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Abstract We introduce and study a family of polytopes which can be seen as a
generalization of the permutahedron of type Bd . We highlight connections with the
largest possible diameter of the convex hull of a set of points in dimension d whose
coordinates are integers between 0 and k, and with the computational complexity of
multicriteria matroid optimization.
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1 Introduction

We introduce and study lattice polytopes generated by the primitive vectors of bounded
norm. These primitive zonotopes can be seen as a generalization of the permutahedron
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of type Bd . We note that, besides a large symmetry group, primitive zonotopes have a
large diameter and many vertices relative to their grid embedding size. The article is
structured as follows. In Sect. 2,we introduce the primitive zonotopes and someof their
properties. In Sect. 3 we derive lower bounds for the diameter of lattice polytopes,
and in Sect. 4 we determine the computational complexity of multicriteria matroid
optimization.

Finding a good bound on the maximal edge-diameter of a polytope in terms of its
dimension and the number of its facets is not only a natural question of discrete geom-
etry, but also historically closely connected with the theory of the simplex method.
Recent results dealing with the combinatorial, geometric, and algorithmic aspects
of linear optimization include Santos’ counterexample to the Hirsch conjecture, and
Allamigeon et al.’s counterexample to a continuous analogue of the polynomial Hirsch
conjecture. Kalai and Kleitman’s upper bound for the diameter of polytopes was
strengthened by Todd, and then by Sukegawa. Kleinschmidt and Onn’s upper bound
for the diameter of lattice polytopes was strengthened byDel Pia andMichini, and then
by Deza and Pournin. For more details and additional results such as the validation
that transportation polytopes satisfy the Hirsch bound, see [2,5–8,15,21,24,26] and
references therein.

Multicriteria matroid optimization is a generalization of standard linear matroid
optimization where each basis is evaluated according to several, rather than one, crite-
ria, and these values are traded-in by a convex function, see [17,19,20] and references
therein. It turns out that multicriteria matroid optimization can be reduced to solve
several linear counterparts. In Sect. 4, the largest number of such counterparts is shown
to be precisely the number of vertices of a primitive zonotope.

2 Primitive Zonotopes

2.1 Definition

The convex hull of integer-valued points is called a lattice polytope and, if all the
vertices are drawn from {0, 1, . . . , k}d , is refereed to as a lattice (d, k)-polytope. For
simplicity, we only consider full dimensional lattice (d, k)-polytopes. Given a finite
set G of vectors, also called the generators, the zonotope generated by G is the convex
hull of all signed sums of the elements of G. Searching for lattice polytopes with a
large diameter for a given k, natural candidates include zonotopes generated by short
integer vectors in order to keep the grid embedding size relatively small. In addition,we
restrict to integer vectors which are pairwise linearly independent in order tomaximize
the diameter. Thus, for q = ∞ or a positive integer, and d, p positive integers, we
consider the primitive zonotope Zq(d, p) defined as the zonotope generated by the
primitive integer vectors of q-norm at most p:

Zq(d, p) =
∑

[−1, 1] {v ∈ Z
d : ‖v‖q ≤ p, gcd(v) = 1, v � 0}

= conv
( ∑

{λvv : v ∈ Z
d , ‖v‖q ≤ p, gcd(v) = 1, v � 0} : λv = ±1

)
,
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where gcd(v) is the largest integer dividing all entries of v, and � the lexicographic
order on R

d , i.e. v � 0 if the first nonzero coordinate of v is positive. Similarly, we
consider Hq(d, p) which is, up to translation, the image of Zq(d, p) by a homothety
of factor 1/2:

Hq(d, p) =
∑

[0, 1] {v ∈ Z
d : ‖v‖q ≤ p, gcd(v) = 1, v � 0}.

In other words, Hq(d, p) is theMinkowski sum of the generators of Zq(d, p). We also
consider the positive primitive zonotope Z+

q (d, p) defined as the zonotope generated
by the primitive integer vectors of q-norm at most p with nonnegative coordinates:

Z+
q (d, p) =

∑
[−1, 1] {v ∈ Z

d+ : ‖v‖q ≤ p, gcd(v) = 1},

where Z+ = {0, 1, . . . }. Similarly, we consider the Minkowski sum of the generators
of Z+

q (d, p):

H+
q (d, p) =

∑
[0, 1] {v ∈ Z

d+ : ‖v‖q ≤ p, gcd(v) = 1}.

We illustrate the primitive zonotopes with a few examples:

(i) For finite q, Zq(d, 1) is generated by the d unit vectors and forms the {−1, 1}d -
cube. Hq(d, 1) is the {0, 1}d -cube.

(ii) Z1(d, 2) is the permutahedron of type Bd and thus, H1(d, 2) is, up to trans-
lation, a lattice (d, 2d − 1)-polytope with 2dd! vertices and diameter d2. For
example, Z1(2, 2) is generated by {(0, 1), (1, 0), (1, 1), (1,−1)} and forms the
octagon whose vertices are {(−3,−1), (−3, 1), (−1, 3), (1, 3), (3, 1), (3,−1),
(1,−3), (−1,−3)}. H1(2, 2) is, up to translation, a lattice (2, 3)-polygon.
Z1(3, 2) is congruent to the truncated cuboctahedron—which is also called great
rhombicuboctahedron—and is theMinkowski sum of an octahedron and a cuboc-
tahedron, see for instance Eppstein [9]. H1(3, 2) is, up to translation, a lattice
(3, 5)-polytope with diameter 9 and 48 vertices.

(iii) H+
1 (d, 2) is the Minkowski sum of the permutahedron with the {0, 1}d -cube.

Thus, H+
1 (d, 2) is a lattice (d, d)-polytope with diameter

(d+1
2

)
.

(iv) Z∞(3, 1) is congruent to the truncated small rhombicuboctahedron, see Fig. 1 for
an illustration, which is the Minkowski sum of a cube, a truncated octahedron,
and a rhombic dodecahedron, see for instance Eppstein [9]. H∞(3, 1) is, up to
translation, a lattice (3, 9)-polytope with diameter 13 and 96 vertices.

(v) Z+∞(2, 2) is generated by {(0, 1), (1, 0), (1, 1), (1, 2), (2, 1)} and forms the
decagon whose vertices are {(−5,−5), (−5,−3), (−3,−5), (−3, 1), (−1, 3),
(1,−3), (3,−1), (3, 5), (5, 3), (5, 5)}. H+∞(2, 2) is a lattice (2, 5)-polygon.

2.2 Combinatorial Properties

We provide properties concerning Zq(d, p) and Z+
q (d, p), and in particular their

symmetry group, diameter, andvertices. Z1(d, 2) is the permutahedronof type Bd as its
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Fig. 1 Z∞(3, 1) is congruent to
the truncated small
rhombicuboctahedron

generators form the root system of type Bd , see [14]. Thus, Z1(d, 2) has 2dd! vertices
and its symmetry group is Bd . The properties listed in this section are extensions to
Zq(d, p) of known properties of Z1(d, 2), and thus given without proof. We refer
to Fukuda [10], Grünbaum [12], and Ziegler [27] for polytopes and, in particular,
zonotopes.

Property 2.1 (i) Zq(d, p) is invariant under the symmetries induced by coordinate
permutations and the reflections induced by sign flips.

(ii) The sum σq(d, p) of all the generators of Zq(d, p) is a vertex of both Zq(d, p)
and Hq(d, p). The origin is a vertex of Hq(d, p), and −σq(d, p) is a vertex of
Zq(d, p).

(iii) The coordinates of the vertices of Zq(d, p) are odd. Thus, the number of vertices
of Zq(d, p) is a multiple of 2d .

(iv) Hq(d, p) is, up to translation, a lattice (d, k)-polytope where k is the sum of the
first coordinates of all generators of Zq(d, p).

(v) The diameter of Zq(d, p), respectively Z+
q (d, p), is equal to the number of its

generators.

Property 2.2 (i) Z+
q (d, p) is centrally symmetric and invariant under the symmetries

induced by coordinate permutations.
(ii) The sum σ+

q (d, p) of all the generators of Z+
q (d, p) is a vertex of both Z+

q (d, p)
and H+

q (d, p). The origin is a vertex of H+
q (d, p), and −σ+

q (d, p) is a vertex of
Z+
q (d, p).

A vertex v of Zq(d, p) is called canonical if v1 ≥ · · · ≥ vd > 0. Property 2.1 item
(i) implies that the vertices of Zq(d, p) are all the coordinate permutations and sign
flips of its canonical vertices.

Property 2.3 (i) A canonical vertex v of Zq(d, p) is the unique maximizer of
{max cT x : x ∈ Zq(d, p)} for some vector c satisfying c1 > c2 > · · · > cd > 0.

(ii) Z1(d, 2) has 2dd! vertices corresponding to all coordinate permutations and sign
flips of the unique canonical vertex σ1(d, 2) = (2d − 1, 2d − 3, . . . , 1).
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(iii) Z+∞(d, 1) has at least 2+ 2d! vertices including the 2d! permutations of ±σ(d)

where σ(d) is a vertex with pairwise distinct coordinates, and the two vertices
±σ+∞(d, 1).

Enumerative questions concerning Hq(d, p) and H+
q (d, p) have been studied in vari-

ous settings. For example, the number of vertices of H+∞(d, 1) corresponds to the OEI
sequence A034997 giving the number of generalized retarded functions in quantum
field theory, and the number of vertices of H∞(d, 1), which is the number of regions of
hyperplane arrangements with {−1, 0.1}-valued normals in dimension d, corresponds,
up to a factor of 2dd!, to the OEI sequence A009997, see [22] and references therein.

3 Large Diameter

Let δ(d, k) be the maximum possible edge-diameter over all lattice (d, k)-polytopes.
Naddef [18] showed in 1989 that δ(d, 1) = d, Kleinschmidt and Onn [16] generalized
this result in 1992 showing that δ(d, k) ≤ kd. In 2016, Del Pia and Michini [7]
strengthened the upper bound to δ(d, k) ≤ kd − �d/2	 for k ≥ 2, and showed that
δ(d, 2) = 
3d/2�. Pursuing Del Pia and Michini’s approach, Deza and Pournin [8]
showed that δ(d, k) ≤ kd − �2d/3	 − (k − 3) for k ≥ 3, and that δ(4, 3) = 8. Del
Pia and Michini conclude their paper noting that the current lower bound for δ(d, k)
is of order k2/3d and ask whether the gap between the lower and upper bounds could
be closed, or at least reduced. The order k2/3d lower bound for δ(d, k) is a direct
consequence of the determination of δ(2, k) which was investigated independently in
the early nineties by Thiele [25], Balog and Bárány [3], and Acketa and Žunić [1]. In
this section, we highlight that H1(2, p) is the unique polygon achieving δ(2, k) for a
proper k, and that a Minkowski sum of a proper subset of the generators of H1(d, 2)
achieves a diameter of 
(k + 1)d/2� for all k ≤ 2d − 1.

3.1 H1(2, p) as a Lattice Polygon with Large Diameter

Finding lattice polygons with the largest diameter; that is, to determine δ(2, k), was
investigated independently in the early nineties by Thiele [25], Balog and Bárány
[3], and Acketa and Žunić [1]. This question can be found in Ziegler’s book [27] as
Exercise 4.15. The answer is summarized in Proposition 3.1 where φ( j) is the Euler
totient function counting positive integers less than or equal to j and relatively prime
with j . Note that φ(1) is set to 1.

Proposition 3.1 H1(2, p) is, up to translation, a lattice (2, k)-polygon with
k = ∑p

j=1 jφ( j) where φ( j) denotes the Euler totient function. The diameter

of H1(2, p) is 2
∑p

j=1 φ( j) and satisfies δ(H1(2, p)) = δ(2, k). Thus, δ(2, k) =
6(k/(2π))2/3 + O(k1/3 log k).

Note that a lattice polygon can be associated to a set of integer-valued vectors adding
to zero and such that no pair of vectors are positive multiples of each other. Such set
of vectors forms a (2, k)-polygon with 2k being the maximum between the sum of the
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Table 1 Relation between H1(2, p) and δ(2, k)

p of H1(2, p) 1 2 3 4

k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

δ(2, k) 2 3 4 4 5 6 6 7 8 8 8 9 10 10 10 11 12

norms of the first coordinates of the vectors and the sum of the norms of the second
coordinates of the vectors. Then, for k = ∑p

j=1 jφ( j) for some p, one can show that

δ(2, k) is achieved uniquely by a translation of H1(2, p). For k �= ∑p
j=1 jφ( j) for

any p, δ(2, k) is achieved by a translation of a Minkowski sum of a proper subset of
the generators of H1(2, p) including all generators of H1(2, p − 1) for a proper p.
For the order of

∑p
j=1 φ( j), respectively

∑p
j=1 jφ( j), being 3p2/π2 + O(p ln p),

respectively 2p3/π2 + O(p2 ln p), we refer to [13]. The first values of δ(2, k) are
given in Table 1.

3.2 H1(d, 2) as a Lattice Polytope with Large Diameter

As pointed out by Vincent Pilaud, a lower bound of kd/2 for δ(d, k) for k < d can
be achieved by considering a graphical zonotope HG ; that is, the Minkowski sum of
the line segments [ei , e j ] for all edges i j of a given graph G. Consider the graphical
zonotope HC(d,k) associated to the circulant graph C(d, k) of degree k on d nodes.
One can check that HC(d,k) is a lattice (d, k)-polytope with diameter kd/2. In this
section, pursuing this approach, we show that a Minkowski sum of a proper subset of
the generators of H1(d, 2) yields δ(d, k) ≥ 
(k + 1)d/2� for all k ≤ 2d − 1.

Theorem 3.2 For k ≤ 2d − 1, there is a subset of the generators of H1(d, 2)
whose Minkowski sum is, up to translation, a lattice (d, k)-polytope with diameter

(k + 1)d/2�. So for k ≤ 2d − 1 we have δ(d, k) ≥ 
(k + 1)d/2�. For instance,
H+
1 (d, 2) is a lattice (d, d)-polytope with diameter

(d+1
2

)
, and H1(d, 2) is, up to

translation, a lattice (d, 2d − 1)-polytope with diameter d2.

Proof We first note that the number of generators of H1(d, 2) is d2. The genera-
tors of H1(d, 2) are {−1, 0, 1}-valued d-tuples: d permutations of (1, 0, . . . , 0),

(d
2

)

permutations of (1, 1, 0, . . . , 0), and
(d
2

)
permutations of (1,−1, 0, . . . , 0). Thus,

δ(H1(d, 2)) = d2 by Property 2.1 item (v). As the sum of the first coordinates
of the generators of H1(d, 2) is 2d − 1, H1(d, 2) is, up to translation, a lattice
(d, 2d − 1)-polytope by Property 2.1 item (iv). Consider first the case when d is
even. The first d − 1 subsets are obtained by removing from the current subset of
generators of H1(d, 2) a set of d/2 generators taken among the

(d
2

)
permutations of

(1,−1, 0, . . . , 0). The removed d − 1 subsets correspond to d − 1 disjoint perfect
matchings of the complete graph Kd where the nonzero i th and j th coordinates of a
generator (. . . , 1, . . . ,−1, . . . ) correspond to the edge [i, j] of Kd . The first perfect
matching is [1, 2], [3, d], [4, d − 1], . . . , [d/2+ 1, d/2+ 2]. The next perfect match-
ing is obtained by changing d to 2, and i to i + 1 for all other entries except 1 which
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remains unchanged. This procedure yields d−1 disjoint perfect matchings as, placing
the vertices 2 to d on a circle around 1 where the edge [1, 2] is vertical and the edges
[3, d], [4, d −1], . . . , [d/2+1, d/2+2] are horizontal, the procedure corresponds to
the d−1 rotations of the initial perfect matching, see [4, Chap. 12]. As these d−1 per-
fect matchings correspond to all the generators of H1(d, 2) which are permutations of
(1,−1, 0, . . . , 0), the procedure ends with a subset of the generators of H1(d, 2) form-
ing the

(d+1
2

)
generators of H+

1 (d, 2).We can then repeat the same procedurewhere the
nonzero i th and j th coordinates of a generator (. . . , 1, . . . , 1, . . . ) correspond to the
edge [i, j] of Kd , and similarly obtain d−1 disjoint perfect matchings. The procedure
now ends with a subset of the generators of H1(d, 2) forming H1(d, 1); that is the unit
cube. One can check that if the Minkowski sum H of the current subset of generators
of H1(d, 2) is a lattice (d, k)-polytope of diameter δ(H), removing the d/2 generators
corresponding to a perfect matching yields a lattice (d, k − 1)-polytope of diameter
δ(H)−d/2. Thus, starting from H1(d, 2) which is a (d, 2d −1)-polytope with diam-
eter d2, we obtain a (d, k)-polytope with diameter (k + 1)d/2 for all k ≤ 2d − 1. The
case when d is odd is similar. The removed subsets are of alternating sizes �d/2	 and

d/2�. Adding a dummy vertex d+1 to Kd , we consider the d disjoint perfect match-
ing of Kd+1 described for even d. The first subset consists of the �d/2	 edges where
[3, d + 1] is replaced by [3, 5], the second subset consists of the 
d/2� edges where
[5, d + 1] is removed, the third subset consists of the �d/2	 edges where [7, d + 1] is
replaced by [7, 9], and so forth. As for even d, one can check that if the Minkowski
sum H of the current subset of generators of H1(d, 2) is a lattice (d, k)-polytope of
diameter δ(H), removing the described �d/2	, respectively 
d/2�, generators yields
a lattice (d, k − 1)-polytope of diameter δ(H) − �d/2	, respectively δ(H) − 
d/2�.
Thus, starting from H1(d, 2) which is a (d, 2d − 1)-polytope with diameter d2, we
obtain a (d, k)-polytope with diameter 
(k + 1)d/2� for all k ≤ 2d − 1. �
Conjecture 3.3 δ(d, k) ≤ 
(k + 1)d/2�, and δ(d, k) is achieved, up to translation,
by a Minkowski sum of lattice vectors.

Note that Conjecture 3.3 holds for all known values of δ(d, k) given in Table 2, and
hypothesizes, in particular, that δ(d, 3) = 2d. Note that δ(d, 3) = 2d for d ≤ 4, 2d ≤
δ(d, 3) ≤ 
7d/3� − 1 when d �≡ 2mod 3, and δ(d, 3) ≤ 
7d/3� when d ≡ 2mod 3,
see [8].

Table 2 Largest diameter
δ(d, k) over all lattice
(d, k)-polytopes

δ(d, k) k

1 2 3 4 5 6 7 8 9 10

d 1 1 1 1 1 1 1 1 1 1 1

2 2 3 4 4 5 6 6 7 8 8

3 3 4 6

4 4 6 8

.

.

.
.
.
.

.

.

.

d d 
3d/2�
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Soprunov andSoprunova [23] considered theMinkowski length of a lattice polytope
P; that is, the largest number of lattice segments whoseMinkowski sum is contained in
P . For example, theMinkowski length of the {0, k}d -cube is kd. We consider a variant
of the Minkowski length and the special case when P is the {0, k}d -cube. Let L(d, k)
denote the largest number of pairwise linearly independent lattice segments whose
Minkowski sum is contained in the {0, k}d -cube. One can check that the generators of
H1(d, 2) form the largest, and unique, set of primitive lattice vectors whichMinkowski
sum fits within the {0, k}d -cube for k = 2d − 1; that is, for k being the sum of the first
coordinates of the d2 generators of H1(d, 2). Thus, L(d, 2d − 1) = δ(H1(d, 2)) =
d2. Similarly, the constructions used in Proposition 3.1 and Theorem 3.2 imply that
L(2, k) = δ(2, k) for all k, and L(d, k) = 
(k + 1)d/2� for k ≤ 2d − 1.

4 Multicriteria Matroid Optimization

We consider the convex multicriteria matroid optimization framework of Melamed,
Onn and Rothblum, see [17,19,20], and show that H∞(d, p) settles its computational
complexity.

Call S ⊂ {0, 1}n amatroid if it is the set of the indicators of bases of a matroid over
{1, . . . , n}. For instance, S can be the set of indicators of spanning trees in a connected
graphwith n edges.We assume that thematroid is presented by an independence oracle
that, queried on y ∈ {0, 1}n , asserts whether or not y ≤ x for some x ∈ S. The standard
linear optimization problem over the matroid S is: given a utility vector w ∈ Z

n , find
a basis which maximizes the utility wT x , that is, solve {maxwT x : x ∈ S}. This
problem is known to be easily solvable by the greedy algorithm. Generalizing this
problem to d criteria, we are given a d × n integer utility matrix W whose i th row Wi

gives the utilityWi x of basis x ∈ S under criterion i , so the vectorWx ∈ Z
d represents

the d utility values of basis x under the d criteria. These values are then traded-in by
a convex function f : R

d → R. We assume that f is presented by a comparison
oracle that, queried on vectors x, y ∈ Z

d , asserts whether or not f (x) < f (y). The
multicriteria matroid optimization problem is then: find a basis which maximizes the
traded-in utility f (Wx); that is, solve {max f (Wx) : x ∈ S}, making use of the oracle
presentations of S and f .

Let conv(WS) = conv{Wx : x ∈ S} be the projection to R
d of conv(S) by

W . As detailed in [19, Chap.2], the projection polytope conv(WS) and its vertices
play a key role in solving our optimization problem since for any convex function
f there is an optimal solution x ∈ S whose projection u = Wx is a vertex of
conv(WS). Thus, the convex multicriteria problem can be solved by enumerating
the set of vertices of conv(WS), picking a vertex u attaining a maximum value f (u),
and finding x ∈ S with Wx = u. However, direct computation of conv(WS) and
enumeration of its vertices are intractable since, typically, S has exponentially many
points.

Following [17], we consider nonnegative utilities, so that, for some positive integer
p, for all i, j , the utility Wi, j of element j of the ground set of the matroid under
criterion i is in {0, 1, . . . , p}. We call such utility matrices p-bounded. Let m(d, p)
denote the number of vertices of H∞(d, p). Theorem 4.1 settles the computational
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complexity of the multicriteria optimization problem by showing that the maximum
number of vertices of the projection polytope conv(WS) of any matroid S on n ele-
ments and any d-criteria p-bounded utility matrix; that is, W ∈ {0, 1, . . . , p}d×n , is
equal to m(d, p), and hence is in particular independent of n, S, and W . Below, we
use the following. The normal cone of polytope P ⊂ R

n at its vertex v is the relatively
open cone of vectors h ∈ R

n such that v is the unique maximizer of hT x over P .
A polytope H refines a polytope P if the normal cone of H at every vertex of H is
contained in the normal cone of P at some vertex of P . Then, the closure of each
normal cone of P is the union of closures of normal cones of H , and P has no more
vertices than H .

Theorem 4.1 Let d, p be any positive integers. Then, for any positive integer n, any
matroid S ⊂ {0, 1}n, and any d-criteria p-bounded utility matrix W, the primi-
tive zonotope H∞(d, p) refines conv(WS). Moreover, H∞(d, p) is a translation of
conv(WS) for some matroid S and d-criteria p-bounded utility matrix W. Thus, the
maximum number of vertices of conv(WS) for any n, any matroid S ⊂ {0, 1}n, and
any d-criteria p-bounded utility matrix W, equals the number m(d, p) of vertices of
H∞(d, p), and hence is independent of n, S, and W. Also, for any fixed d and convex
f : R

d → R, the multicriteria matroid optimization problem can be solved using
a number of arithmetic operations and queries to the oracles of S and f which is
polynomial in n and p using m(d, p) greedily solvable linear matroid optimization
counterparts.

Proof We show first that H∞(d, p) refines conv(WS) for every matroid S. It is known
that if G is a finite set of vectors such that every edge in a polytope P is parallel to
some g ∈ G, then the zonotope H = ∑[0, 1]G refines P , see [11,20]. Now, for any
matroid S ⊂ {0, 1}n , any edge of conv(S) is parallel to the difference 1i −1 j between
a pair of unit vectors in R

n , see [19, Chap.2]. Therefore, any edge of the projection
conv(WS) is parallel to the difference Wi − W j between a pair of columns of W .
Note thatWi −W j ∈ {0,±1, . . . ,±p}d sinceWi ,W j ∈ {0, 1, . . . , p}d . Thus, every
edge of conv(WS) is parallel to some vector in

G(d, p) = {v ∈ Z
d : ‖v‖∞ ≤ p, gcd(v) = 1, v � 0}.

Therefore, the primitive zonotope H∞(d, p) = ∑[0, 1]G(d, p) refines conv(WS).
Next, we construct a matroid S and a d-criteria p-bounded utility matrix such that
H∞(d, p) is a translation of conv(WS). For a vector g ∈ Z

d let g+, g− ∈ Z
d+ be

its positive and negative parts; that is, the unique nonnegative vectors with disjoint
support satisfying g = g+ − g−. Order arbitrarily the vectors {g1, . . . , gr } of G(d, p)
and let n = 2r . Consider the graph which is a path of length r whose edges are labeled
by g1, . . . , gr . Then, replace each edge gi by two parallel edges labeled by g+

i and
g−
i . Let S ⊂ {0, 1}n be the graphic matroid of the resulting graph on n edges. Let
W be the d-criteria p-bounded matrix W = [g+

1 , g−
1 , . . . , g+

r , g−
r ]. Now, there is a

bijection between bases x ∈ S and subsets I ⊆ {1, . . . , r} where we put i in I if x
chooses g+

i from the parallel pair {g+
i , g−

i }. Then, for corresponding x and I :
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Wx =
∑

i∈I
g+
i +

∑

i /∈I
g−
i

=
r∑

i=1

g−
i +

∑

i∈I
(g+

i − g−
i ) +

∑

i /∈I
(g−

i − g−
i )

=
r∑

i=1

g−
i +

∑

i∈I
g.

Thus,

conv(Wx : x ∈ S} = conv

( r∑

i=1

g−
i +

∑

i∈I
g : I ⊆ {1, . . . , r}

)

=
r∑

i=1

g−
i + conv

(∑
G : G ⊆ G(d, p)

)

=
r∑

i=1

g−
i + H∞(d, p).

We conclude that this implies that the maximum number of vertices of conv(WS) for
any n, any matroid S ⊂ {0, 1}n , and any d-criteria p-bounded utility matrixW , equals
the number m(d, p) of vertices of H∞(d, p). Indeed, for every W and S, the number
of vertices of conv(WS) is at most m(d, p) since H∞(d, p) refines conv(WS). In
addition, m(d, p) is attained as the number of vertices of the translation conv(WS) of
H∞(d, p) for S and W constructed above.

We proceed with the algorithmic complexity of the multicriteria matroid opti-
mization problem. Let d be fixed, the number g(d, p) of generators of H∞(d, p)
satisfies g(d, p) = O(pd). Thus, as detailed in [19, Chap.2], the number of vertices
of H∞(d, p) satisfies m(d, p) = O(g(d, p)d) = O(pd

2
) which is polynomial in p,

and in that much time, all vertices of H∞(d, p) can be enumerated alongwith, for each
vertex v ∈ Z

d , a vector hv in the normal cone of H∞(d, p) at v. This preprocessing
depends only on p.

Now, let n, a matroid S ⊂ {0, 1}n , and a d-criteria p-bounded utility matrix W
be given. For each of the m(d, p) = O(pd

2
) vertices v of H∞(d, p) we solve the

standard linear optimization problem over S with utility vector wv = hTv W ∈ Z
n by

the greedy algorithm using the independence oracle of S and find an optimal basis
xv ∈ S. We collect the projections Wxv of all these optimal bases xv corresponding
to the vertices v of H∞(d, p) in a set U ⊂ Z

d . We now claim that every vertex u of
conv(WS) lies in U . Consider such a vertex u and let x ∈ S be such that u = Wx .
Since H∞(d, p) refines conv(WS), there is a vertex v of H such that the normal cone
of H at v is contained in the normal cone of conv(WS) at u. Therefore, hv ismaximized
over conv(WS) uniquely at u = Wx . We claim that u = Wxv ∈ U . Assume that
not, then we get wT

v x = hTv Wx > hTv Wxv = wT
v xv . hence a contradiction. Thus,

we find a vertex v of H∞(d, p) such that u = Wxv maximizes f (u) over U using
the comparison oracle of f , and conclude that xv ∈ S is the optimal solution to the
multicriteria matroid problem. �
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Example 4.2 Let (d, p) = (2, 1), we describe H∞(2, 1), thematroid S, and thematrix
W constructed in the proof of Theorem 4.1 such that H∞(2, 1) is a translation of
conv(WS): G(2, 1) = {(0, 1), (1,−1), (1, 0), (1, 1)}, n = 8, and

S = {x ∈ {0, 1}8 : x2i−1 + x2i = 1, i = 1, 2, 3, 4}, W =
(
0 0 1 0 1 0 1 0
1 0 0 1 0 0 1 0

)
.

See Fig. 2 for an illustration of conv(WS) = (0, 1) + H∞(2, 1) with its m(2, 1) = 8
vertices, and a vector hv in the normal cone of H∞(2, 1) at each vertex v of conv(WS).

Now consider the following bicriteria matroid optimization problem with f = ‖ · ‖22;
that is, f (y1, y2) = y21 + y22 , over a uniform matroid and 2-criteria 1-bounded utility
matrix given by

U 6
12 =

{
x ∈ {0, 1}12 :

12∑

i=1

xi = 6

}
, W =

(
0 0 1 1 0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1 0 1 0 1

)
.

We solve the problem using the algorithm provided in the proof of Theorem 4.1. For
each of the m(2, 1) = 8 vectors hv in normal cones in Fig. 2, we solve the linear
optimization counterpart overU 6

12 with utility vectorwv = hTv W ∈ Z
12 by the greedy

algorithm and find an optimal basis xv ∈ U 6
12. For instance, for hv = (1, 2), greedily

found wv and xv are:

wv = (0 2 1 3 0 2 1 3 0 2 1 3 ), xv = (0 1 0 1 0 1 0 1 0 1 0 1 ).

Then, Wxv = (3, 6) so xv has objective value f (Wxv) = 45. We repeat this for all
eight vectors hv and find the best. Here, the xv above is indeed an optimal solution to
the bicriteria problem. Note thatU 6

12 has
(12
6

) = 924 bases and, for matroids on ground

Fig. 2 conv(WS) =
(0, 1) + H∞(2, 1) and
associated vectors hv

–1
–2

1
–2

2
–1

2
1

1
2

–1
2

–2
1

–2
–1

3

2

1

0

0 1 2 3
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sets with larger n, the number of bases typically grows exponentially. Thus, solving
our problem by exhaustive search is unreasonable. Instead, our algorithm solves any
bicriteria 1-bounded matroid problem in polynomial time by always greedily solving
only 8 linear counterparts, each in time linear in n.

Theorem 4.1 asserts that the number m(d, p) of vertices of H∞(d, p) is the largest
number of linear counterparts needed to solve any d-criteria p-bounded problem.
While we do not know much about the exact value of m(d, p), we examine m(d, p)
for small d or p in the rest of this section: m(1, p) is trivially equal to 2, m(2, p) is
given in Proposition 4.3, and the first values ofm(d, 1) are given after Proposition 4.3.

Proposition 4.3 The number of vertices of H∞(2, p) satisfiesm(2, p)=8
∑p

j=1 φ( j)
where φ( j) is the Euler totient function counting positive integers less than or equal
to j and relatively prime with j .

Proof Since the generators of Hq(d, p) are pairwise linearly independent, the diameter
of Hq(d, p) equals the number of generators. For d = 2, the number of vertices
of Hq(2, p) is twice the diameter. Thus, m(2, p) is twice the number of generators
of H∞(2, p). Now, H∞(2, p) has 4φ(1) generators (1, 0), (0, 1), (1, 1), (1,−1). In
addition, for p ≥ 2, H∞(2, p) has the 4φ( j) generators (i, j), (i,− j), ( j, i), ( j,−i)
for j = 2, . . . , p where i runs through all positive integers less than or equal to j
and relatively prime with j . So H∞(2, p) has 4

∑p
j=1 φ( j) generators andm(2, p) =

8
∑p

j=1 φ( j) vertices. �

For instance, the first values of m(2, p) are:

m(2, 1) = 8, m(2, 2) = 16, m(2, 3) = 32,

m(2, 4) = 48, m(2, 5) = 80, m(2, 6) = 96.

Turning to the number m(d, 1) of vertices of H∞(d, 1), no closed-form expression
is known but, as mentioned at the end of Sect. 2, m(d, 1) corresponds to the OEI
sequence A009997, up to a factor of 2dd!. The first values are:

m(2, 1) = 8, m(3, 1) = 96, m(4, 1) = 5 376,

m(5, 1) = 1 981 440, m(6, 1) = 5 722 536 960.

To solve a 6-criteria 1-bounded matroid problem may require about 6 billion linear
counterparts!
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