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Abstract

We highlight intriguing analogies between the diameter of a polytope and the largest
possible total curvature of the associated central path. We prove continuous ana-
logues of the results of Holt and Klee, and Klee and Walkup: We construct a family
of polytopes which attain the conjectured order of the largest curvature, and prove
that the special case where the number of inequalities is twice the dimension is
equivalent to the general case. We show that the conjectured bound for the average
diameter of a bounded cell of a simple hyperplane arrangement is asymptotically
tight for fixed dimension. Links with the conjecture of Hirsch, Haimovich’s proba-
bilistic analysis of the shadow-vertex simplex algorithm, and the result of Dedieu,
Malajovich and Shub on the average total curvature of a bounded cell are presented.
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1 Polytopes: Diameter and Curvature

Let P be a full dimensional convex polyhedron defined by n inequalities in
dimension d. The diameter δ(P ) is the smallest number such that any two
vertices of the polyhedron P can be connected by a path with at most δ(P )
edges. The conjecture of Hirsch, formulated in 1957 and reported in [2], states
that the diameter of a polyhedron defined by n inequalities in dimension d is
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not greater than n−d. The conjecture does not hold for unbounded polyhedra.
A polytope is a bounded polyhedron.

Conjecture 1.1 (Conjecture of Hirsch for polytopes) The diameter of
a polytope defined by n inequalities in dimension d is not greater than n − d.

We consider a continuous analogue of the diameter introduced in [4]: the
largest possible total curvature of the associated central path. We first recall
the definitions of the central path and of the total curvature. For a polytope
P = {x : Ax ≥ b} with A ∈ R

n×d, the central path corresponding to min{cT x :
x ∈ P} is a set of minimizers of min{cT x+μf(x) : x ∈ P} for μ ∈ (0,∞) where
f(x) = −∑n

i=1 ln(Aix − bi) is the standard logarithmic barrier function [14].
Intuitively, the total curvature [15] is a measure of how far off a certain curve
is from being a straight line. Let ψ : [α, β] → R

d be a C2((α − ε, β + ε))
map for some ε > 0 with a non-zero derivative in [α, β]. Denote its arc
length by l(t) =

∫ t

α
‖ψ̇(τ)‖dτ , its parametrization by the arc length by ψarc =

ψ ◦ l−1 : [0, l(β)] → R
d, and its curvature at the point t by κ(t) = ψ̈arc(t). The

total curvature is defined as
∫ l(β)

0
‖κ(t)‖dt. The requirement ψ̇ �= 0 insures

that any given segment of the curve is traversed only once and allows to
define a curvature at any point on the curve. Let λc(P ) denote the total
curvature of the central path corresponding to the linear optimization problem
min{cT x : x ∈ P}. Considering the largest λc(P ) over all possible c we obtain
the quantity λ(P ), referred to as the curvature of a polytope. The following
continuous analogue of the conjecture of Hirsch was proposed in [4].

Conjecture 1.2 [4] The order of the curvature of a polytope defined by n
inequalities in dimension d is n.

For polytopes and arrangements, respectively central path and linear optimiza-
tion, we refer to Edelsbrunner [7], Grünbaum [11] and Ziegler [18], respectively
Renegar [13], Roos et al [14] and Ye [16]. Holt and Klee [10] showed that, for
n > d ≥ 13, the conjecture of Hirsch is tight. Fritzsche and Holt [9] extended
the result to n > d ≥ 8. A family of d-dimensional polytopes P defined by
n > 2d non-redundant inequalities satisfying lim infn→∞ λ(P)/n ≥ π for a
fixed d was introduced in [4]. Thus, Conjecture 1.2 is the best possible.

Proposition 1.3 [4] The conjectured order-n of the curvature is attained.

The special case of n = 2d of the conjecture of Hirsch is known as the d-step
conjecture, and its continuous analogue is:

Conjecture 1.4 [5] The order of the curvature of a polytope defined by 2d
inequalities in dimension d is d.
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Klee and Walkup [12] showed that the d-step conjecture is equivalent to the
conjecture of Hirsch. The continuous analogue of the result of Klee and
Walkup. i.e., Conjecture 1.2 and Conjecture 1.4 are equivalent holds. Let
Λ(d, n) be the largest curvature λ(P ) over all polytopes P defined by n in-
equalities in dimension d.

Proposition 1.5 [5] The continuous Hirsch conjecture is equivalent to the
continuous d-step conjecture: If Λ(d, 2d) = O(d) for all d, then Λ(d, n) = O(n).

In Proposition 1.5 the constant 2 may be replaced by any integer k > 1, i.e.,
if Λ(d, kd) = O(d) for all d, then Λ(d, n) = O(n).

2 Arrangements: Diameter and Curvature

Let A be a simple arrangement formed by n hyperplanes in dimension d. We
recall that an arrangement is called simple if n ≥ d + 1 and any d hyper-
planes intersect at a unique distinct point. Since A is simple, the number of
bounded cells (bounded connected component of the complement of the hy-
perplanes) of A is I =

(
n−1

d

)
. Following the approach of Dedieu, Malajovich

and Shub [3], let λc(A) denote the average value of λc(Pi) over the bounded
cells Pi of A; that is, λc(A) =

∑i=I
i=1 λc(Pi)/I. Note that each bounded cell

Pi is defined by the same number n of inequalities, some being potentially
redundant. Given an arrangement A, the average curvature of a bounded cell
λ(A) is the largest value of λc(A) over all possible c. Dedieu, Malajovich and
Shub [3] demonstrated that λc(A) ≤ 2πd for any fixed d

Proposition 2.1 [3] The average curvature of a bounded cell of a simple
arrangement defined by n inequalities in dimension d is not greater than 2πd.

Let δ(A) =
∑i=I

i=1 δ(Pi)/I denote the average diameter of a bounded cell of A.

Conjecture 2.2 [4] The average diameter of a bounded cell of a simple ar-
rangement defined by n inequalities in dimension d is not greater than d.

Let ΔA(d, n) denote the largest possible average diameter of a bounded cell of
a simple arrangement defined by n inequalities in dimension d. One can check
that the bounded cells of a simple hyperplane arrangement A∗

d,n combinatori-
ally equivalent to the cyclic hyperplane arrangement are mainly combinatorial
cubes. Thus, the dimension d is an asymptotic lower bound for ΔA(d, n) for
fixed d. Recall that the cyclic hyperplane arrangement is dual to the cyclic
polytope, and see [8] for some combinatorial properties of the (projective)
cyclic hyperplane arrangement.
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Proposition 2.3 [6] We have ΔA(d, n) ≥ d
(

n−d
d

)
/
(

n−1
d

)
for n ≥ 2d.

3 Additional Links and Low Dimensions

Keeping the linear optimization approach over a simple arrangement but re-
placing central path following interior point methods by simplex methods,
Haimovich’s probabilistic analysis of the shadow-vertex simplex algorithm,
see [1, Section 0.7], showed that the expected number of pivots is bounded by d.
Note that while Dedieu, Malajovich and Shub consider only the bounded cells
(the central path may not be defined over some unbounded ones), Haimovich
considers the average over bounded and unbounded cells. While the result
of Haimovich and Conjecture 2.2 are similar in nature, they differ in some
aspects: Conjecture 2.2 considers the average over bounded cells, and the
number of pivots could be smaller than the diameter for some cells.

Proposition 3.1 [4] If the conjecture of Hirsch holds, then ΔA(d, n) ≤ d(n+1)
n−1

.

The arrangements resulting from the addition of one hyperplane to the cyclic
hyperplane arrangement defined by n− 1 inequalities are good candidates for
achieving a large average diameter over the bounded cells. The combinatorics
of the addition of a (pseudo) hyperplane to the cyclic hyperplane arrangement
are studied in [17]. Considering such an arrangement with all the vertices on
one side of the added hyperplane, one can show the following in dimension 2
and 3.

Proposition 3.2 [6] For n ≥ 4, we have ΔA(2, n) = 2 − 
n
2
�/(n−1

2

)
, and

3 − 6/(n − 1) + (�n
2

 − 2)/

(
n−1

3

) ≤ ΔA(3, n) ≤ 3 + 2(2n2 − 16n + 21)/9
(

n−1
3

)
.

Proposition 2.2 implies that λ(P ) ≤ 2πd
(

n−1
d

)
. For any polytope P , similarly

to the proof of Proposition 1.5, c can be chosen large enough to force the
central path to be almost orthogonal to a facet f of P , with the rest of the
path resembling the central path corresponding to min{cT x : x ∈ f}. Thus,
by induction, for any P and ε > 0, one can exhibit a c such that λc(P ) ≥
(d − 1)π/2 − ε.

Proposition 3.3 The curvature of a polytope defined by n inequalities in di-
mension d is between (d − 1)π/2 and 2πd

(
n−1

d

)
.
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