Springer Proceedings in Mathematics & Statistics

Volume 234



Springer Proceedings in Mathematics & Statistics

This book series features volumes composed of selected contributions from
workshops and conferences in all areas of current research in mathematics and
statistics, including operation research and optimization. In addition to an overall
evaluation of the interest, scientific quality, and timeliness of each proposal at the
hands of the publisher, individual contributions are all refereed to the high quality
standards of leading journals in the field. Thus, this series provides the research
community with well-edited, authoritative reports on developments in the most
exciting areas of mathematical and statistical research today.

More information about this series at http://www.springer.com/series/10533


http://www.springer.com/series/10533

Marston D. E. Conder - Antoine Deza
Asia Ivic Weiss
Editors

Discrete Geometry
and Symmetry

Dedicated to Karoly Bezdek and Egon Schulte on the
Occasion of Their 60th Birthdays

@ Springer



Editors

Marston D. E. Conder
Department of Mathematics
University of Auckland
Auckland

New Zealand

Asia Ivi¢ Weiss

Department of Mathematics
and Statistics

York University

Toronto, ON

Canada
Antoine Deza
Department of Computing
and Software
McMaster University
Hamilton, ON
Canada

ISSN 2194-1009 ISSN 2194-1017 (electronic)
Springer Proceedings in Mathematics & Statistics

ISBN 978-3-319-78433-5 ISBN 978-3-319-78434-2  (eBook)
https://doi.org/10.1007/978-3-319-78434-2

Library of Congress Control Number: 2018939138

Mathematics Subject Classification (2010): 05B40, 05B45, 52A10, 52A21, 52A35, 52B10, 52Bl11,
52B15, 52C15, 52C17, 52C20, 52C35, 52C45, 90CO05, 90C27

© Springer International Publishing AG, part of Springer Nature 2018

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein or
for any errors or omissions that may have been made. The publisher remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Printed on acid-free paper
This Springer imprint is published by the registered company Springer International Publishing AG

part of Springer Nature
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland



Preface

This volume contains a number of articles on the topics of symmetry and discrete
geometry. Most of them were papers presented during the conference ‘Geometry
and Symmetry’, held at the University of Pannonia in Veszprém, Hungary, the
week 29 June to 3 July 2015. This conference was arranged in honour of Karoly
Bezdek and Egon Schulte, on the occasion of the year in which they both turned 60.
Many of the papers reflect the remarkable contributions they made to geometry.

The revival of interest in discrete geometry over the past few decades has been
influenced by Bezdek and Schulte to a large degree. Although their research
interests are somewhat different, one could say that they have complemented each
other, and this has resulted in a lively interaction across a wide variety of different
fields. Accordingly, the volume includes a range of topics and provides a snapshot
of a rapidly evolving area of research. The contributions demonstrate profound
interplays between different approaches to discrete geometry.

Kepler was the first to raise the discrete geometry problem of sphere packing.
Associated tiling problems were considered at the turn of the century by many
researchers, including Minkowski, Voronoi, and Delone. The Hungarian school
pioneered by Fejes Toth in the 1940s initiated the systematic study of packing and
covering problems, while numerous other mathematicians contributed to the field,
including Coxeter, Rogers, Penrose, and Conway. While the classical problems of
discrete geometry have a strong connection to geometric analysis, coding theory,
symmetry groups, and number theory, their connection to combinatorics and
optimisation has become of particular importance. These areas of research, at the
heart of Bezdek’s work, play a central role in many of the contributions to this
volume.

Kepler, with his discovery of regular non-convex polyhedra, could also be
credited with founding of modern polytope theory. The subject went into decline
before it was taken up again by Coxeter almost a century ago and later by
Griinbaum. Based on their impressive and seminal contributions, the search for
deeper understanding of symmetric structures has over the past few decades pro-
duced a revival of interest in discrete geometric objects and their symmetries. The
rapid development of abstract polytope theory, popularised by McMullen’s and
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Schulte’s research monograph with the same name, has resulted in a rich theory,
featuring an attractive interplay of methods and tools from discrete geometry (such
as classical polytope theory), combinatorial group theory, and incidence geometry
(generators and relations, and Coxeter groups), graph theory, hyperbolic geometry,
and topology.

We note with sadness that during the work on this volume, our good friend and
colleague Norman W. Johnson (a contributor to this volume) passed away. Since
receiving his Ph.D. with Coxeter in 1966, Norman held a position at the Wheaton
College in Massachusetts, where he taught until his retirement in 1998.

It is our hope that this volume not only exhibits the recent advances in various
areas of discrete geometry, but also fosters new interactions between several dif-
ferent research groups whose contributions are contained within this collection of
papers.

Auckland, New Zealand Marston D. E. Conder
Hamilton, Canada Antoine Deza
Toronto, Canada Asia Ivi¢ Weiss
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Karoly Bezdek—Biosketch

Karoly Bezdek was born on 28 May 1955 in Budapest, a son of Karoly Bezdek Sr.
(who was chief engineer of Hungary’s largest steel factory for over 20 years) and
Magdolna Cserey (who had a strong interest in the literature and languages). His
childhood years were spent in Dunatjvaros. This period was challenging for his
parents, who had grown up in a totally different Hungary, but despite some of the
hardships faced by his family during and after WWII, his parents made all possible
efforts to ensure a very educational and enjoyable childhood for Karoly and his
younger brother Andras. They encouraged both of their sons to develop interests in
learning (across a wide range of subjects) and sports such as fencing and tennis.

Karoly and Andras (who is also a mathematician) scored at the top level in
several mathematics and physics competitions for high school and university stu-
dents in Hungary. The awards won by Karoly include first prize in the national
Ko6Mal contest (run by the Hungarian mathematics journal for high school students)
in 1972/73 and first prize at the National Science Conference for Hungarian
Undergraduate Students (TDK) in 1977/78, for his work on optimal circle cover-
ings. As a result of these successes, Karoly was admitted to Eotvos Lorand
University in Budapest in 1973, without any entrance examination.

His first three years as an undergraduate involved rigorous basic courses, tested in
oral exams, but also participation in special seminars on topics representing much
of the frontline mathematical research in Hungary. Then in his last two years, he chose
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to specialise in discrete geometry and completed a Diploma in Mathematics (the
equivalent of a master’s degree) with a thesis on optimal circle coverings, under the
supervision of Professor Karoly Béroczky (who held the Chair of Geometry) in 1978.

He was awarded a Ph.D. in 1980 and Candidate of Mathematical Sciences
degree in 1985, again with Prof. Karoly Boroczky as his advisor in both cases, and
later he was awarded a Doctor of Mathematical Sciences degree from the Hungarian
Academy of Sciences in 1995 and Habilitation in Mathematics from E6tvos Lorand
University in 1997.

Karoly became a Faculty Member in the Department of Geometry at E6tvos
Lorand University in 1978, served as chair of that department from 1999 to 2006,
and earned the position of full professor in 1998. From 1998 to 2001, he served as
Széchenyi Professor of Mathematics at E6tvos Lorand University, in a named
position awarded to him by the Hungarian government. Although the university
never really had a sabbatical system, he was fortunate to be able to travel regularly.
During the period 1978 to 2003, he held numerous visiting positions at research
institutions in Canada, Germany, the Netherlands, and the USA, including seven
years at Cornell University, in Ithaca, NY.

He was invited to take up a Canada Research Chair at the University of Calgary,
and he accepted this position in 2003. He is also Director of the Center for
Computational and Discrete Geometry in Calgary; for the last few years, he has been
an Associate Member of the Alfréd Rényi Institute of Mathematics in Budapest, and
he also holds the title of Full Professor at the University of Pannonia in Veszprém.

Karoly’s research interests are in combinatorial, computational, convex, and
discrete geometry, including some aspects of geometric analysis, geometric rigidity,
and optimisation. He is the author of more than 110 research papers many of which
are highly cited. He also wrote Classical Topics in Discrete Geometry (Springer,
2010) and Lectures on Sphere Arrangements—the Discrete Geometric Side
(Springer, 2013), the monographs that take the reader to the frontiers of the most
recent research developments in the relevant parts of discrete geometry.

He has been always interested in teaching, which he finds very rewarding as
well. In particular, he has very much enjoyed working with graduate students, who
are all very different from each other, but all gifted in many ways, each bringing a
new perspective to geometric research. He has supervised five master’s students,
who he says have become great instructors with the potential to improve mathe-
matics education, and a number of talented undergraduate research students. He has
successfully supervised eleven Ph.D. students to date: Tibor Odor (1991), Léaszl6
Szabo (1995), Istvan Talata (1997), Endre Kiss (2004), Balazs Visy (2002), Marton
Naszodi (2007), Zsolt Langi (2008), Peter Papez (2009), Mate Salat (2009), Ryan
Trelford (2014), and Muhammad A. Khan (2017).

Karoly says that his work was influenced by a number of great mathematicians,
colleagues, and friends, including 1978—-1988 by Karoly Bordczky, Aladar Heppes,
Gabor Fejes Toth, Laszlo Fejes Toth, Kurt Leichtweiss, Keith Ball, Ted
Bisztriczky, Robert Connelly, Oded Schramm, Joerg Wills, Thomas Hales,
Alexander Litvak, Oleg Musin, Rolf Schneider, Marjorie Senechal, Egon Schulte,
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and Elisabeth Werner. He has also enjoyed travelling, often together with his wife
Eva and their family, as well as inviting visitors for dinner in their home.

Karoly is grateful to Eva for being ‘such a fantastic partner and supporter’.
Currently, Eva is Director and Teacher at the Gabor Bethlen Hungarian Language
School in Calgary, and they have three sons: Daniel, Maté, and Mark. Mark is a
third-year undergraduate student majoring in Public Relations at Mount Royal
University in Calgary; Déniel has a degree in finance and is now completing a
second undergraduate major in Computer Science at the University of Calgary;
Maté is a third-year doctoral student in Chemistry at Princeton University.

We are very happy to pay tribute to Karoly to his successful career and many
contributions to mathematics, especially in geometry.
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Egon Schulte was born on 7 January 1955 in Heggen (Finnentrop), North
Rhine-Westfalia, Germany, to parents Egon and Gisela Schulte. He attended the
Volksschule Lenhausen (Finnentrop) and the Katholische Volksschule Herdecke
from 1961 to 1965, and the Stidtisches Gymnasium Wetter (in the Ruhr region)
from 1965 to 1973, completing the Abitur qualification in 1973. It was not until the
last year or two in high school that Egon decided to study mathematics. In school,
he was always good in mathematics, but was also very much interested in sports.
He played very actively in a (European-style) handball team in Herdecke until
about 1976 or so. Sports have always been an important part of his life; he has even
run marathons.

From 1973 to 1978, he studied at the University of Dortmund, graduating with a
‘Diploma’ in Mathematics in 1978. Egon’s Diplom thesis was on Konstruktion
reguldrer Hiillen konstanter Breite (regular hulls of constant width), a topic in
convex geometry, and was published as his first paper in Monatshefte der
Mathematik. His advisor was Ludwig Danzer, who also was advisor for his doctoral
dissertation on Regular Inzidenzkomplexe (regular incidence complexes), which
began Egon’s lifelong interest in regular abstract polytopes. Egon graduated as a
Doctor of Natural Sciences (in Mathematics) at the University of Dortmund in
1980. All three of Egon’s main qualifications (Abitur, Diplom, and Doctorate) were
awarded ‘Auszeichnung’ (distinction).

XXi



XXii Egon Schulte—Biosketch

Prospects for academic positions in Germany were not good in the late 1970s
and 1980s, especially in pure mathematics. Egon took a position as
Wissenschaftlicher Assistent at the University of Dortmund from 1978 to 1983, and
again from 1984 to 1987, but the period in between was very important for him, in
that he found a very clear direction for himself, thanks largely to a visit by Branko
Griinbaum to Dortmund in 1982. This had a profound influence on Egon, both
mathematically and career-wise. He spent the 1983/84 academic year at the
University of Washington, Seattle, and he describes the year as ‘fantastic’. It
introduced him to life in the USA and ultimately set him on a path towards a career
there.

After Seattle, he returned to Germany for three years, gained Habilitation in
Mathematics at the University of Dortmund in 1985, with a thesis on Monotypische
Pflasterungen und Komplexe (monotypic tilings and complexes), and gained the
title of ‘Privatdozent’. Then, 1987 marked a new beginning for Egon, by moving to
Boston, where he has been ever since. He worked as Visiting Assistant Professor at
the Massachusetts Institute of Technology from 1987 to 1989 and then as an
Associate Professor at Northeastern University from 1989 to 1992. Since 1992, he
has been a Professor of Mathematics at Northeastern University, with tenure since
1993.

A few years after moving to Boston, Egon married Ursula Waser. They had two
children: Sarah Marlen Schulte (born in 1992) and Isabelle Sophie Schulte (born in
1994), and both have studied at Northeastern. Sarah studied International Affairs
and is now in her third year of Law School, and Isabelle graduated in 2017 with a
major in Chemistry. Egon and Ursula separated in 2013 but remain good friends.

Mathematics has been Egon’s passion ever since he began university. Looking
back, he would say that over the years there were four people who strongly
influenced his mathematical work and development: Ludwig Danzer, Branko
Griinbaum, Harold Scott MacDonald (Donald) Coxeter, and Peter McMullen. Of
course, he was positively influenced by many others as well. He is co-author with
Peter McMullen of the outstanding book Abstract Regular Polytopes, has published
well over 100 research articles (on a range of topics spanning discrete geometry,
combinatorics and group theory), and edited six special issues of journals.

He is a popular invited lecture at conferences, has also organised or co-organised
several conferences and workshops (or special sessions), and served on the editorial
boards of many journals. He has won several grants, including many from the NSA
and NSF in the USA, and a recent one from the Simons Foundation. And to date, he
has successfully supervised 12 Ph.D. students: Barbara Nostrand (1993), Sergey
Bratus (1999), Daniel Pellicer (2007), Anthony Cutler (2009), Mark Mixer (2010),
Gabriel Cunningham (2012), Ilanit Helfand (2013), Andrew Duke (2014), Undine
Leopold (2014), Ilya Scheidwasser (2015), Abigail Dalton-Williams (2015), and
Nicholas Matteo (2015).

On top of all this, Egon is well-liked and highly respected by his friends and
colleagues around the world for his positive attitude, his enthusiasm for mathe-
matics, his engaging personality, and his encouragement of the next generation.
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As far as choice of research topics is concerned, he says he usually followed his
own interests and instincts and did not pay too much attention to trends and
fashions. This had its rewards, but he says at times it came at a high price: ‘It might
have been smarter to follow more trendy mathematics’, but we have the impression
he does not regret his choices.
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