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a b s t r a c t

A lattice (d, k)-polytope is the convex hull of a set of points in dimension d whose
coordinates are integers between 0 and k. Let δ(d, k) be the largest diameter over all
lattice (d, k)-polytopes. We develop a computational framework to determine δ(d, k)
for small instances. We show that δ(3, 4) = 7 and δ(3, 5) = 9; that is, we verify for
(d, k) = (3, 4) and (3, 5) the conjecture whereby δ(d, k) is at most ⌊(k + 1)d/2⌋ and is
achieved, up to translation, by a Minkowski sum of lattice vectors.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Finding a good bound on the maximal edge-diameter of a polytope in terms of its dimension and the number of its
facets is not only a natural question of discrete geometry, but also historically closely connected with the theory of the
simplex method, as the diameter is a lower bound for the number of pivots required in the worst case. Considering
bounded polytopes whose vertices are integer-valued, we investigate a similar question where the number of facets is
replaced by the grid embedding size.

The convex hull of integer-valued points is called a lattice polytope and, if all the vertices are drawn from {0, 1, . . . , k}d,
it is referred to as a lattice (d, k)-polytope. Let δ(d, k) be the largest edge-diameter over all lattice (d, k)-polytopes.
Naddef [8] showed in 1989 that δ(d, 1) = d, Kleinschmidt and Onn [7] generalized this result in 1992 showing that
δ(d, k) ≤ kd. In 2016, Del Pia and Michini [3] strengthened the upper bound to δ(d, k) ≤ kd − ⌈d/2⌉ for k ≥ 2, and
showed that δ(d, 2) = ⌊3d/2⌋. Pursuing Del Pia and Michini’s approach, Deza and Pournin [6] showed that δ(d, k) ≤

kd − ⌈2d/3⌉ − (k − 2) for k ≥ 4, and that δ(4, 3) = 8. The determination of δ(2, k) was investigated independently in the
early nineties by Thiele [9], Balog and Bárány [2], and Acketa and Žunić [1] showing that δ(2, k) =

6
(2π )2/3

k2/3+O(k1/3 log k).
Investigating the lower bound on δ(d, k), Deza, Manoussakis, and Onn [5] introduced the primitive lattice polytope

H1(d, 2) as the Minkowski sum of all the nonzero vectors v drawn from {−1, 0, 1}d such that ∥v∥1 ≤ 2 and the first
nonzero coordinate of v is positive. They showed that, for any k < 2d, there exists a subset of the generators of H1(d, 2)
whose Minkowski sum is, up to translation, a lattice (d, k)-polytope of diameter ⌊(k + 1)d/2⌋. Thus, they showed that
δ(d, k) ≥ ⌊(k + 1)d/2⌋ for all k < 2d and proposed Conjecture 1.

Conjecture 1. For any d and k, δ(d, k) is achieved, up to translation, by a Minkowski sum of lattice vectors. In particular,
when k < 2d, δ(d, k) = ⌊(k + 1)d/2⌋.
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Table 1
The largest possible diameter δ(d, k) of a lattice (d, k)-polytope

In Section 2, we propose a computational framework to investigate Conjecture 1 by drastically reducing the search
space for lattice (d, k)-polytopes achieving a large diameter. Applying this framework to (d, k) = (3, 4) and (3, 5), we
determine in Section 3 that δ(3, 4) = 7 and δ(3, 5) = 9.

Theorem 2. Conjecture 1 holds for (d, k) = (3, 4) and (3, 5); that is, δ(3, 4) = 7 and δ(3, 5) = 9, and both diameters are
achieved, up to translation, by a Minkowski sum of lattice vectors.

Note that Conjecture 1 holds for all known values of δ(d, k) given in Table 1, and hypothesizes, in particular, that
δ(d, 3) = 2d. The new entries corresponding to (d, k) = (3, 4) and (3, 5) are entered in bold.

2. Theoretical and computational framework

Since δ(2, k) and δ(d, 2) are known, we consider in the remainder of the paper that d ≥ 3 and, with the exception
of Section 3.2, that k ≥ 3. While the number of lattice (d, k)-lattice polytopes is finite, a brute force search is typically
intractable, even for small instances. Let d(u, v) denote the distance between two vertices u and v of a polytope P in
the edge-graph of P . Theorem 3 considers a pair (u, v) of vertices of a lattice (d, k)-polytope such that d(u, v) = δ(d, k),
and recalls conditions established in [6] that allow to drastically reduce the search space by exploiting integrality and
convexity properties.

Theorem 3. For d ≥ 3, let (u, v) be a pair of vertices of a lattice (d, k)-polytope P such that d(u, v) = δ(d, k). For i = 1, . . . , d,
let F 0

i , respectively F k
i , denote the intersection of P with the facet of the cube [0, k]d corresponding to xi = 0, respectively xi = k.

Then, d(u, v) ≤ δ(d − 1, k) + k, and the following conditions are necessary for the inequality to hold with equality:

(1) u + v = (k, k, . . . , k),
(2) any edge with u or v as vertex is drawn from {−1, 0, 1}d,
(3) for i = 1, . . . , d, both F 0

i and F k
i , are, up to an affine transformation, lattice (d− 1, k)-polytopes of diameter δ(d− 1, k).

Thus, to show that δ(d, k) < δ(d − 1, k) + k, it is enough to show that there is no lattice (d, k)-polytope P admitting a
pair of vertices (u, v) such that d(u, v) = δ(d, k) and the conditions (1), (2), and (3) are satisfied. Those conditions appear
as items (i) and (ii) at the very end of [6] and are a direct consequence of bounding d(u, v) by the length of path from u to
v going through one the 2d faces of P formed by the points of P maximizing, or minimizing, one of the d coordinates. The
computational framework to determine, given (d, k), whether δ(d, k) = δ(d − 1, k) + k is outlined below and illustrated
for (d, k) = (3, 4) or (3, 5).

Algorithm to determine whether δ(d, k) < δ(d − 1, k) + k
Step 1: Initialization
Determine the set Fd−1,k of all lattice (d − 1, k)-polytopes of diameter δ(d − 1, k). For example, for (d, k) = (3, 4),
the determination of all the 335 lattice (2, 4)-polygons of diameter 4 is straightforward.

Determine the set Vd−1,k of all the vertices of all lattice (d − 1, k)-polytopes of diameter δ(d − 1, k). For example,
for (d, k) = (3, 4), V2,4 consists of all {0, 1, . . . , 4}-valued points except (2, 2).

Determine the set Pd−1,k of all the points with integer coordinates belonging to the intersection of all lattice
(d− 1, k)-polytopes of diameter δ(d− 1, k). For example, for (d, k) = (3, 4), P2,4 = {(1, 2), (2, 1), (2, 2), (2, 3), (3, 2)}.

Determine the convex hull Cd,k of all the points x such that xi = 0 and x̄i ∈ Pd−1,k for some 1 ≤ i ≤ d. Here
x̄i ∈ Rd−1 denotes the point consisting of all coordinates of x except xi.
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Step 2: Symmetries and other reductions

Up to the symmetries of the cube [0, k]d, we can assume that the coordinates of u satisfy ui ≤ ui+1 ≤ ⌊k/2⌋ for
i = 1, . . . , d − 1. For example, for (d, k) = (3, 4), the following vertices cover all possibilities for u:
(0, 0, 0), (0, 0, 1), (0, 0, 2), (0, 1, 1), (0, 1, 2), (0, 2, 2), (1, 1, 1), (1, 1, 2), (1, 2, 2), and (2, 2, 2).

If u1 = 0, we can further assume that ūi ∈ Vd−1,k for all i such that ui = 0, as otherwise u cannot be a vertex of a
lattice (d, k)-polytope P of diameter δ(d − 1, k) + k by item (3) of Theorem 3. For example, for (d, k) = (3, 4), the
point (0, 2, 2) can be removed as (2, 2) /∈ V2,4.

Similarly, if u1 ̸= 0, we can further assume that ūi /∈ Pd−1,k for all i = 1, . . . , d and that u is not in the interior of
Cd,k, as otherwise u is in the interior of a convex combination of points belonging to any lattice (d, k)-polytope P of
diameter δ(d − 1, k) + k. For example, for (d, k) = (3, 4), the points (1, 1, 2), (1, 2, 2), and (2, 2, 2) can be removed
as (1, 2) and (2, 2) belong to P2,4, and the point (1, 1, 1) can be removed as (1, 1, 1) is in the interior of C3,4 since
(1, 1, 1) is a convex combination of (0, 1, 2), (2, 0, 1) and (1, 2, 0).

For each remaining u, we proceed to Step 3 where, by item (1) of Theorem 3, we can assume that (u, v) forms a
pair of vertices satisfying d(u, v) = δ(d − 1, k) + k and u + v = {k, k, . . . , k}. For example, for (d, k) = (3, 4), we
proceed to Step (3) for each of the 5 pairs (u, v) corresponding to u = (0, 0, 0), (0, 0, 1), (0, 0, 2), (0, 1, 1), and
(0, 1, 2).

Step 3: Shelling
For each of the possible pairs (u, v) determined during Step 2, the shelling step tries to embed elements of the set
Fd−1,k determined during Step 1 onto the ordered 2d intersections of P with the facets of the cube [0, k]d. We
recall that P is assumed to be a lattice (d, k)-polytope of diameter δ(d − 1, k) + k with d(u, v) = δ(d − 1, k) + k.

If u1 = 0, only elements of the set Fd−1,k with ū1, respectively v̄1, as vertex are considered to be embedded into the
d facets of [0, k]d with (0, 0, . . . , 0), respectively (k, k, . . . , k), as vertex. For example, for (d, k) = (3, 4),
u = (0, 0, 0), and v = (4, 4, 4), the algorithm tries to embed 6 elements of F2,4 into the 6 facets of [0, 4]3; 3 with
(0, 0) as vertex, and 3 with (4, 4) as vertex.

These embeddings must be consistent; that is, given two embeddings E1 and E2, the intersection of E1 with the
facet of [0, k]d containing E2 should be equal to the intersection of E2 with the facet of [0, k]d containing E1. In
addition, by item (2) of Theorem 3, if an edge of an embedding of an element of Fd−1,k with u or v as vertex is
not drawn from {−1, 0, 1}d, this embedding can be disregarded.

Let Γ denote the graph defined by the vertices and edges belonging to the embeddings of elements of Fd−1,k
considered to form a shelling, and let dΓ (u, v) denote the distance in Γ between u and v. Since Γ is a subgraph of
the edge-graph of a lattice (d, k)-polytope P of diameter assumed to be d(u, v), dΓ (u, v) is an upper bound for
d(u, v); that is, for δ(d − 1, k) + k. Thus, if dΓ (u, v) < δ(d − 1, k) + k, a shortcut between u and v exists and the last
embedding can be disregarded.

For example, for (d, k) = (3, 5), all embeddings of 6 elements of F2,5 forming a shelling yield a Γ such that
dΓ (u, v) < 10, and thus the algorithm terminates without Step 4 being executed.

Step 4. Inner points
For each choice of 2d embeddings of elements of Fd−1,k forming a shelling obtained during Step 3, consider the
{1, 2, . . . , k − 1}-valued points not in the convex hull of the vertices of Γ ; that is, not in the convex hull of the
vertices of the 2d embeddings of elements of Fd−1,k forming a shelling.

All subsets of such points are considered as potential vertices to be added to the vertices of Γ via a binary tree. A
convex hull and diameter computation are performed for each node of the obtained binary tree. If there is a node
yielding a diameter of δ(d − 1, k) + k we can conclude that δ(d, k) = δ(d − 1, k) + k. Otherwise, we can conclude
that δ(d, k) < δ(d − 1, k) + k.

3. Computational results and enhancements

3.1. Determination of δ(3, 4) and δ(3, 5)

For (d, k) = (3, 4), a shelling exists for which path lengths are not decidable by the algorithm without convex hull
computations. However, this shelling only achieves a diameter of 7. For (d, k) = (3, 5) the algorithm stops at Step 3,
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Fig. 1. H1(3, 2) is congruent to the truncated cuboctahedron and maximizes the diameter among all lattice (3, 5)-polytopes.

as there is no combination of 6 elements of F2,5 which form a shelling such that d(u, v) = δ(2, 5) + 5 = 10. Thus,
no convex hull computations are required for (d, k) = (3, 5). A shortcut from u to v is typically found early during
the shelling step, which leads to the algorithm terminating quickly. Run on a 2009 Intel R⃝ CoreTM2 Duo 2.20 GHz CPU,
the algorithm is able to terminate for (d, k) = (3, 4) and (3, 5) in under a minute. Consequently, δ(3, 4) < 8 and
δ(3, 5) < 10. Since the Minkowski sum of (1, 0, 0), (0, 1, 0), (0, 0, 1), (0, 1, 1), (1, 0, 1), (1, 1, 0), and (1, 1, 1) forms a
lattice (3, 4)-polytope of diameter 7, we conclude that δ(3, 4) = 7. Similarly, since H1(3, 2); that is the Minkowski sum
of (1, 0, 0), (0, 1, 0), (0, 0, 1), (0, 1, 1), (1, 0, 1), (1, 1, 0), (0, 1, −1), (1, 0, −1), and (1, −1, 0) forms, up to translation, a
lattice (3, 5)-polytope of diameter 9, we conclude that δ(3, 5) = 9.

Note that H1(3, 2) is congruent to the truncated cuboctahedron; which is also called great rhombicuboctahedron, and
is the Minkowski sum of an octahedron and a cuboctahedron, see Fig. 1 for an illustration.

Assuming that δ(d− 1, k) is known and that the set Fd−1,k of all lattice (d− 1, k)-polytopes of diameter δ(d− 1, k) can
be determined, the algorithm checks whether δ(d, k) = δ(d − 1, k) + k by performing a search over a highly constrained
space. In case there exists a lattice (d, k)-polytope of diameter δ(d, k) = δ(d − 1, k) + k − 1, the algorithm allows the
determination of δ(d, k) as being equal to δ(d, k) = δ(d − 1, k) + k − 1 or to δ(d, k) = δ(d − 1, k) + k. The question is
significantly more challenging if δ(d, k)− δ(d− 1, k) < k− 1 as the search space is much larger and additional structural
properties are needed. The algorithm was enhanced in [4] to show that δ(3, 6) and δ(5, 3) are equal to 10.

3.2. Enumerating all lattice (3, 2)-polytopes of diameter δ(3, 2)

The algorithm can be adapted to enumerate all lattice (d, k)-polytopes of diameter δ(d, k). In this section we consider
the case (d, k) = (3, 2); that is, the determination of all lattice (3, 2)-polytopes of diameter 4.

Note first that a lattice (3, 2)-polytope with an empty intersection with at least one of the facet of [0, 2]3 is either a
hexagonal prism or a lattice (3, 2)-polytope of diameter at most 3. Thus, the hexagonal prism depicted in Fig. 2 in the
middle of the top row is, up to the symmetries of [0, 2]3, the unique lattice (3, 2)-polytope of diameter 4 with an empty
intersection with at least one facet of [0, 2]3.

For a lattice (3, 2)-polytope of diameter 4 with a nonempty intersection with each facet of [0, 2]3, Theorem 3 can be
adapted as follows. Let u and v be two vertices of a lattice (3, 2)-polytope such that d(u, v) = 4, then (u, v) must satisfy
1 ≤ ui + vi ≤ 3 for i = 1, 2, 3, and the intersection of the lattice (3, 2)-polytope with any facet of [0, 2]3 must contain
at least 2 vertices. The computational results show that there are, up to the symmetries of [0, 2]3, hundreds of lattice
(3, 2)-polytopes of diameter 4 with a nonempty intersection with each facet of [0, 2]3. The set V3,2 of all the vertices of
all the lattice (3, 2)-polytopes of diameter 4 consists of all {0, 1, 2}-valued points except (1, 1, 1). This point forms the
intersection of all lattice (3, 2)-polytopes of diameter 4; that is, P3,2 = {(1, 1, 1)}.

There are 3, up to the symmetries of [0, 2]3, lattice (3, 2)-polytopes of diameter 4 with 15 vertices which are depicted
in the bottom row of Fig. 2 where the edges of the intersections with the facets of [0, 2]3 are shown in blue. For a colored
representation of Fig. 2, the reader is referred to the web version of this article. The unique, up to the symmetries of [0, 2]3,
lattice (3, 2)-polytope of diameter 4 with 11, respectively 16, vertices is represented leftmost, respectively rightmost, in
the top row.
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Fig. 2. All, up to the symmetries of [0, 2]3 , lattice (3, 2)-polytopes of diameter 4 with 11, 15, or 16 vertices, or with an empty intersection with at
least one facet of [0, 2]3 .
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