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a b s t r a c t

This work focuses on finding optimal locations for charging stations for one-way electric
car sharing programs. The relocation of vehicles by a service staff is generally required in
vehicle sharing programs in order to correct imbalances in the network. We seek to limit
the need for vehicle relocation by strategically locating charging stations given estimates
of traffic flow. A mixed-integer linear programming formulation is presented with a large
number of potential charging station locations. A column generation approach is used
which finds an optimal set of locations for the continuous relaxation of our problem.
Results of a numerical experiment using real traffic and geographic information system
location data show that our formulation significantly increases the balanced flow across
the network, while our column generation technique was found to produce a superior
solution in much shorter computation time compared to solving the original formulation
with all possible station locations.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Electric car sharing programs are a method for urban centres to combat traffic congestion and pollution [4,5] as well as
to promote the use of green technologies. In one-way electric car sharing programs such as Autolib’ [1] in Paris, France,
users are able to use and return vehicles to any charging station in the network. Large imbalances with the supply of
vehicles and parking spaces across nodes in the network are generally observed, requiring a service staff to continuously
transport vehicles to satisfy demand.

The problem of determining the optimal locations of charging stations for electric car sharing systems is considered
in [5]. The number of stations and vehicles, and their optimal placement is determined in order to maximize profit. One
assumption is that decision makers do not consider operational activities of a service staff, and in particular for vehicle
relocation, but cars must still be placed at stations at the beginning of the optimization time horizon. In the scenario
where an electric car sharing network has already been built, a number of researchers have developed methodologies for
the vehicle relocation problem. The use of folding bicycles by workers which fit into the trunks of cars [6], and the use
of two trucks which are capable of moving a number of vehicles at a time [7] have been proposed. In [2], a set of agents
are assumed to be employed which drive vehicles between stations. Given a set of predetermined trips, the number of
vehicles, agents, and the schedule of the agents are optimized each day. In addition, the optimal relocation of workers
themselves across the network in order to relocate vehicles has been considered in [4].

The idea of having to relocate vehicles within the network runs counter to the objective of decreasing traffic congestion.
The inefficiency of transporting vehicles between stations is compounded for electric vehicles, as not only are they
not being used productively while being transported, but will require further charging afterwards if driven by workers
between stations.
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In this work we consider a set of nodes with an expected traffic flow between each pair of nodes per time period. A
methodology is presented to place charging stations in such a way so as to limit supply imbalances in the network by
matching demand for vehicles and parking spaces at each charging station. By a strategic placement of charging stations,
the need for a service staff to continuously relocate vehicles is greatly reduced, which is shown by a significant increase
in the estimated balanced flow across all charging stations.

The remainder of the paper is organized as follows. In Section 2 we describe the problem setting, the concept of a
balanced electric car sharing network, and its corresponding optimization problem (OP). Section 3 is where the balanced
charging station algorithm (BCSA) is developed using a column generation technique to find a near optimal set of charging
stations. Section 4 outlines how to solve (OP) by exhaustively enumerating all possible charging stations which is used
for comparison with BCSA. In Section 5 we describe the numerical experiment with the use of real traffic and geographic
information system location data, and present the results. The paper finishes in Section 6 with the conclusion.

2. Balanced electric car sharing optimization model

Let N be the set of trip nodes, which is the set of locations where trips are arriving to and departing from, and let
T = {1, 2, . . . ,MT } be a set of time intervals over a 24 h cycle with lengths Lt . For each t ∈ T there exists an origin–
destination matrix ODt

∈ Z|N|×|N|, indicating for each pair of nodes {n, n′
} ∈ N , an estimate of the number of trips from n

to n′. For each node n ∈ N , its outward flow over t is f t−n =
∑

n′∈N ODt
n,n′ , which is the sum of trips departing from node

n, requiring an electric vehicle near n. Its inward flow over t is f t+n =
∑

n′∈N ODt
n′,n, which is the sum of trips arriving to

node n, requiring a parking space near n.
Let S be the set of potential charging stations. We assume that people are willing to walk up to w = 0.5 km to or from

a charging station as used in [2,6]. For each s ∈ S we define its set of neighbouring nodes as a subset of nodes which
are within walking distance from it, N (s) ⊆ {n ∈ N : d(n, s) ≤ w}, where d(n, s) is the distance in kilometres between n
and s. Likewise, we define the neighbouring set of stations for each n ∈ N as a subset N (n) ⊆ {s ∈ S : d(s, n) ≤ w}. In
addition, n ∈ N (s) if and only if s ∈ N (n). We assume all distances are calculated using the l1-norm.

We must decide how many parking spaces to place at each charging station. As will be described in more detail, we
require a balanced flow at each station, meaning the number of trip arrivals and departures assigned to a station each
time period are always equal. Given this requirement, we assume that cars will be arriving and departing with probability
0.5, and always choose an even number of parking spaces at each charging station, with the intention of having half the
number of vehicles as spaces to best meet incoming demand. This is in line with what is observed in current use, with 2
and 4 parking spaces being the most common for a charging station [8].

In order to determine the usage capacity of a pair of parking spaces, we need an estimate of how long it will take
for someone to park and plug in a vehicle, and to register a vehicle and leave the station. Let pa and pd be the times to
perform these two tasks in hours, respectively. As will be clear, these individual estimates are not required, but only their
average p =

1
2 (pa + pd). We also need an estimate of the average trip length, from which we can estimate the average

charging time required after each trip. For each time period t , we calculate lt , the average trip length over the network,

lt =

∑
n∈N

∑
n′∈N ODt

n,n′d(n, n′)∑
n∈N

∑
n′∈N ODt

n,n′

.

Given an estimate of the electric vehicle’s charging time per kilometre driven, u in hours/km, we can estimate the
average charging time required after each trip, at = ult . The amount of time on average required between trips for a car to
be dropped off and recharged, or picked up is then p+

at
2 . We note that this average time is valid as the number of assigned

arrivals and departures at each station are always equal. Assuming that OD contains an estimate of the total traffic flow
within a city, we assume that k = 0.5% of the flow will eventually be fulfilled using our service as in [6]. The maximum
amount of flow a pair of parking spaces at station s can be allocated during time period t ∈ T is then estimated as

vt = 2
⌊

Lt
k(p +

at
2 )

⌋
where the estimated capacity of a single parking space, Lt/(k(p + at/2)), has been rounded down to the nearest integer
to determine the maximum number of whole trips. We note that vt is an even integer, which results in integral solutions
of our optimization problem (OP), as proven in Property 1.

Whereas the objective of a company running a combustion engine car sharing program is most likely to be to maximize
profit, in this work we assume that the electric car sharing program is funded or heavily subsidized by a government in
order to reduce pollution and road congestion, and to promote green technologies. For this reason, the objective in our
optimization problem (OP) is to maximize the number of electric vehicle trips, written equivalently as minimizing the
number of trips not satisfied. In the literature, our objective is most similar to that of [2,4], which both used multi-objective
models, minimizing costs and unsatisfied customers. We as well minimize the number of unsatisfied customers, but place
costs in a budget constraint.

The flow to and from each node is assigned to its neighbouring stations. F t−
∈ R|S|×|N|

+ is the decision matrix of the
number of trips from each node n assigned to leave from each station s during time period t , and likewise F t+

∈ R|S|×|N|

+

is the decision matrix of the number of trips to each node n assigned to arrive at each station s during time period t .
Further, Et

∈ R|N|×|N|

+ is the traffic flow in ODt which is not satisfied by any station, and e is a vector of ones of size |N|.
We assign the inward flow of nodes to their neighbouring stations by constraint set (OP.2), and their outward flow by
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(OP.3). Care must be taken to maintain the integrity of each trip, meaning if an incoming trip to node n is not assigned
to a charging station, then a corresponding trip leaving from a node n′ to n cannot be assigned to a station’s outward
flow. If an inward trip to node n is not satisfied in time t , then an entry n′ of the nth column of Et is incremented by 1 in
(OP.2). This then forces one corresponding outward trip from n′ to not be satisfied in (OP.3). This is enforced by constraint
(OP.5), which ensures that the entry in Et corresponds to an actual trip in OD. A small example showing the necessity of
constraint (OP.5) is found in the Appendix subsection titled ‘‘Requirement of (OP.5) in (OP) for trip integrity".

The decision variable zs determines the number of pairs of parking spaces to install at station s, ms is the maximum
number of pairs of parking spaces that can be installed, and cs is the cost of constructing a pair of parking spaces. We
assume all costs, including the electric vehicles themselves are embedded into the price per pair of parking spaces. b is
the budget allocated for the construction of the electric car sharing network. Constraint set (OP.4) enforces the net flow
over each station to be zero, so as to minimize network imbalances and the need for vehicle relocation, as the expected
number of cars parking and leaving from each charging station over each time period are equal. We have also included
the corresponding dual variables to the left of each set of constraints.

min
∑
t∈T

∑
n,n′∈N

Et
n,n′ (OP)(

Ut,s ≥ 0
)

s.t.
∑

n∈N (s)

(
F t+
s,n + F t−

s,n

)
≤ vtzs ∀ t ∈ T , s ∈ S (OP.1)(

Pt,n
) ∑

s∈N (n)

F t+
s,n + (Et

·,n)
T e = f t+n ∀ t ∈ T , n ∈ N (OP.2)(

Gt,n
) ∑

s∈N (n)

F t−
s,n + Et

n,·e = f t−n ∀ t ∈ T , n ∈ N (OP.3)(
Rt,s
) ∑

n∈N (s)

(
F t+
s,n − F t−

s,n

)
= 0 ∀ t ∈ T , s ∈ S (OP.4)(

W t
n,n ≥ 0

)
E ≤ OD (OP.5)

(q ≥ 0)
∑
s∈S

cszs ≤ b

(hs ≥ 0) zs ≤ ms ∀ s ∈ S
F t+

∈ R|S|×|N|

+ , F t−
∈ R|S|×|N|

+ , Et
∈ R|N|×|N|

+

z ∈ Z|S|
+

Property 1. The optimal solution of (OP) is integral.

Proof. Given that
∑

n∈N (s) F
t+
s,n =

∑
n∈N (s) F

t−
s,n ∀ t ∈ T , s ∈ S from (OP.4), the station capacity constraints (OP.1) can be

written equivalently as∑
n∈N (s)

F t+
s,n ≤

vt

2
zs ∀ t ∈ T , s ∈ S (OP.1’)

where the right-hand side, vtzs/2 ∈ Z+. Let F t+
vec be the vector of all columns of F t+ stacked on top of each other, where

all elements corresponding to an s /∈ N (n) ∀n have been removed. Let F t−
vec be built in the same manner, and let Et

vec
simply be the vector of all columns of Et stacked on top of each other. We set X t

= [F t+
vec; F

t−
vec; E

t
vec] and can now write

constraints [(OP.1’),(OP.2)–(OP.5)] as AX t
{≤, =}bt , where A is a matrix composed of {−1, 0, 1}, bt is a vector composed

of integers, and {≤, =} stands in for ≤ or = as appropriate for each row. As a reference, we have included a subsection
of the Appendix entitled ‘‘An example of AX t

{≤, =}bt". To show that A is totally unimodular we use Property 2 which is
borrowed from [10].

Property 2 ([10, Theorem 19.3]). Let A be a matrix with entries 0, 1, or −1. A is totally unimodular if and only if each collection
J of columns of A can be split into two parts, J1 and J2, so that the sum of the columns in J1 minus the sum of the columns J2
is a vector with entries only equal to 0, 1, or −1.

As the transpose of a totally unimodular matrix is also totally unimodular, we show that the condition holds for each
collection J of rows of A. We will assign rows from each constraint set to J1 or J2, and show that for each column the
difference of the sums has magnitude 1 or 0.

We partition the columns of A into three subsets {C1, C2, C3} by which variables they multiply. Let C1 be the first∑
n∈N |N (n)| columns multiplying F t+

vec , let C2 be the second
∑

n∈N |N (n)| columns multiplying F t−
vec , and let C3 be the last

|N| × |N| columns multiplying Et
vec .

We begin with C2, and note that each variable F t−
s,n will be found in one constraint in (OP.3), with a coefficient of 1 in

A, and in one constraint of (OP.4), with a coefficient of −1. We therefore place all rows from (OP.3) and (OP.4) into J2. The
sum of each column over C2 will then be either 0, 1, or −1. The current partitioning is J1 = {∅} and J2 = {(OP.3), (OP.4)}.
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For C3 each variable Et
n,n′ is found in one constraint in (OP.2), (OP.3), and (OP.5), all with a coefficient of 1 in A. As rows

from (OP.3) are in J2, we place all rows from (OP.2) in J1. We note that rows from (OP.5) always contain only one non-zero
element equal to 1: They are zero over C1 and C2, and form an identity matrix in C3. This implies that their placement in
J1 or J2 only affects the sums of columns in C3. Any row i in (OP.5) with 1 in column j can then be placed in either J1 or J2
to ensure that column j sums to 0, −1, or 1: If the rows from (OP.2) and (OP.3) with 1 in column j are in J , or neither are
in J , then i can be placed in J1 or J2. If only the row from (OP.2) is in J , then place i in J2, and if only the row from (OP.3)
is in J , place i in J1. The current partitioning is J1 = {(OP.2), (OP.5)1} and J2 = {(OP.3), (OP.4), (OP.5)2}, where (OP.5) is
partitioned as described.

For C1 each variable F t+
s,n is found in one constraint in (OP.1’), (OP.2), and (OP.4), all with a coefficient of 1. We have

already placed rows from (OP.2) in J1 and rows from (OP.4) in J2. Given that constraints (OP.1’) and (OP.4) both contain the
same summation of F t+ over all t and s, the rows of A corresponding to (OP.1’) and (OP.4) are identical over C1, meaning
that for each row of (OP.1’) there is a copy in the rows of (OP.4), in C1. In addition, the rows of (OP.1’) only multiply
variables from F t+

vec , meaning their placement in either J1 or J2 only affect the sums of columns of C1. We can therefore
place rows from (OP.1’) in J1 or J2 so that each column of C1 sums to 0, 1, or −1 as done previously with rows of (OP.5)
for C2. The final partitioning is J1 = {(OP.1’)1, (OP.2), (OP.5)1} and J2 = {(OP.1’)2, (OP.3), (OP.4), (OP.5)2}.

Property 1 would not hold in general without the fact that vt is even for all t , as can be observed in the following
scenario. For an optimal solution where vt is odd for a constraint in (OP.1) which is binding, half of an inflow of a trip
and half of an outflow of a trip would have to be assigned to s, as

∑
n∈N (s) F

t+
s,n and

∑
n∈N (s) F

t−
s,n are equal, but sum to an

odd number.
An undetermined aspect of (OP) is the set of stations S. If we were to consider every location in the city it would

be difficult to bound its size. We limit our set of potential stations to one per feasible subset of nodes, so that |N| ≤

|S| ≤ 2|N|
− 1, where the lower bound occurs when d(n, n′) > 2w and the upper bound occurs when d(n, n′) ≤ 2w

for all n, n′
∈ N . Although we do not expect |S| to be near its upper bound, its size has the potential to make (OP) a

computationally challenging problem, particularly when implemented in dense urban areas with many nodes. For this
reason, we propose a column generation approach outlined in the next section.

3. Determining S using column generation

We begin with some initial set of stations S ′ and iteratively add stations using a column generation technique until
we have found an optimal set of stations for the continuous relaxation of (OP), and use this set to find a solution to (OP).
The dual program (D) of the continuous relaxation of (OP) will be used in the solution technique.

max − bq −

∑
s∈S

mshs −

∑
t∈T

∑
n,n′∈N

ODt
n,n′W t

n,n′ −

∑
t∈T

∑
n∈N

(f t+n Pt,n + f t−n Gt,n) (D)

s.t. 1 + Gt,n + Pt,n′ + W t
n,n′ ≥ 0 ∀ t ∈ T , n, n′

∈ N (D.1)

Ut,s + Pt,n + Rt,s ≥ 0 ∀ t ∈ T , s ∈ S, n ∈ N (s) (D.2)

Ut,s + Gt,n − Rt,s ≥ 0 ∀ t ∈ T , s ∈ S, n ∈ N (s) (D.3)

hs + qcs −

∑
t∈T

vtUt,s ≥ 0 ∀ s ∈ S (D.4)

U ∈ RMT×|S|
+ , W ∈ RT×|N|×|N|

+ , h ∈ R|S|
+ , q ≥ 0

3.1. Finding a new station

The feasibility problem Finding a Station (FS) is a set of constraints that a new station s′ to include in S ′ is required to
satisfy.

(FS)

BT
·,sB·,s′ + (e − B·,s)T (e − B·,s′ ) ≤ |N| − 1 for s ∈ S ′ (FS.1)

d(s′, n) ≤ w + (e − Bn,s′ )(dn − w) for n ∈ N (FS.2)

s′x = αT x, s′y = αTy (FS.3)

αT e = 1, α ≤ B·,s′ (FS.4)

cs′ = αT cN (FS.5)

αTmN
− 0.5 ≤ ms′ ≤ αTmN

+ 0.5 (FS.6)

α ∈ R|N|

+ , Bn,s′ ∈ {0, 1}|N|, cs′ ∈ R++, ms′ ∈ Z++
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The neighbourhoods of all current stations are encoded in a matrix B ∈ {0, 1}|N|×|S′
|, where B·,s represents N (s). A new

column will be added for s′, with constraint set (FS.1) ensuring its uniqueness. We define dn as the maximum feasible
distance of a station from n, which equals dn = maxn′∈N d(n, n′). This is used as a big-M constant when ensuring each
n ∈ N (s′) is within w of s′ in constraint set (FS.2). Each node n has coordinates xn and yn, stored in vectors x ∈ R|N|

and y ∈ R|N|. Let s′x and s′y be the coordinates of s′, which we write as a convex combination of the coordinates of its
neighbouring nodes using constraints (FS.3) and (FS.4). This enables us to infer the cost of installing a pair of parking
spaces at s′, and its parking space capacity. Each node n has an estimated cost cNn for constructing a pair of parking spaces
at n, as well as a capacity of pairs of parking spaces mN

n . We estimate the price cs′ and the capacity ms′ of s′ using the
weighted average of the nodes’ values withinN (s′) in constraints (FS.5) and (FS.6). Constraint (FS.6) setsms′ to the rounded
value of αTmN .

After solving the dual program (D) for some set S ′, we seek to find a feasible station satisfying (FS) which could result
in a decrease in the objective of (D). The dual objective will decrease if hs′ > 0, or equivalently if

∑
t∈T vtUt,s′ − qcs′ > 0

from constraint (D.4). From constraint sets (D.2) and (D.3), it follows that Ut,s′ ≥ −
(Pt,n+Gt,n′ )

2 for all n, n′
∈ N (s′) and this

inequality will be binding for some n, n′
∈ N (s′) or Ut,s′ will be equal to 0. We build the matrices PGt

∈ R|N|×|N|

+ , where
PGt

n,n′ = max
(
−

(Pt,n+Gt,n′ )
2 , 0

)
. The optimal value of Ut,s′ in (D) will be the maximum value of PGt over n, n′

∈ N (s′).
We can determine the optimal values of U·,s′ for a new potential station s′, given B·,s′ and holding all current dual

variables constant, using the following linear program, Determining U (DU), where PGt
◦ Dt is the Hadamard product.

max
∑
t∈T

Ut,s′ (DU)

s.t. Ut,s′ =

∑
n∈N

∑
n′∈N

(PGt
◦ Dt )n,n′ for t ∈ T

eTDte = 1 for t ∈ T
Dt
n,n′ ≤ Bn,s′ for t ∈ T , n, n′

∈ N

Dt
n,n′ ≤ Bn′,s′ for t ∈ T , n, n′

∈ N

D ∈ R|N|×|N|×MT
+

We find the next charging station s′ to include in (OP) by solving the following mixed-integer linear program, New
Station (NS), where (FS) is combined with (DU), but for maximizing hs′ instead of

∑
t∈T Ut,s′ . If hs′ > 0, we have found a

station vector B·,s′ which could improve the optimal solution of (OP).

max hs′ =

∑
t∈T

vtUt,s′ − qcs′ (NS)

s.t. Ut,s′ =

∑
n∈N

∑
n′∈N

(PGt
◦ Dt )n,n′ for t ∈ T

eTDte = 1 for t ∈ T
Dt
n,n′ ≤ Bn,s′ for t ∈ T , n, n′

∈ N

Dt
n,n′ ≤ Bn′,s′ for t ∈ T , n, n′

∈ N
d(s′, n) ≤ w + (e − Bn,s′ )(dn − w) for n ∈ N

BT
·,sB·,s′ + (e − B·,s)T (e − B·,s′ ) ≤ N − 1 for s ∈ S ′

s′x = αT x, s′y = αTy

αT e = 1, α ≤ B·,s′

cs′ = αT cN , α ∈ R|N|

+

B·,s′ ∈ {0, 1}|N|, D ∈ R|N|×|N|×MT
+

We did not consider the effect of ms′ in (NS), and so now given our optimal solution for B·,s′ and U·,s′ from (NS),
we determine the specific location of the new station s′. Let f t s′ := 2min(BT

·,s′ f
t−, BT

·,s′ f
t+), which is the maximum

flow that could be allocated to station s′ in time t if all of its neighbouring nodes allocate all of their trips to s′. Let

mc
s′ := maxt∈T

⌈
f t s′
vt

⌉
, which is the maximum parking space capacity station s′ could require. We now consider the

following non-convex mixed-integer program, Optimize α (OA), to determine the location of s′. We do not want to reward
a location for capacity which cannot be used, so we use min(ms′ ,mc

s′ ) in the objective.

max min(ms′ ,mc
s′ )

(∑
t∈T

vtUt,s′ − qcs′

)
(OA)
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s.t. s′x = αT x, s′y = αTy

αT e = 1, α ≤ B·,s′

cs′ = αT cN , ms′ ≤ αTmN
+ 0.5

α ∈ R|N|

+ , ms′ ∈ Z++

Given the non-convexity in the objective, we solve (OA) as a set of linear programs, (OAi),

max mi
s′

(∑
t∈T

vtUt,s′ − qcs′

)
(OAi)

s.t. s′x = αT x, s′y = αTy

αT e = 1, α ≤ B·,s′

cs′ = αT cN , mi
s′ ≤ αTmN

+ 0.5

α ∈ R|N|

+

for mi
s′ ∈ Z++ over the interval

mmin
s′ ≤ mi

s′ ≤ max
(
mmin

s′ ,mc̄
s′
)
.

where mmin
s′ := minn∈N (s′) mn, mc̄

s′ := min
(
mc

s′ ,m
max
s′
)
, and mmax

s′ := maxn∈N (s′) mn. We take the optimal α vector from the
program (OAi) with the maximum objective.

3.2. Valid inequalities for (NS)

Many instances of (NS) must be solved, which can be time consuming given the binary variables B·,s′ . A set of valid
inequalities were added to (NS) which were found to significantly reduce computation time. The general idea is that if
we are given a subset of nodes N ′ where d(n, n′) > 2w for all n, n′

∈ N ′, then
∑

n∈N ′ Bn,s′ ≤ 1. The algorithm for adding
these constraints is found in Algorithm 1.

Algorithm 1 Valid inequalities for (NS)

1: for n ∈ N do
2: V = {n}
3: for n′

∈ N do
4: if d(y, n′) > 2w ∀y ∈ V then
5: V = V + {n′

}

6: end if
7: end for
8: if |V |> 1 then
9: add

∑
y∈V By,s′ ≤ 1 to (NS)

10: end if
11: end for

3.3. Column generation search heuristic

We write the location of s′ as a convex combination of nodes as a means of estimating its cost and capacity, but to
motivate the proposed heuristic, let us first assume s′x and s′y are free variables, and the station’s cost and capacity are not
functions of its neighbouring nodes.

If we consider the problem setting where MT = 1, then an optimal solution for the convex relaxation of (OP) can be
found consisting of stations of size no greater than 2. This is due to when maximizing the objective of (NS), PG is only a
function of two nodes. More intuitively, given a number of nodes all within 2w of each other, it will always be optimal to
build a number of fractional stations for each pair of nodes, which gives maximum flexibility of location. Increasing the
size of MT , a neighbourhood of size |N (s′)| ≤ 2MT will be optimal, where |N (s′)| = 2MT can occur when for each t , new
nodes make up the pair mapping to the maximum of PGt .

In our setting, where a station’s cost and capacity is a function of its neighbouring nodes, this bound no longer applies
as adding extra nodes can decrease station cost and increase capacity. When our technique creates stations with larger
neighbourhoods though, it is not for our objective of matching flow from different nodes, but for what can be considered
secondary concerns relating to our constraints. In order to ensure stations with larger neighbourhoods are generated so
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more balanced flow can be satisfied, in each iteration we add a station with the largest possible neighbourhood which
still results in a positive objective value for (NS). To begin, we solve Maximum Neighbourhood (MN) to find the largest
possible neighbourhood size. We then proceed to solve (NS) with the added constraint

∑
n∈N Bn,s′ = MN which we will

refer to as (NS)(MN). The value of MN is then decremented when no more stations can be found which result in hs′ > 0.
Details of this process are found in Section 3.5.

max MN :=

∑
n∈N

Bn,s′ (MN)

s.t. d(s′, n) ≤ w + (e − Bn,s′ )(dn − w) for n ∈ N

s′x = αT x, s′y = αTy

αT e = 1, α ≤ B·,s′

α ∈ R|N|

+ , Bn,s′ ∈ {0, 1}|N|

3.4. S ′ initialization

We initialize the set of potential charging stations S ′ with the station which would satisfy the maximum balanced
flow, which is found by solving Maximum Flow (MF).

max
∑
t∈T

min(2BT f t−, 2BT f t+,ms′vt ) (MF)

s.t. d(s′, n) ≤ w + (e − B)(dn − w) for n ∈ N

s′x = αT x, s′y = αTy

αT e = 1, α ≤ B

ms′ ≤ αTmN
+ 0.5, ms′ ∈ Z++

α ∈ R|N|

+ , B ∈ {0, 1}|N|

If mmax
s′ − mmin

s′ > 0 there could be a trade-off between capacity and cost when determining the station’s location. We
minimize the station cost without restricting potential flow by solving (OAc̄), where mc̄

s′ is the maximum parking space
capacity required as defined in Section 3.1, and then set ms′ = ⌈αTmN

⌋. We call the station found from this process sMF .

min αT cN (OAc̄)

s.t. s′x = αT x, s′y = αTy

αT e = 1, α ≤ B·,s′

mc̄
s′ ≤ αTmN

+ 0.5

α ∈ R|N|

+

3.5. Balanced car sharing algorithm

We now present the BCSA algorithm for finding a balanced electric car sharing network.

Algorithm 2 Balanced charging station algorithm (BCSA)

1: Initialize S ′
= sMF by solving (MF) and (OAc̄)

2: Solve (MN)
3: Solve (D)
4: while MN > 0 do
5: Solve (NS)(MN)
6: if hs′ > 0 then
7: Solve (OA)
8: S ′

= S ′
∪ {s′}

9: Solve (D)
10: else
11: SB = SB − 1
12: end if
13: end while
14: Solve (OP) with S = S ′
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Table 1
Summary of numerical results using BCSA, EE, and S = N .

BCSA EE S = N

Objective value 6318 6342 46,231
% trips alloc 91.96 91.93 41.14
Comp time (min) 38.63 720 1.00
|S| 85 1764 90
|z > 0| 39 41 38
Ave space cost 1.651 1.590 1.718
Budget used 64.40 65.20 65.27
% budget used 98.58 99.93 99.82

4. Exhaustive enumeration (EE) method

Instead of iteratively finding stations, we consider finding all possible stations S initially and then solving (OP) directly.
We again limited the search to a single station per subset of nodes. The basic means of finding S was as follows. For each
node n, we found the set of nodes Sn = {n′

: d(n, n′) ≤ 2d, n′
̸= n}. We then found all subsets S ′

n of size |Sn|, |Sn| − 1, . . . ,
0 in Sn. If for all n′, n′′

∈ S ′
n, d(n

′, n′′) ≤ 2w, we added a station s′ with N (s′) = S ′
n ∪ {n} to S, if it had not already been

added. The cost and capacity of s′ were found using (OAc̄).

5. Numerical experiment

5.1. Traffic & GIS data

We test our methodology using trip data from the Transportation Tomorrow Survey [3,9] covering the Greater Golden
Horseshoe area of Ontario, Canada. The city of Toronto comprises 16 planning districts. We focused on trips made by car
in planning district 1 which contains downtown Toronto and the surrounding area. This dataset contains 90 traffic zones
and 78,549 trips over a 24 h period, broken down into 5 time periods: 6:00-9:00, 9:00-15:00, 15:00-19:00, 19:00-24:00,
and 24:00-6:00. ESRI shapefiles were used to determine node locations as the centroid of each traffic zone.

5.2. Estimating vt

The average trip lengths over each time period are l = [2.728, 2.467, 2.661, 2.817, 2.615], and the average required
time to park or leave a charging station, p, was chosen as 10 min. We calculated u based on information acquired about
the bluecar used by Autolib’ in Paris, which can travel up to 250 km with a recharge time of approximately 4 h [11].
The capacity of a pair of parking spaces was then estimated as v = [6366, 12874, 8512, 10570, 12794] over the 5 time
periods, which have been rounded down to the nearest even integer.

5.3. Parking spaces, station cost, and budget

The cost of installing a pair of parking spaces and the number of pairs of parking spaces were set to vary between [1,
2] and [1, 3], respectively. We took the centroid of all nodes within our dataset and considered this point P to be the most
expensive and dense part of the city area. A node’s distance from P determined its cost and parking space capacity, with
the closest node having a cost of 3 and the furthest having a cost of 1, with prices descending linearly with distance. All
nodes within 1

3 of the largest distance from the set of nodes to P had a capacity of 1 pair, between ( 13 ,
2
3 ] had a capacity

of 2 pairs and the remaining nodes had a capacity of 3 pairs. We set our budget b = 0.3(cN )TmN
= 65.32. The average

cost of a pair of parking spaces was 1.666. This allowed for up to 39 average cost pairs of parking spaces to be used.

5.4. Experiment results

All experiments were done on a Windows 10 Pro 64-bit, Intel Core i7-7820HQ 2.9 GHz processor with 8 GB of RAM
computer using Gurobi 8.01. An initial attempt at solving EE to optimality was abandoned after two days, after which a
time limit was set for 12 h. Table 1 presents a summary of results using BCSA (Algorithm 2), EE (Section 4), and solving
(OP) with S = N . Objective value is the total number of trips not satisfied. % trips alloc is the percentage of the total trips
allocated to a station. Comp time (min) is the total computation time in minutes. |S| is the number of potential stations
found or considered. |z > 0| is the total number of stations built. Ave space cost is the average cost of a pair of parking
spaces built. Budget used is the total amount spent on the electric car network, with % budget used being the percentage
of the budget b spent. We observe that BCSA outperformed EE in terms of both computation time and solution quality.
Using either solution method, we see that adding the ability of sharing stations between nodes greatly decreases the
number of balanced rides not satisfied, with both methods having less than 14% of the number of unallocated rides as
with S = N . We also observe that BCSA was able to use money more efficiently, having spent the least amount out of
all methods. Table 2 provides a per time period summary of the number of total trips and the number of trips satisfied
for each method. The set of nodes and stations are plotted in Fig. 1, where each station was plotted at the centroid
of its neighbouring nodes. This figure illustrates another benefit of sharing stations between nodes in that given the
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Fig. 1. Traffic nodes and station locations for BCSA (top), EE (middle), and S = N (bottom).

Table 2
Number of trips satisfied per time period using BCSA, EE, and S = N .
Time period 1 2 3 4 5 Sum

Total trips 12,724 21,762 25,194 18,495 374 78,549
BCSA 10,269 21,107 23,592 17,153 110 72,231
EE 10,147 21,289 23,445 17,221 105 72,207
S = N 4332 9811 10,747 7428 0 32,318

same budget, and using approximately the same number of stations, BCSA and EE were able to satisfy trips from a much
greater geographical area, including areas of the extreme periphery. The choice of station locations for the S = N model
is restricted almost exclusively to where the nodes are the densest, whereas both BCSA and EE have stations, for example,
east of x = 632.5 and south of y = 4832.5.

6. Conclusion and future research

Vehicle relocation is an operational burden for one-way electric car sharing networks. We have developed a novel
approach to minimize its requirement by optimizing the location of charging stations so as to maximize the balanced
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flow in the network. By doing this, the trips we expect to satisfy do not depend on vehicle relocation, as the network
self-regulates over time. Though we were interested in creating a self-regulating car sharing network without the need for
vehicle relocation, there is nothing preventing the use of both methods to further increase the number of trips satisfied.
Future research could involve a two-stage stochastic optimization model, where charging stations are optimized, and
then given a stochastic daily network usage, the number of required employees and their deployment is determined to
relocate vehicles so as to maximize the expected number of trips satisfied. It would also be interesting to simulate our
model’s real-time performance using an agent-based model to get more insight into how it would work in practice, and to
potentially discover new insights to improve our model’s assumptions. Finally, we also see our methodology being useful
in other one-way sharing programs, such as for bicycles, which suffer from the same network imbalance problem.
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Appendix

A.1. Requirement of (OP.5) in (OP) for trip integrity

Consider the single period problem of there being two nodes, n1 and n2, and three stations s1, s2, and s3. The capacity
of each station is 10 (e.g. v1 = 10, msi = 1 for all i, and b = ∞). Let

OD1
=

[
0 10
10 0

]
and assume N (n1) = {s1} and N (n2) = {s2, s3}. We see in total there are 20 trips, 10 going from n1 to n2, and 10 going
from n2 to n1. As n2 has access to two stations, all of its incoming and outgoing flow can be accommodated, 5 inflow and
5 outflow going to each, whereas n1 has access only to one station, and so can only assign 5 inflow and 5 outflow. The
optimal solution is 10, with

E1
=

[
0 5
5 0

]
If we consider now the case where constraint (OP.5) of (OP) is omitted, the optimal solution is 5, with

E1
=

[
5 0
0 0

]
Placing 5 in cell (1,1) accounts for the 5 inflow and 5 outflow not assigned by n1, while not influencing the flow

allocation of n2, allowing it to allocate all of its flow to its neighbouring stations, while in reality 5 of n1’s outgoing trips
were never assigned to a charging station’s outward flow.

A.2. An example of AX t
{≤, =}bt

We write AX t
{≤, =}bt for the example problem described in Appendix A.1. The curly bracketed numbers in the first

column indicate the constraint set each row is from.
(OP.1’)
(OP.1’)
(OP.1’)
(OP.2)
(OP.2)
(OP.3)
(OP.3)
(OP.4)
(OP.4)
(OP.4)
(OP.5)
(OP.5)
(OP.5)
(OP.5)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
1 0 0 0 0 0 1 1 0 0
0 1 1 0 0 0 0 0 1 1
0 0 0 1 0 0 1 0 1 0
0 0 0 0 1 1 0 1 0 1
1 0 0 −1 0 0 0 0 0 0
0 1 0 0 −1 0 0 0 0 0
0 0 1 0 0 −1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

F+

1,1
F+

2,2
F+

3,2
F−

1,1
F−

2,2
F−

3,2
E1,1
E2,1
E1,2
E2,2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

≤

≤

≤

=

=

=

=

=

=

=

≤

≤

≤

≤

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

5
5
5
10
10
10
10
0
0
0
0
10
10
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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