

y∗

1,1 + y∗

2,1 ≤ (Y ∗
− D1

1 − D1
2)

+
= (V − D1

1 − D1
2)

+. ⟨substitution⟩

4.1.2. General case
We assume for N realizations, each with probability 1/N . Without loss of generality, we omit this constant term in

the objectives. In the associated formulations (BOMN
◦
), (BOMN

•
) and (BOMN

•
) below, superscripts are used to distinguish

different realizations. For example, x1,h, x2,h,Dh
1,D

h
2, P

h
1 , and Ph

2 refer to the h-th realization.

max
N∑

h=1

(
r1 x1,h + r2 x2,h

) (
BOMN

◦

)
x1,h ≤ (X1 − Dh

1)
+ h = 1, . . . ,N

x1,h ≤ (U1 − Dh
1)

+ h = 1, . . . ,N

x2,h ≤ (X2 − Dh
2)

+ h = 1, . . . ,N

x2,h ≤ (U2 − Dh
2)

+ h = 1, . . . ,N

x1,h ≤ Ph
1 , x2,h ≤ Ph

2 h = 1, . . . ,N

X1

d∑
i=1

c1_i + X2

d∑
i=1

c2_i + U1

n∑
i=d+1

c1_i + U2

n∑
i=d+1

c2_i ≤ B

x1,h, x2,h, X1, X2,U1,U2 ∈ Z+ h = 1, . . . ,N

max
N∑

h=1

(
r1 z1,h + r2 z2,h

) (
BOMN

•

)
z1,h + z2,h ≤ (Z − Dh

1 − Dh
2)

+ h = 1, . . . ,N

z1,h + z2,h ≤ (V − Dh
1 − Dh

2)
+ h = 1, . . . ,N

z1,h ≤ Ph
1 , z2,h ≤ Ph

2 h = 1, . . . ,N

Z
d∑

i′=1

ci′ + V
n∑

i′=d+1

ci′ ≤ B

z1,h, z2,h, Z, V ∈ Z+ h = 1, . . . ,N

max
N∑

h=1

(
r1 y1,h + r2 y2,h

) (
BOMN

•

)
y1,h ≤ (Y1 − Dh

1)
+ h = 1, . . . ,N

y2,h ≤ (Y2 − Dh
2)

+ h = 1, . . . ,N

y1,h + y2,h ≤ (Y − Dh
1 − Dh

2)
+ h = 1, . . . ,N

y1,h ≤ Ph
1 , y2,h ≤ Ph

2 h = 1, . . . ,N

Y1

d∑
i=1

c1_i + Y2

d∑
i=1

c2_i + Y
n∑

i′=d+1

ci′ ≤ B

y1,h, y2,h, Y1, Y2, Y ∈ Z+ h = 1, . . . ,N

For any realization, the optimal assembly decision will fall into one of the four, mutually exclusive, outcomes: y∗

1,h > 0
and y∗

2,h > 0; y∗

1,h > 0 and y∗

2,h = 0; y∗

1,h = 0 and y∗

2,h > 0; and y∗

1,h = 0 and y∗

2,h = 0.
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Consequently the set of all realizations can be partitioned into four non-overlapping subsets: the subset T++ of
realizations in which y∗

1,h > 0 and y∗

2,h > 0, the subset T+0 of realizations in which y∗

1,h > 0 and y∗

2,h = 0, the subset T 0+

of realizations in which y∗

1,h = 0 and y∗

2,h > 0, and the subset T 00 of realizations in which y∗

1,h = 0 and y∗

2,h = 0.
According to the definitions of Y ∗

1 , Y
∗

2 and Y ∗, the following inequalities are valid. Note that the right hand side of
constraints (E1) to (E7) are positive, therefore all plus signs can be removed.

y∗

1,h ≤ (Y ∗

1 − Dh
1)

+ h ∈ T++ (E1)

y∗

2,h ≤ (Y ∗

2 − Dh
2)

+ h ∈ T++ (E2)

y∗

1,h + y∗

2,h ≤ (Y ∗
− Dh

1 − Dh
2)

+ h ∈ T++ (E3)

y∗

1,h ≤ (Y ∗

1 − Dh
1)

+ h ∈ T+0 (E4)

y∗

1,h ≤ (Y ∗
− Dh

1 − Dh
2)

+ h ∈ T+0 (E5)

y∗

2,h ≤ (Y ∗

2 − Dh
2)

+ h ∈ T 0+ (E6)

y∗

2,h ≤ (Y ∗
− Dh

1 − Dh
2)

+ h ∈ T 0+ (E7)

The T 00 cases being trivial, we just need to prove that Theorem 1 holds for realizations in T++
⋃

T+0 ⋃
T 0+.

To obtain an optimal solution, we must satisfy:

Y ∗

1 = max
(g,p)∈(T++×T+0)

{
Dg
1 + y∗

1,g ,D
p
1 + y∗

1,p

}
,

Y ∗

2 = max
(g,p)∈(T++×T0+)

{
Dg
2 + y∗

2,g ,D
p
2 + y∗

2,p

}
,

Y ∗
= max

(g,p,q)∈(T++×T+0×T0+)

{
Dg
1 + Dg

2 + y∗

1,g + y∗

2,g ,D
p
1 + Dp

2 + y∗

1,p,D
q
1 + Dq

2 + y∗

2,q

}
.

Clearly, either Y ∗
≥ Y ∗

1 + Y ∗

2 or Y ∗ < Y ∗

1 + Y ∗

2 .
Case 1: If Y ∗

≥ Y ∗

1 + Y ∗

2 , then the point y∗

1,h and y∗

2,h is feasible in
(
BOMN

◦

)
. We need to show that

y∗

1,h ≤ (X1 − Dh
1)

+ h ∈ T++ (F1)

y∗

2,h ≤ (X2 − Dh
2)

+ h ∈ T++ (F2)

y∗

1,h ≤ (U1 − Dh
1)

+ h ∈ T++ (F3)

y∗

2,h ≤ (U2 − Dh
2)

+ h ∈ T++ (F4)

y∗

1,h ≤ (X1 − Dh
1)

+ h ∈ T+0 (F5)

y∗

1,h ≤ (U1 − Dh
1)

+ h ∈ T+0 (F6)

y∗

2,h ≤ (X2 − Dh
2)

+ h ∈ T 0+ (F7)

y∗

2,h ≤ (U2 − Dh
2)

+ h ∈ T 0+ (F8)

One can check that (E1) ⇒ (F1), (E2) ⇒ (F2), (E4) ⇒ (F5), and (E6) ⇒ (F7).
Let U2 = Y ∗

2 , for (F3):

U1 = Y ∗
− U2 ≥ Y ∗

1 + Y ∗

2 − U2 = Y ∗

1 ,

thus U1 ≥ Y ∗

1 = max
(g,p)∈(T++×T+0)

{
Dg
1 + y∗

1,g ,D
p
1 + y∗

1,p

}
≥ Dh

1 + y∗

1,h, h ∈ T++.

Therefore y∗

1,h ≤ (U1 − Dh
1)

+, h ∈ T++.
For (F4):

U2 = Y ∗

2 = max
(g,p)∈(T++×T0+)

{
Dg
2 + y∗

2,g ,D
p
2 + y∗

2,p

}
≥ Dh

2 + y∗

2,h, h ∈ T++

Therefore y∗

2,h ≤ (U2 − Dh
2)

+, h ∈ T++.
For (F6):

U1 − Dh
1 ≥ Y ∗

1 − Dh
1 = max

(g,p)∈(T++×T+0)

{
Dg
1 + y∗

1,g ,D
p
1 + y∗

1,p

}
− Dh

1

≥ Dh
1 + y∗

1,h − Dh
1 = y∗

1,h, h ∈ T+0

Therefore y∗

1,h ≤ (U1 − Dh
1)

+, h ∈ T+0.
For (F8):

U2 − Dh
2 = Y ∗

2 − Dh
2 = max

(g,p)∈(T++×T0+)

{
Dg
2 + y∗

2,g ,D
p
2 + y∗

2,p

}
− Dh

2
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≥ Dh
2 + y∗

2,h − Dh
2 = y∗

2,h, h ∈ T 0+

Therefore y∗

2,h ≤ (U2 − Dh
2)

+, h ∈ T 0+.
Case 2: If Y ∗ < Y ∗

1 + Y ∗

2 , then the point y∗

1,h and y∗

2,h is feasible in
(
BOMN

•

)
. We need to show that

y∗

1,h + y∗

2,h ≤ (Z − Dh
1 − Dh

2)
+ h ∈ T++ (G1)

y∗

1,h + y∗

2,h ≤ (V − Dh
1 − Dh

2)
+ h ∈ T++ (G2)

y∗

1,h ≤ (Z − Dh
1 − Dh

2)
+ h ∈ T+0 (G3)

y∗

1,h ≤ (V − Dh
1 − Dh

2)
+ h ∈ T+0 (G4)

y∗

2,h ≤ (Z − Dh
1 − Dh

2)
+ h ∈ T 0+ (G5)

y∗

2,h ≤ (V − Dh
1 − Dh

2)
+ h ∈ T 0+ (G6)

One can check that (E3) ⇒ (G2), (E5) ⇒ (G4), and (E7) ⇒ (G6).
(E1) and (E2) ⇒ (G1): Since y∗

1,h > 0 and y∗

2,h > 0, where h ∈ T++, all the plus signs can be removed.

0 < y∗

1,h ≤ Y ∗

1 − Dh
1 and 0 < y∗

2,h ≤ Y ∗

2 − Dh
2

H⇒ 0 < y∗

1,h + y∗

2,h ≤ Y ∗

1 + Y ∗

2 − Dh
1 − Dh

2

H⇒ = Z − Dh
1 − Dh

2, h ∈ T++

Thus, y∗

1,h + y∗

2,h ≤ (Z − Dh
1 − Dh

2)
+, h ∈ T++.

For (G3):

Z = Y ∗

1 + Y ∗

2 > Y ∗

= max
(g,p,q)∈(T++×T+0×T0+)

{
Dg
1 + Dg

2 + y∗

1,g + y∗

2,g ,D
p
1 + Dp

2 + y∗

1,p,D
q
1 + Dq

2 + y∗

2,q

}
≥ Dh

1 + Dh
2 + y∗

1,h, h ∈ T+0.

Therefore y∗

1,h < (Z − Dh
1 − Dh

2)
+

≤ (Z − Dh
1 − Dh

2)
+, h ∈ T+0.

For (G5):

Z = Y ∗

1 + Y ∗

2 > Y ∗

= max
(g,p,q)∈(T++×T+0×T0+)

{
Dg
1 + Dg

2 + y∗

1,g + y∗

2,g ,D
p
1 + Dp

2 + y∗

1,p,D
q
1 + Dq

2 + y∗

2,q

}
≥ Dh

1 + Dh
2 + y∗

2,h, h ∈ T 0+.

Therefore y∗

2,h < (Z − Dh
1 − Dh

2)
+

≤ (Z − Dh
1 − Dh

2)
+, h ∈ T 0+.

4.2. Two-product system with partial overlap

Given that x•h
1

∗
≤ (S•

1_i1
−Dh

1)
+ and x•h

2
∗

≤ (S•

2_i2
−Dh

2)
+, where i1 = n+1, . . . , n1, i2 = n+1, . . . , n2, h = 1, . . . ,N , we

want to prove that either the constrains x•h
1

∗
≤ (S◦

1_i1
−Dh

1)
+ and x•h

2
∗

≤ (S◦

2_i2
−Dh

2)
+, or the constraints x•h

1
∗

≤ (S•

1_i1
−Dh

1)
+

and x•h
2

∗
≤ (S•

2_i2
−Dh

2)
+ hold. Obviously, if we set S•

1_i1
= S◦

1_i1
= S•

1_i1
and S•

2_i2
= S◦

2_i2
= S•

2_i2
, then the optimal solutions of(

BOMN
•

)
, i.e., x•h

1
∗ and x•h

2
∗, trivially satisfy these constraints in both

(
BOMN

◦

)
and

(
BOMN

•

)
. Excluding the above constraints,

the remaining part is exactly the same as the full overlap configuration, whose result is already proved.

5. Conclusion and future work

We show that for two-product periodic ATO systems either full component commonality or non-component com-
monality performs at least as well as any partial component commonality formulation. Consequently, the size of the
optimal BOM search space is cut down from an exponential in n to just 2. A possible future direction is to extend this
result to multi-product periodic-review ATO systems. While deriving the same theoretical results may be challenging, one
may consider a computational approach. Another future direction could be to apply component commonality considering
inventory allocation and component design jointly.
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