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Abstract Westudy a family of lattice polytopes, calledprimitive zonotopes, describe
instances with small parameters, and discuss connections to the largest diameter
of lattice polytopes and to the computational complexity of multicriteria matroid
optimization. Complexity results and open questions are also presented.

Keywords Lattice polytopes · Primitive integer vectors ·Matroid optimization ·
Diameter

1 Introduction

Recent results dealing with the combinatorial, geometric, and algorithmic aspects of
linear optimization include Santos’ counterexample [27] to the Hirsch conjecture,
and Allamigeon, Benchimol, Gaubert, and Joswig’s counterexample [2] to a con-
tinuous analogue of the polynomial Hirsch conjecture. Borgwardt, De Loera, and
Finhold [4] showed that the Hirsch bound holds for transportation polytopes. Kalai
and Kleitman’s upper bound [18] for the diameter of polytopes was strengthened by
Todd [32] and by Sukegawa [30].
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88 A. Deza et al.

Focusing on lattice polytopes; that is bounded polytopes whose vertices are
integer-valued, Del Pia and Michini [7] strengthened Kleinschmidt and Onn’s upper
bound [19] for the diameter of lattice polytopes. Multicriteria matroid optimization
is a generalization of standard linear matroid optimization introduced by Onn and
Rothblum [26] where each basis is evaluated according to several, rather than one,
criteria, and these values are traded-in by a convex function.

The article pursues the study of the primitive zonotopes initiated in [10] and is
organized as follows. After recalling their definition and providing some of their
combinatorial properties, we highlight in Sect. 2 connections to convex multicrite-
ria matroid optimization, and to the diameter of lattice polytopes. In particular, we
strengthen the bounds on the maximum number m(d, 1) of greedily solvable lin-
ear single criterion counterparts needed to solve any d-criteria 1-bounded instance.
Section 3 focuses on primitive zonotopes of small dimension d, norm q, and order
p. The diameter, grid embedding size, and number of vertices are given for values of
(d, q, p) yielding computationally tractable primitive zonotopes. Complexity results
and open questions are discussed in Sect. 4. In particular, we show that linear opti-
mization and separation over primitive zonotopes can be done in polynomial time,
as well as deciding whether a given point, respectively a pair of points, is a vertex,
respectively an edge. Proofs for Sects. 2.2 and 3 are given in Sect. 5.

2 Primitive Zonotopes

2.1 Zonotopes Generated by Short Primitive Vectors

The convex hull of integer-valued points is called a lattice polytope and, if all the
vertices are drawn from {0, 1, . . . , k}d , is refereed to as a lattice (d, k)-polytope. For
simplicity, we only consider full dimensional lattice (d, k)-polytopes. Given a finite
set G of vectors, also called the generators, the zonotope generated by G is the con-
vex hull of all signed sums of the elements of G. We consider zonotopes generated
by short integer vectors in order to keep the grid embedding size relatively small.
In addition, we restrict to integer vectors which are pairwise linearly independent in
order to maximize the diameter. Thus, for q = ∞ or a positive integer, and d, p pos-
itive integers, we consider the primitive zonotope Zq(d, p) defined as the zonotope
generated by the primitive integer vectors of q-norm at most p:

Zq (d, p) =
∑

[−1, 1]{v ∈ Zd : ∥v∥q ≤ p , gcd(v) = 1 , v ≻ 0}

= conv
(∑

{λvv : v ∈ Zd , ∥v∥q ≤ p , gcd(v) = 1 , v ≻ 0} : λv = ±1
)

where gcd(v) is the largest integer dividing all entries of v, and ≻ the lexicographic
order on Rd , i.e. v ≻ 0 if the first nonzero coordinate of v is positive. Similarly, we
consider the Minkowski sum Hq(d, p) of the generators of Zq(d, p):
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Hq(d, p) =
∑

[0, 1]{v ∈ Zd : ∥v∥q ≤ p , gcd(v) = 1 , v ≻ 0}.

In other words, Hq(d, p) is, up to translation, the image of Zq(d, p) by a homothety
of factor 1/2. We also consider the positive primitive zonotope Z+

q (d, p) defined as
the zonotope generated by the primitive integer vectors of q-norm at most p with
nonnegative coordinates:

Z+
q (d, p) =

∑
[−1, 1]{v ∈ Zd

+ : ∥v∥q ≤ p , gcd(v) = 1}

whereZ+ = {0, 1, . . . }. Similarly, we consider theMinkowski sum of the generators
of Z+

q (d, p):

H+
q (d, p) =

∑
[0, 1]{v ∈ Zd

+ : ∥v∥q ≤ p , gcd(v) = 1}.

We illustrate the primitive zonotopes with a few examples:

(i) For finite q, Zq(d, 1) is generated by the d unit vectors and forms the {−1, 1}d -
cube. Hq(d, 1) is the {0, 1}d -cube.

(ii) Z1(d, 2) is the permutahedron of type Bd and thus, H1(d, 2) is, up to translation,
a lattice (d, 2d − 1)-polytope with 2dd! vertices and diameter d2. For example,
Z1(2, 2) is generated by {(0, 1), (1, 0), (1, 1), (1,−1)} and forms the octagon
whose vertices are {(−3,−1), (−3, 1), (−1, 3), (1, 3), (3, 1), (3,−1), (1,−3),
(−1,−3)}. H1(2, 2) is, up to translation, a lattice (2, 3)-polygon, see Fig. 1.
Z1(3, 2) is congruent to the truncated cuboctahedron, see Fig. 2 for an illustra-
tion, which is also called the great rhombicuboctahedron and is the Minkowski
sum of an octahedron and a cuboctahedron, see for instance Eppstein [12].
H1(3, 2) is, up to translation, a lattice (3, 5)-polytope with diameter 9 and 48
vertices.

(iii) H+
1 (d, 2) is the Minkowski sum of the permutahedron with the {0, 1}d -cube.

Thus, H+
1 (d, 2) is a lattice (d, d)-polytope with diameter

(d+1
2

)
.

(iv) Z∞(3, 1) is congruent to the truncated small rhombicuboctahedron, see Fig. 3 for
an illustration, which is the Minkowski sum of a cube, a truncated octahedron,

Fig. 1 H1(2, 2)
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Fig. 2 Z1(3, 2) is congruent
to the truncated
cuboctahedron

Fig. 3 Z∞(3, 1) is
congruent to the truncated
small rhombicuboctahedron

Fig. 4 H+
∞(2, 2)

and a rhombic dodecahedron, see for instance Eppstein [12]. H∞(3, 1) is, up to
translation, a lattice (3, 9)-polytope with diameter 13 and 96 vertices.

(v) Z+
∞(2, 2) is generated by {(0, 1), (1, 0), (1, 1), (1, 2), (2, 1)} and forms the

decagon whose vertices are {(−5,−5), (−5,−3), (−3,−5), (−3, 1), (−1, 3),
(1,−3), (3,−1), (3, 5), (5, 3), (5, 5)}. H+

∞(2, 2) is a lattice (2, 5)-polygon, see
Fig. 4.
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2.2 Combinatorial Properties of the Primitive Zonotopes

We recall properties concerning Zq(d, p) and Z+
q (d, p), and in particular their sym-

metry group, diameter, and vertices. Z1(d, 2) is the permutahedron of type Bd as its
generators form the root system of type Bd , see [17]. Thus, Z1(d, 2) has 2dd! vertices
and its symmetry group is Bd . The properties listed in this section are extensions to
Zq(d, p) of known properties of Z1(d, 2) whose proofs are given in Sect. 5.1. We
refer to Fukuda [14],Grünbaum [16], andZiegler [33] for polytopes and, in particular,
zonotopes.

Property 2.1

(i) Zq(d, p) is invariant under the symmetries induced by coordinate permutations
and the reflections induced by sign flips.

(ii) The sum σq(d, p) of all the generators of Zq(d, p) is a vertex of both Zq(d, p)
and Hq(d, p). The origin is a vertex of Hq(d, p), and −σq(d, p) is a vertex of
Zq(d, p).

(iii) The coordinates of the vertices of Zq(d, p) are odd. Thus, the number of vertices
of Zq(d, p) is a multiple of 2d .

(iv) Hq(d, p) is, up to translation, a lattice (d, k)-polytope where k is the sum of the
first coordinates of all generators of Zq(d, p)

(v) The diameter of Zq(d, p), respectively Z+
q (d, p), is equal to the number of its

generators.

Property 2.2

(i) Z+
q (d, p) is centrally symmetric and invariant under the symmetries induced by

coordinate permutations.
(ii) The sum σ+

q (d, p) of all the generators of Z+
q (d, p) is a vertex of both Z+

q (d, p)
and H+

q (d, p). The origin is a vertex of H+
q (d, p), and −σ+

q (d, p) is a vertex
of Z+

q (d, p).

A vertex v of Zq(d, p) is called canonical if v1 ≥ · · · ≥ vd > 0. Property 2.1 item
(i) implies that the vertices of Zq(d, p) are all the coordinate permutations and sign
flips of its canonical vertices.

Property 2.3

(i) A canonical vertex v of Zq(d, p) is the unique maximizer of {max cT x : x ∈
Zq(d, p)} for some vector c satisfying c1 > c2 > · · · > cd > 0.

(ii) Z1(d, 2) has 2dd! vertices corresponding to all coordinate permutations and
sign flips of the unique canonical vertex σ1(d, 2) = (2d − 1, 2d − 3, . . . , 1).

(iii) For q = ∞ or p ̸= 1, Zq(d, p) has at least 2dd! vertices including all coordinate
permutations and sign flips of the canonical vertex σq(d, p).

(iv) Z+
∞(d, 1) has at least 2+ 2d! vertices including the 2d! permutations of±σ (d)

where σ (d) is a vertex with pairwise distinct coordinates, and the 2 vertices
±σ+

∞(d, 1).
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2.3 Primitive Zonotopes as Lattice Polytopes with Large
Diameter

Let δ(d, k) be the maximum possible edge-diameter over all lattice (d, k)-polytopes.
Finding lattice polygons with the largest diameter; that is, to determine δ(2, k), was
investigated independently in the early nineties by Thiele [31], Balog and Bárány [3],
and Acketa and Žunić [1]. This question can be found in Ziegler’s book [33] as
Exercise 4.15. The answer is summarized in Proposition 2.4,with the role of primitive
zonotopes highlighted.

Proposition 2.4 δ(2, k) is achieved, up to translation, by the Minkowski sum of a
subset of the generators of H1(2, p) for a proper p. In particular, for k = ∑

1≤ j≤p
jφ( j)

for some p, δ(2, k) is uniquely achieved, up to translation, by H1(2, p).

In general dimension, Naddef [24] showed in 1989 that δ(d, 1) = d, Kleinschmidt
and Onn [19] generalized this result in 1992 showing that δ(d, k) ≤ kd, before Del
Pia and Michini [7] strengthened the upper bound to δ(d, k) ≤ kd − ⌈d/2⌉ for k ≥
2, and showed that δ(d, 2) = ⌊3d/2⌋. Deza and Pournin [11] further strengthened
the upper bound to kd − ⌈2d/3⌉ − (k − 3) for k ≥ 3 and showed that δ(4, 3) = 8.
The quantities δ(3, 4) = 7 and δ(3, 5) = 9, respectively δ(3, 6) = 10 and δ(5, 3) =
10, were computationally determined in [5], respectively [8]. Concerning the lower
bound, Deza, Manoussakis, and Onn [10] showed that δ(d, k) ≥ ⌊(k + 1)d/2⌋ for
k < 2d. These bounds are summarized in Proposition 2.5, and Conjecture 2.6 given
in [10] is recalled.

Proposition 2.5

(i) δ(d, k) = ⌊(k + 1)d/2⌋ for (d, k) = (d, 1), (d, 2), (2, 3), (3, 3), (4, 3), (5, 3),
(3, 4), (3, 5), and (3, 6).

(ii) 2d ≤ δ(d, 3) ≤ ⌊7d/3⌋ − 1 for d ̸≡ 2 mod 3, and δ(d, 3) ≤ ⌊7d/3⌋ other-
wise,

(iii) δ(d, k) ≥ ⌊(k + 1)d/2⌋ for k < 2d,
(iv) δ(d, k) ≤ kd − ⌈2d/3⌉ − (k − 2) for k ≥ 4

Conjecture 2.6 δ(d, k) is achieved, up to translation, by a Minkowski sum of lattice
vectors. In particular, δ(d, k) ≤ ⌊(k + 1)d/2⌋ for any d and k, and δ(d, k) = ⌊(k +
1)d/2⌋ when k < 2d.

Note that Conjecture 2.6 holds for all known values of δ(d, k) given in Table 1, and
hypothesizes, in particular, that δ(d, 3) = 2d.

Soprunov and Soprunova [29] considered the Minkowski length of a lattice polytope
P; that is, the largest number of lattice segments whose Minkowski sum is contained
in P . For example, the Minkowski length of the {0, k}d -cube is kd. We consider a
variant of the Minkowski length and the special case when P is the {0, k}d -cube. Let
L(d, k) denote the largest number of pairwise linearly independent lattice segments
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Table 1 Largest diameter δ(d, k) over all lattice (d, k)-polytopes
k

δ(d, k) 1 2 3 4 5 6 7 8 9 10

d 1 1 1 1 1 1 1 1 1 1 1
2 2 3 4 4 5 6 6 7 8 8
3 3 4 6 7 9 10
4 4 6 8
5 5 7 10
...

...
...

d d ⌊3d/2⌋

whose Minkowski sum is contained in the {0, k}d -cube. One can check that the
generators of H1(d, 2) form the largest, and unique, set of primitive lattice vectors
whichMinkowski sum fits within the {0, k}d -cube for k = 2d − 1; that is, for k being
the sum of the first coordinates of the d2 generators of H1(d, 2). Thus, L(d, 2d −
1) = δ(H1(d, 2)) = d2. Similarly, L(2, k) = δ(2, k) for all k, and L(d, k) = ⌊(k +
1)d/2⌋ for k ≤ 2d − 1.

2.4 Primitive Zonotopes and Convex Matroid Optimization

We consider the convex multicriteria matroid optimization framework of Melamed,
Onn and Rothblum, see [22, 25, 26]. Call S ⊂ {0, 1}n a matroid if it is the set of
the indicators of bases of a matroid over {1, . . . , n}. For instance, S can be the
set of indicators of spanning trees in a connected graph with n edges. For a d × n
matrixW , letWS = {Wx : x ∈ S}, and let conv(WS) = Wconv(S)be the projection
to Rd of conv(S) by W . Given a convex function f : Rd → R, convex matroid
optimization deals with maximizing the composite function f (Wx) over S; that is,
max { f (Wx) : x ∈ S}, and is concerned with conv(WS); that is, the projection of
the set of the feasible points. The maximization problem can be interpreted as a
problem of multicriteria optimization, where each row of W gives a linear criterion
Wi x and f compromises these criteria. Thus, W is called the criteria matrix or
weightmatrix. The projection polytope conv(WS) and its vertices play a key role in
solving the maximization problem as, for any convex function f , there is an optimal
solution x whose projection y = Wx is a vertex of conv(WS). In particular, the
enumeration of all vertices of conv(WS) enables to compute the optimal objective
value by picking a vertex attaining the optimal value f (y) = f (Wx). Thus, it suffices
that f is presented by a comparison oracle that, queried on vectors y, z ∈ Rd , asserts
whether or not f (y) < f (z). Coarse criteria matrices; that is, W whose entries are
small or in {0, 1, . . . , p}, are of particular interest. In multicriteria combinatorial
optimization, this case corresponds to the weight Wi, j attributed to element j of the
ground set {1, . . . , n} under criterion i being small or in {0, 1, . . . , p} for all i, j . In
the remainder, we only consider {0, 1, . . . , p}-valued W .
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94 A. Deza et al.

Let m(d, p) denote the number of vertices of H∞(d, p). Theorem 2.7, given
in [10], settles the computational complexity of the multicriteria optimization prob-
lem by showing that the maximum number of vertices of the projection polytope
conv(WS) of any matroid S on n elements and any d-criteria p-bounded utility
matrix; that is, W ∈ {0, 1, . . . , p}d×n , is equal to m(d, p), and hence is in particular
independent of n, S, and W .

Theorem 2.7 Let d, p be any positive integers. Then, for any positive integer n,
any matroid S ⊂ {0, 1}n, and any d-criteria p-bounded utility matrix W, the primi-
tive zonotope H∞(d, p) refines conv(WS). Moreover, H∞(d, p) is a translation of
conv(WS) for some matroid S and d-criteria p-bounded utility matrix W. Thus, the
maximum number of vertices of conv(WS) for any n, any matroid S ⊂ {0, 1}n, and
any d-criteria p-bounded utility matrix W, equals the number m(d, p) of vertices of
H∞(d, p), and hence is independent of n, S, and W. Also, for any fixed d and convex
f : Rd → R, the multicriteria matroid optimization problem can be solved using
a number of arithmetic operations and queries to the oracles of S and f which is
polynomial in n and p using m(d, p) greedily solvable linear matroid optimization
counterparts.

Theorem 2.8 The number m(d, 1) of vertices of H∞(d, 1) satisfies

2dd! ≤ m(d, 1) ≤ 2
∑

0≤i≤d−1

(
(3d − 3)/2

i

)
− 2

(
(3d−1 − 3)/2

d − 1

)
.

Proof The first inequality restates item (i i i) of Property 2.3 where (q, d, p) is set
to (∞, d, 1). The second inequality is obtained by exploiting the structure of the
generators of H∞(d, 1). One can check that H∞(d, 1) has (3d − 1)/2 generators
and that removing the first zero of the generators of H∞(d, 1) starting with zero
yields exactly the (3d−1 − 1)/2 generators of H∞(d − 1, 1). We recall that the num-
ber of vertices f0(Z) of a d-dimensional zonotope Z generated by m generators is
bounded by f̄ (d,m) = 2

∑
0≤i≤d−1

(m−1
i

)
. By duality, the number f0(Z) of vertices

of a zonotope Z is equal to the number fd−1(A) of cells of the associate hyper-
plane arrangement A where each generator m j of Z corresponds to an hyperplane
h j of A. The inequality f0(Z) ≤ f̄ (d,m) is based on the inequality fd−1(A) ≤
fd−1(A \ h j )+ fd−1(A ∩ h j ) for any hyperplane h j ofAwhereA \ h j denotes the
arrangement obtained by removing h j fromA, andA ∩ h j denotes the arrangement
obtained by intersecting A with h j . This last inequality and the duality between
zonotopes and hyperplane arrangements are detailed, for example, in [14]. Recur-
sively applying this inequality to the arrangement A∞(d, 1) associated to H∞(d, 1)
till the remaining (3d−1 − 1)/2 hyperplanes form a (d − 1)-dimensional arrange-
ment equivalent to A∞(d − 1, 1) yields: fd−1(A∞(d, 1)) ≤ f̄ (d, (3d − 1)/2) −(
f̄ (d, (3d−1 − 1)/2) − f̄ (d − 1, (3d−1 − 1)/2)

)
which completes the proof since

fd−1(A∞(d, 1)) = f0(H∞(d, 1)) and f̄ (d,m) − f̄ (d − 1,m) = 2
(m−1

d

)
. In other

words, the inequality is based on the inductive build-up of H∞(d, 1) starting with
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the (3d−1 − 3)/2 generators with zero as first coordinate, and noticing that these
(3d−1 − 3)/2 generators belong to a lower dimensional space. ⊓3

3 Small Primitive Zonotopes Hq(d, p) and H+
q (d, p)

In this section we provide the number of vertices, the diameter; that is, the number
of generators, and the grid embedding size for Hq(d, p) and H+

q (d, p) for small
d and p, and q = 1, 2, and ∞. We recall that, up to translation, Zq(d, p), respec-
tively Z+

q (d, p), is the image of Hq(d, p), respectively H+
q (d, p), by a homothety

of factor 2. Thus Zq(d, p) and Hq(d, p), respectively Z+
q (d, p) and H+

q (d, p), have
the same number of vertices and the same diameter, while the grid embedding size
of the Zq(d, p), respectively Z+

q (d, p), is twice the one of Hq(d, p), respectively
H+
q (d, p). Since both Hq(d, 1) and H+

q (d, 1) are equal to the {0, 1}d -cube for finite
q, both are omitted from the tables provided in this section. The vertex enumeration
was performed using standard algorithms described, for instance, in [14]. The Euler
totient function counting positive integers less than or equal to j and relatively prime
with j is denoted by φ( j). Note that φ(1) is set to 1.

Enumerative questions concerning Hq(d, p) and H+
q (d, p) have been studied in

various settings. We list a few instances, and the associated OEI sequences, see [28]
for details and references therein.

(i) f0(H+
∞(d, 1)) corresponds to the OEI sequence A034997 giving the num-

ber of generalized retarded functions in quantum field theory. The value of
f0(H+

∞(d, 1)) was determined till d = 8.
(ii) f0(H∞(d, 1)), which is the number of regions of hyperplane arrangements with

{−1, 0.1}-valued normals in dimension d, corresponds to the OEI sequence
A009997 giving f0(H∞(d, 1))/(2dd!). The value of f0(H∞(d, 1)) was deter-
mined till d = 7.

(iii) δ(H+
∞(d, p)) corresponds to the OEI sequence A090030 with further cross-

referenced sequences for d ≤ 7 and p ≤ 8.
(iv) δ(H+

1 (3, p)), respectively δ(H+
2 (2, p)), δ(H∞(d, 2)), δ(H∞(2, p))/4,

δ(H2(2, p))/2, δ(H+
1 (d, 3)), and δ(H+

2 (d, 2)), corresponds to theOEI sequence
A048134, respectively A049715, A005059, A002088, A175341, A008778, and
A055795.

(v) the grid embedding size of H2(d, 2), respectively H∞(d, 2) and H+
1 (d, 3), cor-

responds to the OEI sequence A161712, respectively A080961 and A052905.

3.1 Small Primitive Zonotopes Hq(d, p)

In Tables 2, 3, and 4, the number of vertices f0(Hq(d, p)) is divided by 2dd! and
followed by its diameter δ(Hq(d, p)) and grid embedding size. For instance, the entry
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Table 2 Small primitive zonotopes H1(d, p)

p
H1(d, p) 2 3 4 5 6

d 2 1 (4, 3) 2 (8, 9) 3 (12, 17) 5 (20, 37) 6 (24, 49)
3 1 (9, 5) 7 (25, 21) 26 (49, 53) 102 (97, 133) 227 (145, 229)
4 1 (16, 7) 40 (56, 37) 531 (136, 117) 6741 (312, 337) ? (560, 709)
5 1 (25, 9) 339 (105, 57) ? (305, 217) ? (801, 713) ? (1681, 1769)

Table 3 Small primitive zonotopes H2(d, p)

p
H2(d, p) 2 3 4 5

d 2 1 (4, 3) 2 (8, 9) 4 (16, 27) 6 (24, 51)
3 2 (13, 9) 26 (49, 57) 126 (109, 161) 443 (205, 377)
4 14 (40, 27) 1427 (192, 193) ? (592, 795) ? (1424, 2411)
5 273 (105, 65) ? (641, 577)

Table 4 Small primitive zonotopes H∞(d, p)

p
H∞(d, p) 1 2 3 4

d 2 1 (4, 3) 2 (8, 9) 4 (16, 27) 6 (24, 51)
3 2 (13, 9) 26 (49, 57) 228 (145, 249) 910 (289, 633)
4 14 (40, 27) 4333 (272, 321) ? (1120, 1923) ? (2928, 6459)
5 516 (121, 81)
6 124,187 (364, 243)
7 214,580,603 (1093, 729)

26(49, 53) for (q, d, p) = (1, 3, 4) in Table 2 indicates that H1(3, 4) has 26 × 233! =
1248 vertices, diameter 49, and is, up to translation, a lattice (3, 53)-polytope. The
rather straightforward proofs are given in Sect. 5.2.

3.1.1 Small Primitive Zonotopes H1(d, p)

Property 3.1

(i) H1(d, 1) is the {0, 1}d -cube,
(ii) H1(d, 2) is, up to translation, a lattice (d, k)-polytope with k = 2d − 1, and

diameter d2, and 2dd! vertices,
(iii) H1(d, 3) is, up to translation, a lattice (d, k)-polytope with k = 2d2 + 2d − 3,

and diameter d(d + 2)(2d − 1)/3,
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(iv) H1(d, 4) is, up to translation, a lattice (d, k)-polytope with k =
(d−1

0

)
+ 16

(d−1
1

)

+ 20
(d−1

2

)
+ 8

(d−1
3

)
, and diameter d(d3 + 2d2 + 2d − 2)/3,

(v) H1(2, p) is, up to translation, a lattice (2, k)-polygon with k = ∑
1≤ j≤p

jφ( j),

and diameter 2
∑

1≤ j≤p
φ( j).

3.1.2 Small Primitive Zonotopes H2(d, p)

Property 3.2

(i) H2(d, 1) is the {0, 1}d -cube,
(ii) H2(d, 2) is, up to translation, a lattice (d, k)-polytope with k = ∑

0≤ j≤3
2 j

(d−1
j

)
,

and diameter
∑

0≤ j≤3
2 j

( d
j+1

)
.

3.1.3 Small Primitive Zonotopes H∞(d, p)

Property 3.3

(i) H∞(d, 1) is, up to translation, a lattice (d, k)-polytopewith k = 3d−1, and diam-
eter (3d − 1)/2,

(ii) H∞(d, 2) is, up to translation, a lattice (d, k)-polytope with k = 3 × 5d−1 −
2 × 3d−1, and diameter (5d − 3d)/2,

(iii) H∞(2, p) is, up to translation, a lattice (2, k)-polygon with diameter
4

∑
1≤ j≤p

φ( j).

3.2 Small Positive Primitive Zonotopes H+
q (d, p)

In Tables 5, 6, and 7, the number of vertices f0(H+
q (d, p)) is followed by its diam-

eter δ(H+
q (d, p)) and grid embedding size. For instance, the entry 1082(15, 5) for

(q, d, p) = (1, 5, 2) in Table 5 indicates that H+
1 (5, 1) has 1082 vertices, diameter

15, and is a lattice (5, 5)-polytope.

3.2.1 Small Positive Primitive Zonotopes H+
1 (d, p)

Property 3.4

(i) H+
1 (d, 1) is the {0, 1}d -cube,

(ii) H+
1 (d, 2) is a lattice (d, k)-polytope with k = d, and diameter

(d+1
2

)
,
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Table 5 Small positive primitive zonotopes H+
1 (d, p)

p

H+
1 (d, p) 2 3 4 5 6

d 2 6 (3, 2) 10 (5, 5) 14 (7, 9) 22 (11, 19) 26 (13, 25)

3 26 (6, 3) 110 (13, 10) 314 (22, 22) 1022 (40, 52) 1970 (55, 82)

4 150 (10, 4) 2194 (26, 16) 17,534 (51, 41) 145,198 (103, 106) 593,402 (161, 193)

5 1082 (15, 5) 71,582 (45, 23) 2,062,682 (100, 67) ? (221, 188) ? (386, 386)

6 9366 (21, 6) ? (71, 31) ?(176, 106)

Table 6 Small positive primitive zonotopes H+
2 (d, p)

p
H+
2 (d, p) 2 3 4 5

d 2 6 (3, 2) 10 (5, 5) 18 (9, 14) 26 (13, 26)
3 32 (7, 4) 212 (19, 19) 1010 (40, 54) 3074 (70, 120)
4 370 (15, 8) 19,438 (55, 49) 362,962 (141, 170) 3,497,862 (299, 462)
5 10,922 (30, 15) ? (136, 108) ? (441, 487)

Table 7 Small positive primitive zonotopes H+
∞(d, p)

p
H+

∞(d, p) 1 2 3 4

d 2 6 (3, 2) 10 (5, 5) 18 (9, 14) 26 (13, 26)
3 32 (7, 4) 212 (19, 19) 1418 (49, 76) 4916 (91, 184)
4 370 (15, 8) 27,778 (65, 65) 1,275,842 (225, 344) ? (529, 1064)
5 11,292 (31, 16) ? (211, 211) ? (961, 1456) ? (2851, 5716)
6 1,066,044 (63, 32)
7 347,326,352 (127, 64)
8 419,172,756,930 (255, 128)

(iii) H+
1 (d, 3) is a lattice (d, k)-polytope with k = (d2 + 5d − 4)/2 and diameter

d(d2 + 6d − 1)/6.
(iv) H+

1 (2, p) is a lattice (2, k)-polygon with k = 1+ ∑
2≤ j≤p

jφ( j)/2, and diameter

1+ ∑
1≤ j≤p

φ( j).

3.2.2 Small Positive Primitive Zonotopes H+
2 (d, p)

Property 3.5

(i) H+
2 (d, 1) is the {0, 1}d -cube,

(ii) H+
2 (d, 2) is a (d, k) polytope with k =

(d
1

)
+

(d
3

)
, and diameter

(d+1
2

)
+

(d+1
4

)
.
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3.2.3 Small Positive Primitive Zonotopes H+
∞(d, p)

Property 3.6

(i) H+
∞(d, 1) is, a lattice (d, k)-polytope with k = 2d−1, and diameter 2d − 1,

(ii) H+
∞(d, 2) is a lattice (d, k)-polytope with k = 3d − 2d , and diameter 3d − 2d ,

(iii) H+
∞(2, p) is a lattice (2, k)-polygon with diameter 1+ 2

∑
1≤ j≤p

φ( j).

4 Complexity Issues

We discuss a few complexity issues related to primitive zonotopes. While we mainly
focus on Zq(d, p), the discussion and results, such as Propositions 4.1 and 4.2, can
be adapted to Z+

q (d, p). As Hq(d, p), respectively H+
q (d, p), is the translation of

the image by a homothety of Zq(d, p), respectively Z+
q (d, p), the complexity results

are the same.

4.1 Complexity Properties

Proposition 4.1 For fixed positive integers p and q, linear optimization over
Zq(d, p) is polynomial-time solvable, even in variable dimension d.

Proof Since the q-norm of a generator of Zq(d, p) is bounded by p, it has at most pq

nonzero entries – which is attained for the vector of all ones and d = pq . Thus, the
number of generators of Zq(d, p) is bounded by

( d
pq

)
(2p)p

q = O
(
d pq

)
. Hence, one

can explicitly write all the generators of Zq(d, p) in polynomial time. Consequently,
one can compute in polynomial time the following signed sum of generators of
Zq(d, p) for any given rational c ∈ Rd : v∗ = ∑

v∈Gq (d,p)
sign(cT v)v where Gq(d, p)

denotes the set of generators of Zq(d, p). Note that sign(0) is set to 0. Then, one can
show that v∗ is a maximizer of {max cT x : x ∈ Zq(d, p)}. ⊓3
The algorithmic theory developed by Grötschel, Lovász, and Schrijver [15] shows
that polynomial-time solvability for linear optimization over a polytope implies
polynomial-time solvability for other questions. In particular, Proposition 4.1 implies
Proposition 4.2.

Proposition 4.2 For fixed positive integers p and q, the following problems are
polynomial-time solvable.

(i) Extremality: Given v ∈ Zd , decide if v is a vertex of Zq(d, p),
(ii) Adjacency: Given v1, v2 ∈ Zd , decide if [v1, v2] is an edge of Zq(d, p);
(iii) Separation: Given rational y ∈ Rd , either assert y ∈ Zq(d, p), or find h ∈ Zd

separating y from Zq(d, p); that is, satisfying hT y > hT x for all x ∈ Zq(d, p).
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4.2 Open Problems

A natural open problem is to find direct algorithms to solve, over both Zq(d, p)
and Z+

q (d, p), the extremality, adjacency, and separation questions given in Propo-
sition 4.2.

Note that the case q = ∞, even for p = 1, seems to be significantly harder as the
number of nonzero entries in a generator of Z∞(d, p) can not bounded by a constant
independent of d. Thus, the number of generators of Z∞(d, p) is exponential in d.
Hence, the complexity of linear optimization, extremality, adjacency, and separation
over both Z∞(d, p) and Z+

∞(d, p), is open. In particular, it is not clear if deciding if
a given point is a vertex of Z∞(d, 1), or of Z+

∞(d, p), is in NP or in coNP.

The remaining open questions deal with a reformulation in term of degree sequence
of hypergraphs. The question is presented within the context of H+

q (d, p) but could
be adapted to Hq(d, p). Each subset H ⊆ {0, 1}d can be associated to a hypergraph
with ground set [d]. The vector

∑
h∈H

h is called the degree sequence of H , and the

convex hull of the degree sequences of all hypergraphs with ground set [d] is called
the hypergraph polytope Dd ; and thus Dd = H+

∞(d, 1). Considering only k-uniform
hypergraphs; that is, subsets H ⊆ {0, 1}d where all vectors in H have k nonzero
entries, one obtains the k-uniform hypergraph polytope Dd(k) as the convex hull
of the degree sequences of all k-uniform hypergraphs. The k-uniform hypergraph
polytope, in particular Dd(2) and Dd(3), havebeen extensively studied, see [6, 13, 20,
23] and references therein. A natural question raised in the literature asks for suitable
necessary and sufficient conditions to check whether a vector h ∈ Dd(k) ∩ Zd is the
degree sequence of some k-uniform hypergraph. A trivial necessary condition is that
the sum of the coordinates of h is a multiple of k. For k = 2; that is for graphs, the
celebrated Erdős-Gallai Theorem [13] shows that the trivial necessary condition is
also sufficient. For k = 3; that is for 3-uniform hypergraphs, the question was raised
byKlivans andReiner [20]. Liu [21] exhibited counterexamples by constructing holes
for d ≥ 16; that is, vectors h in Dd(3) ∩ Zd such that the sum of the coordinates of h
is a multiple of 3, but h is not the degree sequence of a 3-uniform hypergraph. Deza
et al. [9] answered a question raised in 1986 by Colbourn, Kocay, and Stinson [6]
by showing that deciding whether a given sequence is the degree sequence of a 3-
uniform hypergraph is NP-complete.

As there is no trivial congruence necessary condition, we call a vector in H+
q (d, p) ∩

Zd a hole if it cannot be written as the sum of a subset of the generators of H+
q (d, p).

While the answer to the question “Does H+
q (d, p) have holes?’’ is likely yes for

most p, q, d, it would be interesting to explicitly find such holes and better under-
stand them. A natural follow-up question, provided there are holes, is “For given
fixed positive integers p and q, what is the complexity of deciding if a given vector
h ∈ H+

q (d, p) ∩ Zd is a hole, and if not, of writing h as the sum of a subset of gen-
erators of H+

q (d, p)?".
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As noted in the proof of Proposition 4.1, there are polynomially many generators for
fixed integer p and q. Thus, the above follow-up question is in coNP as, if h is not a
hole, it is possible to write h as a sum of a subset of generators H+

q (d, p). The last
question is thus “Is this problem coNP-complete?".

As for the linear optimization related questions, the hole related questions seem to be
significantly harder for q = ∞. In particular, for (q, d, p) = (∞, d, 1), the questions
investigate the holes of Dd .

5 Proofs for Sections 2.2 and 3

Let Gq(d, p), respectively G+
q (d, p), denote the generators of Zq(d, p), respec-

tively Z+
q (d, p). Recall that σq(d, p), respectively σ+

q (d, p), denotes the sum of the
generators of Zq(d, p), respectively Z+

q (d, p).

5.1 Proof for Section 2.2

5.1.1 Proof of Item (i) of Property 2.1

Proof Note that if the set G of generators of a zonotope Z is invariant under coordi-
nate permutation or sign flip, then the same holds for Z . Let π denote a permutation
or a sign flip, and consider a signed sum

∑
g∈G

ϵgg. Then, π(
∑
g∈G

ϵgg) =
∑
g∈G

ϵgπ(g) is

also a signed sumof generators sinceG is permutation and sign flip invariant. In other
words, the set of all signed sums is invariant under permutations and sign flips, and
thus the same holds for the convex hull Z of all signed sums. Let Jq(d, p) be the set of
all −g for g ∈ Gq(d, p). The zonotope Z̃q(d, p) generated by Gq(d, p) ∪ Jq(d, p)
is the image of Zq(d, p) by a homothety of factor 2, and thus shares the same
symmetry group. One can check that the set of generators of Z̃q(d, p) is invariant
under coordinate permutation or sign flip, thus the same holds for Z̃q(d, p), and
consequently holds for Zq(d, p). ⊓3

5.1.2 Proof of Item (i i) of Property 2.1

Proof Consider the minimization problem {min cT x : x ∈ Hq(d, p)} or, equiva-
lently, min cT x over all integer valued points of Hq(d, p). Set c = (d!x̄ d , (d −
1)!x̄ d−1, . . . , x̄) where x̄ = (2p + 1)d+1. Assuming that x is not the origin, let xi0
denotes the first nonzero coordinate of x . Note that xi0 ≥ 1 by definition ofGq(d, p),
and |xi | ≤ x̄ . Thus, cT x ≥ (d + 1 − i0)!x̄ d+1−i0 − x̄

∑
i0<i≤d

(d + 1 − i)!x̄ d+1−i > 0.
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In other words, the origin is the unique minimizer of a linear optimization instance
over Hq(d, p); that is, the origin is a vertex of Hq(d, p). As Zq(d, p) = 2Hq(d, p) −
σq(d, p), the point−σq(d, p) is a vertex of Zq(d, p). By item (i) of Proposition 2.1,
the point σq(d, p) is a vertex of Zq(d, p), and thus (σq(d, p)+ σq(d, p))/2 is a
vertex of Hq(d, p). ⊓3

5.1.3 Proof of Item (i i i) of Property 2.1

Proof We first show that the coordinates of the vertex σq(d, p) are odd. As noted
in the proof of item (i i i) of Property 2.3, the i-th coordinate of σq(d, p) is equal
to the first coordinate of σq(d − i + 1, p). Thus, it is enough to show that the first
coordinate of σq(d, p) is odd. Except for the first unit vector (1, 0, . . . , 0), any
generator g of Zq(d, p)with nonzero first coordinate can be pairedwith the generator
ḡ where ḡ1 = g1 and ḡi = −gi for i ̸= 1. Thus, the sum of the first coordinates of
the generators of Zq(d, p), excluding the first unit vector, is even. Hence, the first
coordinate of σq(d, p) is odd, and thus all the coordinates of σq(d, p) are odd.
Consider a vertex v = ∑

g∈Gq (d,p)
ϵ(g)g of Zq(d, p). Since flipping the sign of an ϵ(g)

does not change the parity of a coordinate of v, the coordinates of v have the same
parity as the ones of σq(d, p); i.e. are odd. In particular, the coordinates of a vertex
of Zq(d, p) are nonzero and item (i) of Proposition 2.1 implies that the number of
vertices of Zq(d, p) is a multiple of 2d . ⊓3

5.1.4 Proof of Items (iv) and (v) of Property 2.1

Proof Let Z be a zonotope generated by integer-valued generators m j : j = 1, . . . ,
m(Z). Then, Z is, up to translation, a lattice (d, k)-polytopewith k ≤ max

i=1,...,d

∑
1≤ j≤m(Z)

|m j
i |. Item (i) of Property 2.1 implies that the integer range of its coordinates is

independent of the chosen coordinate. The same holds for Hq(d, p), and, thus to
determine the integer range of Hq(d, p), it is enough to consider the first coordinates
of its generators. Since the origin is a vertex of Hq(d, p) and the first coordinate
of its generator is nonnegative, the integer range of Hq(d, p) is the sum of the first
coordinates of its generators. For item (v), recall that the diameter of a zonotope is
at most the number of its generators, and this inequality is satisfied with equality if
no pair of generators are linearly dependent – which is the case for Zq(d, p) and
Z+
q (d, p). ⊓3

5.1.5 Proof of Property 2.2

Proof Consider a generator g ∈ G+
q (d, p) and a coordinate permutation π .

Since π(g) ∈ G+
q (d, p), π(Z+

q (d, p)) = π(
∑[−1, 1]G+

q (d, p)) =
∑[−1, 1]
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π(G+
q (d, p)) =

∑[−1, 1]G+
q (d, p) = Z+

q (d, p). As in the proof of item (i i) of
Property 2.1, one can check that the origin is the unique minimizer of {min cT x :
x ∈ Hq(d, p)} with c = (1, 1, . . . , 1). Thus, the origin is a vertex of H+

q (d, p). As
Z+
q (d, p) = 2H+

q (d, p) − σq(d, p), the point −σq(d, p) is a vertex of Z+
q (d, p).

Since Z+
q (d, p) is invariant under the symmetries induced by coordinate permuta-

tions, σq(d, p) is a vertex of Z+
q (d, p), and thus (σq(d, p)+ σq(d, p))/2 is a vertex

of H+
q (d, p). ⊓3

5.1.6 Proof of Items (i) and (i i) of Property 2.3

Proof Given a canonical vertex v of Zq(d, p), let c be a vector such that v is the
unique maximizer of {max cT x : x ∈ Zq(d, p)}. Up to infinitesimal perturbations,
we can assume that the coordinates of c are pairwise distinct and nonzero. Note that
each coordinate ci of c is positive as otherwise flipping the sign of vi > 0 would
yield a point in Zq(d, p) with higher objective value than v. Assume that ci < c j
for some i < j . Then, vi = v j as otherwise permuting vi and v j would yield a point
in Zq(d, p) with higher objective value than v. Let πi j (c) be obtained by permuting
ci and c j . Then, one can check that v is the unique maximizer of {maxπi j (c)T x :
x ∈ Zq(d, p)}. Assume, by contradiction, that v′ ∈ Zq(d, p) satisfies πi j (c)T v′ ≥
πi j (c)T v. Then, cTπi j (v

′) = πi j (c)T v′ ≥ πi j (c)T v = cT v which implies πi j (v
′) =

v, and hence v′ = v, since v is the unique maximizer of {max cT x : x ∈ Zq(d, p)}.
Thus, successive appropriate permutations yield a vector π(c) with π(c)1 > · · · >
π(c)d > 0 such that v is the uniquemaximizer of {max cT x : x ∈ Zq(d, p)}. For item
(i i), one can check that σ1(d, 2) = (2d − 1, 2d − 3, . . . , 1) is the unique maximizer
of {max cT x : x ∈ Z1(2, p)} for any c satisfying c1 > · · · > cd > 0. Thus, by item
(i) of Property 2.3,σ1(d, 2) is the unique canonical vertex of Z1(d, 2) and the vertices
of Z1(d, 2) are the 2dd! coordinate permutations and sign flips of σ1(d, 2). ⊓3

5.1.7 Proof of Item (i i i) of Property 2.3

Proof We first note that the i-th coordinate of σq(d, p) is equal to the first coordinate
of σq(d − i + 1, p). The statement trivially holds for i = 1. For i > 1, consider a
generator g of Zq(d, p) with gi ̸= 0 and gi0 > 0 for some i0 < i , then g can be
paired with the generator ḡ where gi = −ḡi and gi0 = ḡi0 . Thus, the sum of all the
i-th coordinates of the generators of Zq(d, p) is equal to the sum of the generators
of Zq(d, p) such that the first i − 1 coordinates are zero. In other words, the i-
th coordinate of σq(d, p) is equal to the first coordinate of σq(d − i + 1, p). For
example, for finite q, σq(d, 1) = (1, . . . , 1) and Zq(d, 1) is the {−1, 1}d -cube. Then,
note that for q = ∞ or p ̸= 1 the first coordinate of σq(d − i + 1, p), which is the
grid embedding size of Hq(d − i + 1, p), is strictly decreasing with i increasing.
Thus, the action of the symmetry group of Zq(d, p) on σq(d, p) generates 2dd!
distinct vertices of Zq(d, p). For instance, one can check the i-th coordinate of
σ∞(d, 1) is 3d−i . ⊓3
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5.1.8 Proof of Item (iv) of Property 2.3

Proof The statement trivially holds for d = 1. For d ≥ 2, we show by induction that
the vertices of Z+

∞(d, 1) include σ (d) satisfying 0 = σ1(d) < · · · < σd(d) = 2d−1.
The base case holds for d = 2 as σ (2) = (0, 2) is a vertex of Z+

∞(2, 1). Assume
such a vertex σ (d) exists, and thus σ (d) = ∑

g∈G+
∞(d,1)

ϵ(g)g for some ϵ(g) and σ (d)

is the unique maximizer of {max c(d)T x : x ∈ Z+
∞(d, 1)} for some c(d). The gen-

erators of Z+
∞(d + 1, 1) consist of the 2d − 1 vectors (g, 0) obtained by append-

ing 0 to a generator of Z+
∞(d, 1), the 2d − 1 vectors (g, 1) obtained by appending

1, and the unit vector ed+1. Consider the point s(d + 1) = ed+1 +
∑

g∈G+
∞(d,1)

(g, 1) −
∑

g∈G+
∞(d,1)

ϵ(g)(g, 0) = (2d−1, . . . , 2d−1, 2d) − (σ (d), 0); that is, s(d + 1) = (2d−1 −

σ1(d), . . . , 2d−1 − σd−1(d), 0, 2d). Thus, the coordinates of s(d + 1) are pairwise
distinct and a suitable permutation of s(d + 1) yields a point σ (d + 1) satisfy-
ing 0 = σ1(d + 1) < · · · < σd+1(d + 1) = 2d . To show that σ (d + 1) is a ver-
tex of Z+

∞(d + 1, 1), one can check that σ (d + 1) is the unique maximizer of
{max c(d + 1)T x : x ∈ Z+

∞(d + 1, 1)} where c(d + 1) = (−c(d), cd+1) for suffi-
ciently large cd+1. Thus, for d ≥ 2, a point σ (d) satisfying 0 = σ1(d) < · · · <
σd(d) = 2d−1 is a vertex of Z+

q (d, p). Zonotopes being centrally symmetric, −σ (d)
is a vertex of Z+

q (d, p) and the same holds for the distinct 2d! permutations of±σ (d).
⊓3

5.2 Proof for Section 3

5.2.1 Proof of Property 3.1

Proof One can check that the generators of H1(d, 2) consist of
(d
1

)
unity vectors and

2
(d
2

)
vectors {. . . , 1, . . . ,±1, . . . }. Thus, the diameter ofH1(d, 2) is

(d
1

)
+ 2

(d
2

)
= d2.

Similarly, one can check that the sum of the first coordinates of the generators of
H1(d, 2) is 2d − 1. Note that H1(d, 2) is the permutahedron of type Bd . Then, one
can check that, in addition to the previously determined generators of H1(d, 2),
the generators of H1(d, 3) consist of 2

(d
2

)
vectors {. . . , 1, . . . ,±2, . . . }, 2

(d
2

)
vec-

tors {. . . , 2, . . . ,±1, . . . }, and 4
(d
3

)
vectors {. . . , 1, . . . ,±1, . . . ,±1, . . . }. Thus,

the diameter of H1(d, 3) is
(d
1

)
+ 6

(d
2

)
+ 4

(d
3

)
= d(d + 2)(2d − 1)/3. Similarly, one

can check that the sum of the first coordinates of the generators of H1(d, 3) is(d−1
0

)
+ 8

(d−1
1

)
+ 4

(d−1
2

)
= 2d2 + 2d − 3. Furthermore, one can check that, in addi-

tion to the previously determined generators of H1(d, 3), the generators of H1(d, 4)
consist of 2

(d
2

)
vectors {. . . , 1, . . . ,±3, . . . }, 2

(d
2

)
vectors {. . . , 3, . . . ,±1, . . . }, 4

(d
3

)

vectors {. . . , 1, . . . ,±1, . . . ,±2, . . . }, 4
(d
3

)
vectors {. . . , 1, . . . ,±2, . . . ,±1, . . . },

4
(d
3

)
vectors {. . . , 2, . . . ,±1, . . . ,±1, . . . }, and 8

(d
4

)
vectors {. . . , 1, . . . ,±1, . . . ,
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±1, . . . ,±1, . . . }. Thus, the diameter of H1(d, 4) is
(d
1

)
+ 10

(d
2

)
+ 16

(d
3

)
+ 8

(d
4

)
=

d(d3 + 2d2 + 2d − 2)/3. Similarly, one can check that the sum of the first coordi-
nates of the generators of H1(d, 4) is

(d−1
0

)
+ 16

(d−1
1

)
+ 20

(d−1
2

)
+ 8

(d−1
3

)
. Finally,

item (v) corresponds to Proposition 2.4. ⊓3

5.2.2 Proof of Property 3.2

Proof One can check that the generators of H2(d, 2) consist of
(d
1

)
unity vectors,

2
(d
2

)
vectors {. . . , 1, . . . ,±1, . . . }, 4

(d
3

)
vectors {. . . , 1, . . . ,±1, . . . ,±1, . . . }, and

8
(d
4

)
vectors {. . . , 1, . . . ,±1, . . . ,±1, . . . ,±1, . . . }. Thus, the diameter of H2(d, 2)

is
∑

0≤ j≤3
2 j

( d
j+1

)
. Similarly, one can check that the sum of the first coordinates of the

generators of H2(d, 2) is
∑

0≤ j≤3
2 j

(d−1
j

)
. ⊓3

5.2.3 Proof of Property 3.3

Proof One can check that H∞(d, 1) has (3d − 1)/2 generators consisting of all
{−1, 0, 1}-valued vectors which first nonzero coordinate is positive. Out of the
5d {−2,−1, 0, 1, 2}-valued vectors, 3d are {−2, 0, 2}-valued. Thus, keeping the
ones which first nonzero coordinate is positive, H∞(d, 2) has (5d − 3d)/2 gener-
ators. Similarly, one can check that the sum of the first coordinates of the gener-
ators of H∞(d, 2) is 3 × 5d − 5 × 3d . The generators (i, j) of H∞(2, p) such that
||(i, j)||∞ ≤ 1 are (1, 0), (0, 1), (1, 1) and (1,−1). For a given i > 1, there are 2φ(i)
generators (i, j) such that ||(i, j)||∞ > 1 and j < i . Thus, there are 4

∑
2≤ j≤p

φ( j)

generators (i, j) such that ||(i, j)||∞ > 1. Thus, the diameter of H∞(2, p) is
4

∑
1≤ j≤p

φ( j). ⊓3

5.2.4 Proof of Property 3.4

Proof One can check that the generators of H+
1 (d, 2) consist of

(d
1

)
unity vectors and(d

2

)
vectors {. . . , 1, . . . , 1, . . . }. Thus, the diameter of H+

1 (d, 2) is
(d
1

)
+

(d
2

)
=

(d+1
2

)
.

Similarly, one can check that the sum of the first coordinates of the generators of
H+

1 (d, 2) is d. Note that H+
1 (2, p) is the Minkowski sum of the permutahedron

with the {0, 1}d -cube. One can check that, in addition to the previously deter-
mined generators of H+

1 (2, p), the generators of H+
1 (d, 3) consist of

(d
3

)
vec-

tors {. . . , 1, . . . , 1, . . . , 1, . . . , },
(d
2

)
vectors {. . . , 1, . . . , 2, . . . }, and

(d
2

)
vectors

{. . . , 2, . . . , 1, . . . }. Thus H+
1 (d, 3) has

(d
3

)
+ 3

(d
2

)
+

(d
1

)
generators. Similarly, one

can check that the sum of the first coordinates of the generators of H+
1 (d, 3) is
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(d−1
2

)
+ 4

(d−1
1

)
+

(d
0

)
. Out of the generators of H1(2, p),

∑
2≤ j≤p

φ( j) have a nega-

tive coordinate. Thus, the diameter of H+
1 (2, p) is 1+ ∑

1≤ j≤p
φ( j). Similarly, one

can check that the sum of the first coordinates of the generators of H+
1 (2, p) is

1+ ∑
2≤ j≤p

jφ( j)/2. ⊓3

5.2.5 Proof of Property 3.5

Proof One can check that the generators of H+
2 (d, 2) consist of

(d
i

)
vectors with

exactly i ones for i = 1, 2, 3, and 4. Thus, the diameter of H+
2 (d, 2) is

(d+1
2

)
+

(d+1
4

)
.

Similarly, one can check that the sum of the first coordinates of the generators of
H+

2 (d, 2) is
(d
1

)
+

(d
3

)
. ⊓3

5.2.6 Proof of Property 3.6

Proof One can check that H+
∞(d, 1) has 2d − 1 generators consisting of all {0, 1}-

valued vectors except the origin. Thus, the diameter of H+
∞(d, 1) is 2d − 1. Similarly,

one can check that the sum of the first coordinates of the generators of H+
∞(d, 1) is

2d−1. Out of the 3d {0, 1, 2}-valued vectors, 2d are {0, 2}-valued. Thus, the diameter
of H+

∞(d, 2) is 3d − 2d . Similarly, one can check that the sum of the first coordinates
of the generators of H+

∞(d, 2) is 3d − 2d . The generators (i, j) of H+
∞(2, p) such

that ||(i, j)||∞ ≤ 1 are (1, 0), (0, 1), and (1, 1). For a given i > 1, there are φ(i)
generators (i, j) such that ||(i, j)||∞ > 1 and j < i . Thus, there are 2

∑
2≤ j≤p

φ( j)

generators (i, j) such that ||(i, j)||∞ > 1. Thus, the diameter of H+
∞(2, p) is 1+

2
∑

1≤ j≤p
φ( j). ⊓3
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