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Abstract. Inspired by Bárány’s Colourful Carathéodory Theorem [4], we introduce a
colourful generalization of Liu’s simplicial depth [13]. We prove a parity property and con-
jecture that the minimum colourful simplicial depth of any core point in any d-dimensional
configuration is d2+1 and that the maximum is dd+1+1. We exhibit configurations attain-
ing each of these depths, and apply our results to the problem of bounding monochrome
(non-colourful) simplicial depth.

1. Introduction

In statistics there are several measures of the depth of a point p in Rd relative to a fixed
set S of sample points. Two recent surveys on data depth are [2] and [10], see references
therein. The depth measure we are interested in is the simplicial depth of p, which is
the number of simplices generated by points in S that contain p. A point of maximum
simplicial depth can be viewed as a type of d-dimensional median. We would like to
obtain a lower bound for the depth of simplicial medians.

To do this, we consider a generalized problem where the sample points are colourful.
That is, in dimension d we consider sample points given in each of at least (d+1) colours.
Then we define the colourful simplicial depth of a point p relative to this sample to be
the number of colourful simplices (i.e. simplices with one vertex of each colour) that
contain p. We focus on the situation where the point p is in the intersection of the convex
hulls of the individual colours, which is called the core of the configuration.
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If p is a core point we would typically expect the simplicial depth of p to be more
than exponential in d . However, we exhibit configurations where p is a core point but
is contained in only d2 + 1 colourful simplices. We conjecture that any core point p
of any d-dimensional colourful configuration is contained in at least d2 + 1 colourful
simplices. Along the way, we notice that both in the colourful and monochrome cases
the simplicial depth of points in general position (relative to the sample set) sometimes
has pleasant parity properties. We conclude by mentioning some other natural problems
relating to the colourful and monochrome simplicial depth.

2. Definitions and Background

2.1. Simplicial Depth

The (closed) simplicial depth of a point p relative to a set S of n = |S| points inRd is the
number of (closed) simplices generated by sets of (d + 1) points from S containing p in
their convex hull. This was introduced by Liu [13] as a measure of how representative
p is of the points in S. Denote the simplicial depth of p relative to S as depthS(p).
The simplicial depth of p can be interpreted as the probability that p lies in a random
simplex of S times a constant factor of nd+1 if we sample points from S uniformly with
replacement, or times

( n
d+1

)
if we sample without replacement.

We are most interested in the case when S ∪ {p} is in general position, that is for all
k < d there are no k-dimensional affine subspaces that contain k+2 points from S∪{p}.
With this assumption, p will always be in the interior of any simplices that contain it, so
the notions of closed and open simplicial depth coincide. Without this assumption the
closed simplicial depth will be larger.

For a set of points S, define f (S) to be the maximum simplicial depth of a point p
relative to S, that is,

f (S) = max
p∈Rd

depthS(p). (1)

A point p maximizing f (S) can be understood as a higher-dimensional median point.
We call any such p a simplicial median. Indeed, for d = 1, this is the usual definition of
a medianR. In higher dimensions this definition retains many desirable properties of the
median, such as affine invariance and a high breakdown point (see, e.g. [2], [10], [11]
and [13]). However, this maximum will not be attained at a point in general position.

We consider a similar quantity, the maximum simplicial depth of a point p that
maintains S ∪ {p} in general position:

g(S) = max
S∪{p} in general position

depthS(p). (2)

Equivalently, g is the maximum open simplicial depth of a point Rd . In this way the
definition of g can be extended to the case when S is not in general position. While the
maximum in (1) will be attained on a discrete set of points in Rd , the maximum in (2)
will be attained on an open set. For non-empty S, we will have g(S) < f (S).
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2.2. Colourful Simplicial Depth

Now consider a situation where points are given in each of r ≥ d + 1 colours. Then the
sample consists of colourful sets S1, S2, . . . , Sr which define a colourful configuration S.
In the following we use a bold fount for colourful objects. A colourful simplex from these
sets is any simplex whose vertices are chosen from distinct sets. We define depthS(p), the
colourful simplicial depth of p relative to the configuration S, as the number of colourful
simplices containing p. As with monochrome simplicial depth, colourful depth can be
interpreted probabilistically. In the case where r = d + 1, colourful depth corresponds
to specifying separate distributions for each vertex of the simplex. Dividing the depth
by |S1| · |S2| · · · · · |Sd+1| gives the probability that p lies in a random colourful simplex
(sampled uniformly).

A choice of sets S1, . . . , Sr specifies a colourful configuration S of points. We call the
intersection of the convex hulls of the Si ’s in a configuration the core of S. Bárány proved
that core points are contained in some colourful simplex; this is known at the Colourful
Carathéodory Theorem [4]. In the remainder of the paper, except where noted, we assume
that all configurations and p are in general position and have a non-empty (hence full-
dimensional) core. We remark that our results hold under weaker conditions, such as p
not lying on any hyperplanes generated by points from the configuration.

2.3. Background

Even before the notion of simplicial depth was studied in statistics, the question of
computing bounds for f (S) and g(S) given n and d was studied in the combinatorics
and computational geometry communities. The two-dimensional question dates back at
least to Kárteszi [12] who showed that for n points in the plane, g(S) is at most 1

24 (n
3−n)

for odd n and at most 1
24 (n

3−4n) for even n, and showed that these bounds were attained
when S is the set of vertices of a regular n-gon. In the early 1980s, Boros and Füredi [8]
showed g(S) is at least n3/27+ O(n2), and gave configurations achieving this bound.

In a beautiful paper, Bárány [4] gave bounds for the monochrome simplicial depth in
dimension d as an application of his Colourful Carathéodory Theorem. He obtained a
lower bound by showing that after colouring the points, some point p must be contained
in many colourful simplices. A key point of Bárány’s proof is that a core point p of a
colourful configuration must lie in at least one colourful simplex. Using this fact, for a
set S of n points in general position in Rd Bárány obtains a lower bound of

g(S) ≥ 1

(d + 1)d+1

(
n

d + 1

)
+ O(nd). (3)

This result is asymptotically sharp up to a constant factor as a function of n (for fixed d).
However, as Bárány remarks, the constant is probably quite far from the truth. Indeed,
he gives a sharp upper bound of

g(S) ≤ 1

2d(d + 1)!
nd+1 + O(nd). (4)

We speculate that the true lower bound is not much less than the upper bound.
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One way to improve (3) would be to show that a core point p must lie in more than
one colorful simplex. In Bárány’s original paper, he notes that p must in fact lie in at
least (d + 1) colourful simplices, thereby improving (3) to

g(S) ≥ 1

(d + 1)d

(
n

d + 1

)
+ O(nd). (5)

More generally, if we could show that any core point p of a d-dimensional configuration
is contained in at least µ(d) simplices, then we can improve the constant in (3) by a
factor of µ(d).

3. Colourfully Covering the Core

This leads us to ask: What is the minimum number µ(d) of simplices that can contain
a core point p in a colourful configuration? Given a colourful configuration S with
colourful sets S1, . . . , Sr we can define

m(S) = min
p∈core(S)

depthS(p). (6)

We remark that if core(S) has a non-empty interior, the minimum in (6) will be attained
on an open set of points that are in general position relative to S.

In this notation our objective is to find the minimum value of m(S) over all configu-
rations S with full-dimensional core in dimension d. For a fixed d, it is clear that some
configuration with (d+1) points in each of (d+1) colours attains this minimum, which
depends only on the dimension. Hence we can define

µ(d) = min
d configurations S, p∈core(S)

depthS(p). (7)

One might suppose that m(S) is often large. As a thought experiment, consider choos-
ing a configuration at random. If we take (d + 1) points in Rd from a distribution that
is “nice” and centrally symmetric about the origin 0, the probability that 0 is contained
in their convex hull is 1/2d (see, e.g. [17]). This suggests that for random S, a typical
value for depthS(0) would be (1/2d)(d + 1)d+1. For a set S of (d + 1)2 points in the
plane, plugging this value into Bárány’s analysis gives us an estimate of g(S) very close
to Bárány’s upper bound (4). However, it is not immediately clear if we should expect
m(S) to be much smaller than depthS(0).

If we take a configuration S
 with S
1 given by (d + 1) points in general position
and S
1 = S
2 = · · · = S
d+1 we get m(S
) = (d + 1)!. In Section 3.4 we exhibit a
configuration S− with m(S−) ≤ d2 + 1.

In the remainder of the paper, except where noted, we consider configurations with
(d + 1) points in each of (d + 1) colours.

3.1. Preliminaries

In [7] Bárány and Onn consider the problem of colourful linear programming. This is
the algorithmic version of the colourful Carathéodory problem: Given a core point p,
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how can we find a colourful simplex containing p? They begin with some preprocessing
which is also helpful here.

Take a colourful configuration S of (d + 1) colourful sets in Rd , S = {S1, . . . , Sd+1}.
Take p ∈ int(core(S)). Without loss of generality we assume that the core point p = 0.
Given any finite set of points T ⊆ Rd , scaling the points of T does not affect whether 0
lies in the convex hull of T since the coefficients in a convex combination can themselves
be rescaled. This allows us to normalize S by rescaling its points to unit vectors.

Let conv(T ) be the convex hull of the points in T and let cone(T ) be the set of non-
negative linear combinations of points of T . A cone is simplicial if it can be generated
by a set of d linearly independent points in Rd . If T ⊆ Rd is a set of points, 0 /∈ T , but
0 ∈ conv(T ), then cone(T ) must contain a non-trivial linear subspace of Rd . A closed,
convex cone is called pointed if it does not contain such a subspace, so we summarize
this as:

Lemma 3.1. Given any finite set of non-zero points T ⊆ Rd , 0 is in conv(T ) if and
only if cone(T ) is not pointed.

When T is a finite set of points on the unit d-sphere Sd ⊆ Rd , Lemma 3.1 is equivalent to
saying that 0 ∈ conv(T ) if and only if T is not contained in any open hemisphere of Sd .
One direction is proved by building a hemisphere from a hyperplane through 0 whose
normal lies in the interior of cone(T ) when this cone is pointed. The other direction
is proved by observing that an open hemisphere never contains both a point p and its
antipode −p.

We would like to put Lemma 3.1 in a form that is convenient for counting how many
simplices generated from T contain 0. To do this, we find it helpful to think about the
antipode of one of the points.

Lemma 3.2. If T = {p1, p2, . . . , pd+1} is a set of non-zero affinely independent points
in Rd , 0 is in conv(T ) if and only if the antipode −pd+1 is in cone(p1, p2, . . . , pd).

Proof. Let K = cone(p1, p2, . . . , pd). Since K is a cone generated by d linearly
independent points in Rd , K is simplicial and hence pointed. If −pd+1 ∈ K , then we
can write it as a conic combination of the remaining pi , that is,−pd+1 =

∑d
i=1 ai pi for

some a1, . . . , ad ≥ 0. Moving the pd+1 term to the right-hand side of the equation and
dividing by 1+∑d

i=1 ai gives 0 as a convex combination of the pi ’s. If −pd+1 is not in
K , then we can strictly separate −pd+1 from K with a hyperplane H through 0. Then
both K and pd+1 lie strictly on the same side of H , and the cone generated by T must
be pointed.

3.2. A Variational Approach

Take a point p from a finite set S ∈ Rd . Call a simplex generated by points in S a
p-simplex if p is one of the points used to generate the simplex, and call a p-simplex
zero-containing if it contains 0 in its interior. Define zS(p) to be the number of zero-
containing p-simplices for a given S.
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Lemma 3.2 tells us that zS(p) is the number of simplicial cones generated by S\{p}
that contain −p. We find it useful to think about what happens to zS(p) if we move p
while fixing the remaining points of S. This is particularly illustrative if we confine p to
the surface of the unit sphere Sd centred at 0.

Let U = S\{p} with |U | = u. Initially zS(p) will be the number of simplicial cones
generated by sets of d points from U that contain−p. Now consider what happens as p
(and hence−p) move. The value of zS(p)will stay fixed until−p crosses the boundary of
some simplicial cone from U . These boundaries are defined by the hyperplanes generated
by 0 and sets of (d−1) points from U . Taking all (d−1) sets from U , we can generate all
such boundaries. They divide the surface ofSd into open cells that are (d−1)-dimensional
open sets. We can define the depth of a cell of S to be the number of simplicial cones
generated by S containing any given point in the interior of the cell.

Consider moving p along the surface of Sd to a new point p′. If−p and−p′ are in the
same cell, we will have zS(p) = zS(p′). Now suppose −p is in a cell C adjacent to the
cell C ′ containing−p′. Then as we move from−p to−p′ we cross a single hyperplane
H defined by a set U 0 of (d−1) points from U belonging to H . Let us say that−p is on
the left of H and−p′ is on the right. For the moment we assume that only (d−1) points
of U lie on H . Let U− be the set of k points from U on the left of H , and let U+ be the
u− k− (d−1) points from U on the right. Since−p is in a cell bordered by H , it lies in
the cone defined by the points from U 0 and x for any point x ∈ U−. On the other hand,
−p is separated by H from the cones formed by U 0 and y for any y ∈ U+. Hence−p is
contained in exactly k simplicial cones from S generated by U 0 and a single other point.
Similarly,−p′ is contained in exactly u−k−(d−1) such cones. Simplicial cones that do
not contain U 0 in their generating set will not have H as a facet, so they will contain−p
if and only if they contain−p′. Suppose−p is in l such cones. Then zS(p) = l+k, while
zS(p′) = l + u − k − (d − 1).

We conclude that given the value of zS(p) at some point p, we can in principle
compute zS(p′) for any other point p′ by tracing a path from−p to−p′, and seeing how
each hyperplane generated from points in U = S\{p} divides the points of U . To do this
formally, we need a topological lemma that says we can always draw a path between
two points on Sd that crosses only hyperplanes from U (as opposed to passing through
cones generated by fewer than (d − 1) points). This reduces to the following fact which
can be proved using algebraic topology, see, for example, [14]:

Lemma 3.3. The sphere Sd , a (d − 1)-dimensional manifold, remains path connected
after removing finitely many (d − 3)-dimensional manifolds.

3.3. Parity

The variational approach to computing zS(p) explains the following parity phenomenon:

Proposition 3.4. For any colourful configuration S of (d+1) points in each of (d+1)
colours in odd dimension d and any point p with S and p in general position, the
colourful simplicial depth of p with respect to S is even.
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The authors were surprised by this fact while experimenting with configurations. How-
ever, it is easy to explain this via a colourful version of the method described in Sec-
tion 3.2. Suppose we begin with a configuration S0 with (d+1) points in each of (d+1)
colours clustered near the North Pole of Sd . (We remarked in Section 3.1 that it is suf-
ficient to consider configurations on the surface of Sd .) Then we can move one point
at a time from its initial position in S0 to its final position in S generating a sequence
of configurations S0,S1,S2, . . . ,S(d+1)2 = S. Clearly, depthS0(0) = 0. As we move a
given point pi of colour j from its initial position in S0 (and Si ) to its final position
in S (and Si+1), we need only to know what happens when the antipode −pi crosses
colourful hyperplanes defined by a set of (d − 1) points of (d − 1) colours, and not
of colour j . Such a colourful hyperplane H will miss only one other colour, j ′. There
will be k points of colour j ′ on one side of H , and (d + 1 − k) on the other side.
Here we are assuming that the points from S are in general position, but we can ar-
gue by continuity that this assumption is not necessary. As −pi crosses H the number
of simplicial cones containing −pi generated by points from H and a point of colour
j ′ changes from k to (d + 1 − k). As long as (d + 1) is even, the parity does not
change.

Examining this proof, we can see that Proposition 3.4 can be generalized:

Theorem 3.5. If S = {S1, S2, . . . , Sr } is a d-dimensional colourful configuration of
points and for each i = 1, 2, . . . , r we have |Si | even, and p is and any point p with S
and p in general position, then the colourful simplicial depth of p with respect to S is
also even.

For monochrome depth, as we move point p around Sd we need to consider all
possible hyperplanes formed from S\{p}. Using the same reasoning as Theorem 3.5 we
get:

Theorem 3.6. If S is a set of n points in Rd , and n − d is even, and p is a point such
that S ∪ {p} is in general position, then the simplicial depth of p with respect to S is
even.

Remark 3.7. The variational approach suggested in Section 3.2 has appeared in various
guises in discussions of monochrome simplicial depth. In particular, it underlies many
of the algorithms suggested for computing monochrome simplicial depth. Several such
algorithms have been proposed recently, see, for example, the discussion in [2]. Many
of these focus on the two-dimensional problem, but [11] and [9] use variational ideas in
three- and four-dimensional algorithms.

For this reason, we believed that Theorem 3.6 existed as folklore for some time. Baker
remarks on the two-dimensional version in a recreational mathematics note [3], but this
fact, which impressed the authors with its simple elegance, seems curiously neglected
in the literature. We speculate that one reason for this is that in statistics the focus has
been on computing the depth of the sample points themselves, which are not in general
position and do not retain nice parity conditions.
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3.4. Configurations with Small Minimal Colourful Depth

We now describe how to build a colourful configuration S− that contains 0 in its core,
but where only d2 + 1 colourful simplices contain 0. Our strategy is to fix the first d
colourful sets S−1 , S−2 , . . . , S−d and then consider possible placements of (d + 1) points
p1, p2, . . . , pd+1 to form S−d+1. We will place the points from S− = S−1 ∪ S−2 ∪ · · · ∪ S−d
on the sphere Sd in such a way that some regions of Sd are sparsely covered by simplices
from S−.

We begin by fixing ε = 1/100d. We will place the points from S− in three locations
on Sd . The first on the Tropic of Capricorn, which we define to be the set of points
on Sd whose dth coordinate is −2ε. The second is on the Tropic of Cancer, whose
dth coordinate is ε. The two tropics are topologically copies of Sd−1, but unlike their
namesakes they are not equally spaced from the equator. The final region is the polar
region of points in Sd which are within ε of the North Pole pnorth = (0, 0, . . . , 0, 1) (see
Fig. 1).

Now let us fix the positions of the points {x1, x2, . . . , xd+1} ∈ S−1 . Take

x1 = (
√

1− 4ε2, 0, 0, . . . , 0,−2ε) and x2 = (−
√

1− ε2, 0, 0, . . . , 0, ε).

Note that the line segment between x1 and x2 passes just below the origin in the sense
that it contains a point whose first (d − 1) coordinates are 0, and whose dth coordinate
is negative (and small). We now place the remaining points x3, . . . , xd+1 in the polar
region in such a way as to ensure that 0 ∈ int(conv(S−1 )). For d = 2 we can do this
by placing x3 at the North Pole. For d ≥ 3 we can place the points on the section of
the Arctic Circle (points with distance ε to the North Pole) with zero initial coordinate.
Topologically the Arctic Circle is a copy of Sd−2; we can take x3, . . . , xd+1 to be the
vertices of a regular simplex inscribed on this sphere.

The points of colours 2, 3, . . . , d are chosen similarly. The first points from each of
the d colours are arranged in a regular simplex on Capricorn. The remaining points in
the same relative position to the first point, so that each S−i is a rotation of S−1 around

North polar region

Equator
Tropic of Cancer

Tropic of Capricorn

ε

north

south

p

ε2

p

Fig. 1. Three-dimensional illustration of the regions used in constructing S−.
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the dth coordinate axis. In particular, for each i = 1, 2, . . . , d, the second point of S−i
will lie on Cancer and the final (d − 1) points will lie in the polar region.

We finish our construction by considering possible placements of the points
p1, . . . , pd+1 of S−d+1. We want to place the pi ’s in such a way that their antipodes
(the −pi ’s) are contained in few colourful simplicial cones generated from S−.

Consider the cell Csouth defined by colours 1, . . . , d of S− on Sd which contains the
South Pole psouth = (0, 0, . . . , 0,−1). We claim this is exactly the intersection of Sd with
the single colourful simplicial cone KCap defined by the d colourful points on Capricorn.
This follows since any other colourful cone is generated by a set of d coloured points
chosen from Capricorn, Cancer and the northern polar region. Fix such a cone and call
these sets GCap, GCan and GPole and let KG = cone(GCap ∪ GCan ∪ GPole). We assume
that we have |GCap| < d . We need to show that int(KCap) ∩ int(KG) = ∅. To do this,
we find a hyperplane separating KCap and KG . If GCap = ∅ the hyperplane through the
Equator will do. Otherwise, take the colours from GCap and consider any facet F of KCap

containing generators of each of these colours. Then F separates KCap from all the polar
points and all the Cancer points of colours from {1, 2, . . . , n}\GCap. (To be absolutely
proper, in higher dimension we would have to move Capricorn up towards the equator to
ensure the separation of the Cancer points, i.e. we would have to reduce the constant 2ε
to (1+ δ)ε for some δ > 0.) This completes the proof. We conclude that the cell Csouth

is covered only by the colourful cone KCap and closely approximates the spherical cap
bounded by Capricorn.

It is a good strategy to place the antipodes−pi in Csouth. If we do this for all of S−d+1,
however, the resulting configuration will not have 0 ∈ conv(S−d+1) (S−d+1 would certainly
be contained in an open hemisphere). So we must have at least one antipode, say −p1

above Capricorn. Indeed, if we place the remaining −pi below Capricorn, we would
need to have −p1 above the ring of the antipodes of Capricorn. More precisely, this is
the set of points on Sd with final coordinate value exactly 2ε. In particular, it is above
Cancer.

Let A = {a1, a2, . . . , ad} be the points from S−1 , S−2 , . . . , S−d on Capricorn. Similarly,
let B = {b1, b2, . . . , bd} be the points on Cancer. Let us count how many simplicial
cones from S− must contain −p1 if we place −p1 above Cancer. To do this, we start
with−p1 in Csouth and then move it above Cancer noting which cell boundaries it crosses
as suggested in Section 3.2. This structure of the cell boundaries is a topological question,
so we find it convenient to remove the psouth and equate Sd with Rd−1.

With the exception of the single colourful cone that contains Csouth, the colourful
simplicial cones generated by S− correspond to colourful simplices in Rd−1. The polar
points on Sd will be clustered near the origin in Rd−1. Let A′ = {a′1, . . . , a′d} and
B ′ = {b′1, . . . , b′d} be the projections of A and B respectively in Rd−1. Then conv(A′)
and conv(B ′) form nested simplices which contain the projection of the polar region.
The boundaries of the colourful simplicial cones on Sd map to facets of simplices in
R

d−1; both are defined by sets of (d − 1) colourful points. Moving −p1 from below
Capricorn to above Cancer corresponds to moving−p′1 from outside conv(A′) to inside
conv(B ′).

Let us now see what simplicial facets −p′1 must cross to do this. If we keep −p′1
far away from the a′i ’s and b′i ’s themselves, we can avoid any facets involving the polar
points: These facets involve at most (d − 2) generators from A′ and B ′, and hence have
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ends that are at most (d − 3)-dimensional manifolds in conv(A′)\ int(conv(B ′)). The
ends can be avoided by Lemma 3.3.

This still leaves d2d−1 colourful facets defined by choosing (d − 1) colourful points
from A′ and B ′. We can enumerate them by first choosing an index (colour) to omit and
then representing the choices of a′i ’s and b′i ’s by a 0-1 vector of length (d − 1). Letting
0 represent the choice of an a′i , conv(A′) is bounded by the facets defined by d index
choices and a vector of 0’s, while conv(B ′) is bounded by the facets defined by d index
choices and a vector of 1’s. In fact there are 2d colourful simplices generated by A′ and
B ′, and they are enumerated by 0-1 vectors of length d. Their facets are enumerated by
choosing an index to drop from the enumerating sequence. Therefore the sums of the
0-1 vectors enumerating the facets of a given simplex can differ by at most 1.

Now start with−p′1 outside conv(A′). To bring−p′1 inside conv(B ′), we must start by
bringing it into conv(A′). This involves crossing some boundary face of conv(A′), say the
one defined by a1, . . . , ad−1. This is enumerated as (d, 0, 0, . . . , 0, 0). We can proceed
through facets (d − 1, 0, 0, . . . , 0, 1), (d − 2, 0, 0, . . . , 0, 1, 1) until finally we cross
(1, 1, 1, . . . , 1) into a cell of conv(B ′). This involves d facet crossings, which is minimal
since at each crossing we can only add a single 1 to the 0-1 part of the enumerating
vector.

We claim that as −p′1 crosses each facet, it makes a net gain of d − 1 containing
simplices. At the first facet, (d, 0, 0, . . . , 0, 0), −p′1 leaves the single exterior simplex
defined by the points A′ projected from Capricorn and enters the d simplices defined by
a′1, . . . , a′d−1 and the d points of colour d other than a′d . At subsequent facet crossings,
the same thing happens for the remaining colours: −p′1 leaves the simplex defined by
the crossing facet and a′i . As −p′1 leaves, it enters the simplices defined by this facet
and the d remaining points of colour i . Hence the number of simplices containing −p′1
immediately after crossing into conv(B ′) is exactly 1+ d(d − 1).

We now return our attention to Sd . Denote by Cp the cell containing −p1 whose
projection lies inside conv(B ′). From our construction, Cp is a cell above Cancer. We
want to claim that in fact it contains some point above the set of antipodes of Capricorn,

0

Fig. 2. Placement of points of colours 1, 2, 3 and antipodes of colour 4 in the three-dimensional S−.
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that is, a point whose antipode is in Csouth. This is a complicated geometric calculation.
However, we observe that nothing in our topological argument above changes if we
change the constant 2ε in our definition of Capricorn to cε for any c ≥ 0. In particular,
the cell Cp does not degenerate if we move the antipodes of Capricorn towards Cancer by
decreasing c to 1. Therefore for some c > 1 (this condition maintains 0 ∈ int(conv(S−i ))
for i = 1, . . . , d), Cp includes some point above the antipodes of Capricorn. Any such
c and point in Cp would be sufficient for our construction. We have used c = 2 for
concreteness and take it as an article of faith that this is a small enough for our choice
of ε.

The construction can now be completed. Take −p2 to be the midpoint of the short-
est spherical segment between Capricorn and p1 (which lies below Capricorn). Let
z < −2ε be the final coordinate of −p2 and arrange the remaining points so that
−p2,−p3, . . . ,−pd+1 form a regular simplex on Sd ∩ {x ∈ Rd |xd = z}. Then 0 is in
the convex hull of the −pi (and hence S−d+1). Finally we can calculate depthS−(0) from
the location of the−pi : 0 lies in 1+ d(d− 1) colourful simplices generated with p1 and
one simplex each including p2, p3, . . . , pd+1. Hence,

depthS−(0) = 1+ d(d − 1)+ d = d2 + 1.

Remark 3.8. There are other nice configurations with depthS−(0) = d2+1. Consider
a configuration S′ similar to S− but with the tropics pushed to the north, taking Cancer’s
final coordinate to 3ε and Capricorn’s to −ε. We can then move each of −p1, . . . ,−pd

across Capricorn and the equator through a single boundary facet. Finally, place −pd+1

at the South Pole. Using the same analysis as above, we have p1, . . . , pd points forming
1 + (d − 1) simplices containing 0, and pd+1 forming one such simplex for a total of
d2 + 1.

Both S− and S′ have symmetry for the first d colours, but not the last one. We can also
propose a configuration S′′ with symmetry between all the colours. Follow the recipe for
S− but place one point of each colour on Cancer and Capricorn and place the remaining
points in the polar region. This brings a number of technical difficulties, however. The
points will not be in general position, since the tropical hyperplanes include (d + 1)
points. It is also a bit less natural to evenly space (d + 1) points on copies of Sd−1,
indeed, for d = 2 this construction does not make sense. When there is a nice way to do
this for d ≥ 3 (e.g. four points on S2) we may end up with some points being antipodes.
This would cause 0 to be on the faces of some simplices and increase its colourful
simplicial depth. Most of these problems can be fixed by perturbing S′′, but even so S′′ is
not well-suited to our proof technique. One might also consider configurations that are
not confined to the sphere.

3.5. Evaluating µ(d)

The configuration S− of Section 3.4 satisfies m(S−) ≤ d2+1 where m(S) is the minimum
colourful simplicial depth of the core point defined in (6). We would like to prove
that m(S−) = d2 + 1 and in fact that for any colourful configuration S we will have
m(S) ≥ d2 + 1, or equivalently µ(d) ≥ d2 + 1. The second half of this proposition
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clearly implies the first. We suggest it is also more approachable since we can move
the core point of minimum depth to 0 during preprocessing, whereas a direct attack on
m(S−) requires understanding the shape of the core of S−.

Bárány’s original Colourful Carathéodory theorem is exactly that µ(d) ≥ 1. He
further shows that for any S any colourful point from S is part of some generating set
for a colourful simplex containing 0. This immediately yields µ(d) ≥ d + 1. In S− we
see that p2, p3, . . . , pd+1 all generate a unique colourful simplex containing 0. Thus the
minimum number of colourful simplices containing 0 generated by an arbitrary point
in a configuration is 1. To get a stronger lower bound than µ(d) ≥ d + 1 we need to
understand some global information about configurations.

Lemma 3.9. Fix the sets S1, . . . , Sd from a colourful configuration S with 0 in its core,
and consider the cells created on Sd by the colourful simplicial cones from these sets.
Then every cell has depth at least 1, and if there is a cell of depth 1 it is unique and all
other cells have depth at least d.

Proof. The fact that every cell has depth at least 1 is equivalent to the fact that every
colourful point generates some colourful simplex that contains 0, proved in [4]. Suppose
now that there is a cell C of depth 1. Any point exiting C through a bounding hyperplane
will be exiting some colourful simplex. Since the depth of C is 1, this will always be the
same simplex. Thus the extreme points of C must be a colourful set A = {a1, . . . , ad}
with ai ∈ Si generating this simplex. We can puncture Sd at p ∈ C and project Sd\{p}
into Rd−1. The ai ’s project to a set A′ = {a′1, . . . , a′d} that forms a (d − 1)-simplex in
R

d−1. The remaining colourful points project to points in conv(A′).
Take a point q inside conv(A′). We want to show that q is contained in at least d

colourful simplices in addition to conv(A′) after projection. To do this, it is sufficient to
show that if we take any colourful set B ′ = {b′1, . . . , b′d} of projected points with b′i of
colour i and A′ ∩ B ′ = ∅, then q is in some colourful simplex generated from points of
A′ ∪ B ′ with some generators from B ′. Equivalently, we want to show that conv(A′) is
covered by colourful simplices generated from A′ ∪ B ′ (excluding conv(A′) itself from
the covering). Then by partitioning the projections of the colourful points into (d + 1)
colourful sets A′, B ′1, B ′2, . . . , B ′d we get Lemma 3.9.

Consider the collection X of colourful (d − 1)-simplices generated by A′ and B ′ in
R

d−1 and let X̃ be the set of points contained in the colourful simplices of X other than
conv(A′). The elements of X are all the simplices formed by taking for each colour
i = 1, 2, . . . , d either a′i or b′i as a generating vertex. This construction resembles the
d-dimensional cross-polytope βd (the dual of the d-cube), a regular polytope in Rd with
2d vertices and 2d facets. The cross-polytope βd is generated by taking as vertices the
standard unit vectors E+ = {e1, . . . , ed} and their negatives E− = {−e1, . . . ,−ed}. The
facets of βd are the convex hulls generated by choosing for each i = 1, . . . , d either ei

or −ei .
We can see that X is obtained from βd as follows: We have A′ ∪ B ′ ⊂ Rd−1. Embed

R
d−1 as an affine subspace Aff(A′) inRd . Take H to be an affine hyperplane inRd parallel

to Aff(A′). For i = 1, . . . , d let pi be the intersection point of H with the line through b′i
perpendicular to Rd−1. Let P = {p1, . . . pd} and generate a set Q of (d − 1)-simplices
by taking for each i = 1, . . . , d either a′i or pi . By construction X is the projection of
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Q into Aff(A′). Now we claim that Q is a continuous image of the facets of βd . We
can exhibit such a map by first finding an affine transformation T1 with T1(ei ) = a′i for
i = 1, . . . , d and T1(Aff(E−)) = H. Note that T1(βd) is a polytope. Then applying a
further affine transformation t2 to H with t2(−ei ) = pi for i = 1, . . . , d and extending
this to T2 on Rd so that T2 fixes Aff(A′), we see that the composition T2 ◦ T1 is the
required map.

We proceed by contradiction. Assume that X̃ does not cover conv(A′). Then we can
find a retraction of X̃ to its boundary ∂(conv(A′)). By composing T2, the projection
taking Q onto X and the retraction of X̃ , we get a retraction of T1(βd)\ conv(A′) onto
∂(conv(A′)). However, T1(∂(βd)) is a d-dimensional polytope topologically equivalent to
S

d and hence T1(∂(βd))\ conv(A′) is topologically equivalent to a (d − 1)-dimensional
disk Bd−1. Nevertheless, ∂(conv(A′)) is topologically equivalent to Sd−1 and a well-
known theorem of algebraic topology says that there does not exist a retraction of Bd−1

to Sd−1 (see, for example, Section 21 of [14]). This is the required contradiction, hence
the colourful simplices of X\conv(A′) cover conv(A′).

Corollary 3.10. The minimum colourful simplicial depth of any core point in any
colourful configuration is at least 2d. That is, we have µ(d) ≥ 2d.

Proof. It suffices to prove this for a configuration S with (d + 1) in (d + 1) colours.
Observe that if we have no cell of depth 1 then each of the (d + 1) points of Sd+1 will
generate at least two colourful simplices containing 0, and if we do have such a cell C ,
we must place at least one point, say p1 ∈ Sd+1, outside of C to get 0 ∈ conv(Sd+1).
Then p1 generates at least d simplices containing 0 in addition to the d required of the
remaining points in Sd+1.

3.6. The Two-Dimensional Case

We briefly illustrate our methods by describing how core points can be contained in
configurations in R2. Consider such a configuration S = {X, Y, Z} with core point p.
We assume general position, and, as discussed in Section 3.1, we may without loss of
generality take the core point p = 0 and place the points of S on the unit circle S2.

Then the points of X and Y divide S2 into six segments. Let X = {x1, x2, x3},
Y = {y1, y2, y3}. These points generate nine simplicial cones and divide S2 into six
segments. The boundaries between cones are simply the rays through the xi ’s and yi ’s.
Because no three points of X or Y lie in the same half-circle, each hyperplane through
0 and xi divides the yi ’s two to one and vice versa. Then as the antipode of a point from
Z crosses xi or yi the number of containing simplicial cones changes by exactly one.

To get a configuration S− where only five simplices contain 0, we take
x1 = (−√1− 4ε2,−2ε), x2 = (

√
1− ε2, ε), x3 = (−ε,√1− ε2), y1 =

(
√

1− 4ε2,−2ε), y2 = (−
√

1− ε2, ε) and y3 = (ε,
√

1− ε2). Observe there is a large
cell of depth 1 between x1 and y1. The reader can verify that the sequence of colourful
cell depths is 1,2,3,4,3,2 (see Fig. 3).

Let Z = {z1, z2, z3}. Place z2 = (−
√

1− 9ε2, 3ε) and z3 = (
√

1− 9ε2, 3ε) so that
their antipodes lie between x1 and y1. They each generate one simplex containing 0.
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x1 y2 x3 y3 x2 y1

2 3 4 3 2 11

Fig. 3. Covering depths for a circle with a depth 1 cell.

Finally, to ensure that 0 ∈ conv(Z), we see that −z1 must lie above y2 and x2. Take
z1 = (−√1− 16ε2,−4ε). Then −z1 is contained in three colourful simplicial cones
generated by X and Y . This configuration has 0 in the interior of its core and 0 lies in
1+ 1+ 3 = 5 colourful simplices (see Fig. 4).

Using the analysis in Section 3.5 we see that the cells generated by X and Y have
colourful covering depth at least 1. If no cell attains this, then our configuration must
yield at least six colourful simplices containing 0. If some cell has depth 1, we can place
at most two of the −zi ’s in this cell. The remaining zi must then have depth at least 2,
for a minimum of 4. In fact, we can strengthen this to show that our configuration is
minimal by observing that we cannot place all of Z in two adjacent cells. We conclude
that µ(2) = 5. A similar observation in three dimensions shows that µ(3) ≥ 8. Given
the construction of Section 3.4 and Proposition 3.4 we know that µ(3) is either 8 or 10.
Bárány and Matoušek [5] have shown that µ(3) = 10.

4. Conclusions

Let us return to our original goals. Using the bound µ(d) ≥ 2d from Section 3.5, we
see that we can improve Bárány’s lower bound (5) for the depth of the monochrome
simplicial median to

g(S) ≥ 2d

(d + 1)d+1

(
n

d + 1

)
+ O(nd). (8)

This is a modest improvement. Unfortunately, the construction in Section 3.4 shows that

x 1 x 1

ε2

ε

z 1

z 2 z 3

x 3

y 2

y 1

y 1

x 2 y 2 x 2

y 3 x 3 y 3

ε ε

0

ε ε

0

−z

−z

1

−z
3 2

Fig. 4. Valid configuration S− in dimension 2 with depthS− (0) = 5.
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simply bounding µ(d) cannot give a stronger bound than

g(S) ≥ d2 + 1

(d + 1)d+1

(
n

d + 1

)
+ O(nd). (9)

Quite recently, Wagner proved exactly the bound (9) in his thesis [16] as a special
case of his First Selection Lemma. This is, to our knowledge, the first improvement of
(5) since Bárány’s original paper [4]. Wagner’s result uses a continuous version of the
Upper Bound Theorem for polytopes and other techniques from probability without any
reference to colouring. We find the appearance of the constant d2 + 1, which for us
arrives from colourful combinatorics, quite remarkable.

4.1. Bounds for Core Point Depth

Recalling that m(S) is the minimum value of a core point in a configuration S and that
µ(d) is the minimum value of m(S) over all d-dimensional colourful configurations S,
our main result is:

Theorem 4.1. The minimal colourful simplicial depth of any interior core point in
any colourful configuration is between 2d and d2 + 1. That is, we have: 2d ≤ µ(d) ≤
d2 + 1.

Conjecture 4.2. The minimum colourful simplicial depth of any interior core point in
any colourful configuration is d2 + 1. That is, we have µ(d) = d2 + 1.

This conjecture implies that the configuration S− minimizes m(S) for d-dimensional
colourful configurations. It would also give an elementary proof of (9). It is easy to see
that this holds for d = 1. As we noted in Section 3.6, Conjecture 4.2 holds for d = 2
and d = 3. The non-uniqueness of configurations attaining m(S) = d2+ 1 suggests that
any such proof cannot be completely trivial but it may be possible to do this through
improved bookkeeping. The authors generated random low-dimensional configurations
by computer and did not find any counterexamples to Conjecture 4.2.

Remark 4.3. The lower bound for µ(d) was improved very recently independently
by Bárány and Matoušek [5] and Stephen and Thomas [15] to max(3d, 1

5 d(d + 1)) for
d > 2 and �(d + 2)2/4� respectively. We know thatµ(1) = 2,µ(2) = 5 andµ(3) = 10.
Combining the improved bounds with the parity conditions of Proposition 3.4 we have
the following bounds on µ(d) for d > 3:

12 ≤ µ(4) ≤ 17, 16 ≤ µ(5) ≤ 26, 18 ≤ µ(6) ≤ 37, 22 ≤ µ(7) ≤ 50,

and for d > 7: ⌊
(d + 2)2

4

⌋
≤ µ(d) ≤ d2 + 1.
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It is also natural to ask what type of colourful configuration has a core point of
maximum colourful simplicial depth. For this question to be interesting, we must fix the
number and size of the colourful sets. Hence we restrict our attention to d-configurations
with (d + 1) points in each of (d + 1) colours. We also require p to lie in the interior of
the core since moving to the boundary of a simplex increases the depth. We define

ν(d) = max
d configurations S, p∈int(core(S))

depthS(p). (10)

Our method is well-suited to analyzing ν(d) simply by changing our objective to
creating deep cells and placing antipodes in them. We remark that ν(1) = 2. An analysis
similar to that of Section 3.6 shows that ν(2) = 9. The key observation is after placing
two sets of three colourful points on the circle, the sequence of cell depths that we obtain
is either 1,2,3,4,3,2 or 3,2,3,2,3,2. In the first case we also need to argue that the cells of
depth at least 3 cover less than half the circle and that opposite every point of depth 4 is
a point of depth 1.

The minimal core depth configuration S− used to prove µ(2) = 5 is topologically
unique, so it is interesting to observe that, up to topology, there are two distinct configu-
rations that contain 0 in nine colourful simplices. The first corresponds to the sequence
of cell depths 1,2,3,4,3,2 and contains a point z3 that generates a unique 0-containing
colourful simplex. The second corresponds to the sequence 3,2,3,2,3,2 and is a com-
binatorially symmetric configuration where each colourful point is in exactly three 0-
containing colourful simplices. The configurations are illustrated in Fig. 5.

We can build a configuration S+with depthS+(0) = dd+1+1 by following the strategy
for S− but building a deep cell rather than a shallow one. To do this, we place the polar
region points of colour i close to the geodesic between pnorth and the point of colour i
on Cancer. Then pnorth is contained in every colourful cone generated by points from
Cancer and the polar region (in fact these are all the colourful cones containing pnorth).
Hence the cell Cnorth containing pnorth has depth dd . By placing the points of S+d+1 so
that d of their antipodes are in Cnorth and the final antipode is at psouth, we get S+ with
depthS+(0) = d · dd + 1. The two-dimensional S+ appears as the left element of Fig. 5.

x 1

z 2z 1

z 3

z 3

x 2 y 2

x 1 y 3

y 1 x 3

x 3

x 2y 2

y 1

y 3

z 1 z 2

0
0

Fig. 5. The two configurations in dimension 2 with depthS(0) = 9.
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A more symmetric (but similar) construction places one point of each colour at the
vertices of a regular simplex, and the remaining points surround the antipode of the same
colour.

It follows that ν(d) ≥ dd+1 + 1. We conjecture that this bound is tight. As with
Conjecture 4.2 a computer search did not turn up any counterexamples.

Conjecture 4.4. The maximum colourful simplicial depth of any point in the interior
of the core of any colourful configuration of (d + 1) points in each of (d + 1) colours is
dd+1 + 1. That is, we have ν(d) = dd+1 + 1.

Remark 4.5. For any d , there exists a colourful configuration S which contains 0 in at
least 32% of its colourful simplices.

A configuration of (d + 1) points in each of (d + 1) colours generates (d + 1)d+1

colourful simplices, so Remark 4.5 follows immediately from the construction of S+.
The minimum fraction of colourful simplices containing 0 from an S+ configuration is
82/256 attained when d = 3.

5. Open Questions

We conclude by mentioning that there are many more natural questions relating to
colourful and monochrome simplicial depth. The first is:

Question 5.1. What is a typical value of m(S) for a random configuration S of (d + 1)
points in each of (d + 1) colours?

In Section 3 we remarked that such random configurations could be expected to have a
simplicial depth on the order of (1/2d)(d + 1)d+1 at the origin. We also gave a colourful
configuration S
 that has m(S
) = (d+1)!. However, S
 is not in general position. Our
construction S− from Section 3.4 is in general position and has a low value of m(S−). It
is not clear if this behaviour is typical, i.e. if most configurations have some point p near
the edge of the core that drags down m(S), or if our configuration is statistically unlikely.
Indeed, we can consider the possibility that all configurations in general position have
such a point near the edge of the core.

Question 5.2. What is the maximum value of m(S) for a colourful configuration S of
(d + 1) points in each of (d + 1) colours? What if S is not assumed to be in general
position?

We observe that in fact our construction of a colourful configuration S− with m(S−) =
d2+ 1 contains points of high colourful simplicial depth, but away from 0. This leads us
to consider the colourful analogues of the functions f (S) and g(S) of Section 2.1. For
a colourful configuration S, define

f(S) = max
p∈Rd

depthS(p) and g(S) = max
p in general position

depthS(p). (11)
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We focus on the case where we have (d + 1) colours. It is clear that given the sizes
of the colourful sets S1, . . . , Sd+1 comprising S that the maximum of f(S) and g(S) is
|S1| · · · · · |Sd+1| and is attained by placing the points of each colour at (or near) the
vertices of a simplex. If we restrict S to be a configuration of (d + 1) points in each of
(d + 1) colours and take the maximum over the interior of the core, we get exactly the
question of finding ν(d) (Conjecture 4.4). We are also interested in lower bounds for
f(S) and g(S).

Question 5.3. For d-dimensional configurations consisting of n points in each of (d+1)
colours, find lower bounds for f(S) and g(S).

In a survey paper on the Colourful Carathéodory Theorem, Bárány and Onn [6]
mention that the results of [1] can be applied to give a lower bound for g(S) when n is
large of the form

g(S) ≥ cd

(
n

d + 1

)
. (12)

Unfortunately, the constant cd is doubly exponential in d so the bound is only non-trivial
if n � e4d2

. In particular, it sheds no light on the n = d + 1 case.
One can also get a lower bound for g(S) directly from the Colourful Tverberg Theorem

[18], which is used to derive the results in [1]:

g(S) ≥ 1

4

(
n

d + 1
+ 3

)
. (13)

This still does not help for n = d + 1, but for small n the bound is stronger than (12)
and comes with the additional guarantee that colourful simplices involved are disjoint!
This suggests that there is much room for improvement.

5.1. Monochrome Questions

The authors would also like to mention that they do not know the answers to some fairly
basic questions about monochrome simplicial depth. Recall the maximum closed and
open depth functions f (S) and g(S) for a set of points S in Rd defined in Section 2.1.

Question 5.4. Are the points p attaining the maximum f (S) in (1) always limit points
of the set of maxima attaining g(S) in (2)?

We feel that a positive answer to this question would provide a further natural justifi-
cation for studying g(S) in place of f (S)when the former is more tractable. Similarly, it
would be interesting to get conditions on S such that f (S) is not much larger than g(S).

We are also curious about the expected values of f (S) and g(S):

Question 5.5. Given n points inRd distributed independently and symmetrically about
0, what is the expected deepest simplicial depth of the resulting configuration? That is,
what is the expected depth of the simplicial median of the points?
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Wagner and Welzl [17] give an expression for the expected depth of 0, but 0 will not
always be the deepest point. Indeed if n = d + 1 the expected simplicial depth of 0 will
be 1/2d while the simplicial median always has depth 1. For fixed d the expected depth
of 0 is (1/2d)

( n
d+1

)
which has the same asymptotic behaviour as Bárány’s sharp upper

bound (4) for g(S). However, when n is not much larger than (d + 1), the gap between
the expected depth of 0 and Bárány’s upper bound is substantial and it is not clear to us
where the expected depth of the simplicial median lies.

Bárány’s method of proving (3) combined with a solution to Question 5.1 might lend
some insight into Question 5.5, but a direct approach would be better.
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