

Available online at www.sciencedirect.com

ScienceDirect

Electronic Notes in DISCRETE MATHEMATICS

Electronic Notes in Discrete Mathematics 62 (2017) 105–110 www.elsevier.com/locate/endm

Computational determination of the largest lattice polytope diameter

Nathan Chadder $^{\rm 1}$

Department of Computing and Software McMaster University Hamilton, Canada

Antoine Deza^2

Department of Computing and Software McMaster University Hamilton, Canada

Abstract

A lattice (d, k)-polytope is the convex hull of a set of points in dimension d whose coordinates are integers between 0 and k. Let $\delta(d, k)$ be the largest diameter over all lattice (d, k)-polytopes. We develop a computational framework to determine $\delta(d, k)$ for small instances. We show that $\delta(3, 4) = 7$ and $\delta(3, 5) = 9$; that is, we verify for (d, k) = (3, 4) and (3, 5) the conjecture whereby $\delta(d, k)$ is at most $\lfloor (k+1)d/2 \rfloor$ and is achieved, up to translation, by a Minkowski sum of lattice vectors.

Keywords: Lattice polytopes, edge-graph diameter, enumeration algorithm

https://doi.org/10.1016/j.endm.2017.10.019 1571-0653/© 2017 Elsevier B.V. All rights reserved.

¹ Email: chaddens@mcmaster.ca

² Email: deza@mcmaster.ca

1 Introduction

Finding a good bound on the maximal edge-diameter of a polytope in terms of its dimension and the number of its facets is not only a natural question of discrete geometry, but also historically closely connected with the theory of the simplex method, as the diameter is a lower bound for the number of pivots required in the worst case. Considering bounded polytopes whose vertices are rational-valued, we investigate a similar question where the number of facets is replaced by the grid embedding size.

The convex hull of integer-valued points is called a lattice polytope and if all the vertices are drawn from $\{0, 1, \ldots, k\}^d$, it is referred to as a lattice (d, k)-polytope. Let $\delta(d, k)$ be the largest edge-diameter over all lattice (d, k)polytopes. Naddef [7] showed in 1989 that $\delta(d, 1) = d$, Kleinschmidt and Onn [6] generalized this result in 1992 showing that $\delta(d, k) \leq kd$. In 2016, Del Pia and Michini [3] strengthened the upper bound to $\delta(d, k) \leq kd - \lceil d/2 \rceil$ for $k \geq 2$, and showed that $\delta(d, 2) = \lfloor 3d/2 \rfloor$. Pursuing Del Pia and Michini's approach, Deza and Pournin [5] showed that $\delta(d, k) \leq kd - \lceil 2d/3 \rceil - (k-3)$ for $k \geq 3$, and that $\delta(4, 3) = 8$. The determination of $\delta(2, k)$ was investigated independently in the early nineties by Thiele [8], Balog and Bárány [2], and Acketa and Žunić [1]. Deza, Manoussakis, and Onn [4] showed that $\delta(d, k) \geq |(k+1)d/2|$ for all $k \leq 2d - 1$ and proposed Conjecture 1.1.

Conjecture 1.1 $\delta(d,k) \leq \lfloor (k+1)d/2 \rfloor$, and $\delta(d,k)$ is achieved, up to translation, by a Minkowski sum of lattice vectors.

In Section 2, we propose a computational framework which drastically reduces the search space for lattice (d, k)-polytopes achieving a large diameter. Applying this framework to (d, k) = (3, 4) and (3, 5), we determine in Section 3 that $\delta(3, 4) = 7$ and $\delta(3, 5) = 9$.

Theorem 1.2 Conjecture 1.1 holds for (d, k) = (3, 4) and (3, 5); that is, $\delta(3, 4) = 7$ and $\delta(3, 5) = 9$, and both diameters are achieved, up to translation, by a Minkowski sum of lattice vectors.

Note that Conjecture 1.1 holds for all known values of $\delta(d, k)$ given in Table 1, and hypothesizes, in particular, that $\delta(d, 3) = 2d$. The new entries corresponding to (d, k) = (3, 4) and (3, 5) are entered in bold.

	1	2	3	4	5	6	7	8	9	10
1	1	1	1	1	1	1	1	1	1	1
2	2	3	4	4	5	6	6	7	8	8
3	3	4	6	7	9					
4	4	6	8							
÷	:	:								
d	d	$\left\lfloor \frac{3d}{2} \right\rfloor$								

Table 1

The largest possible diameter $\delta(d, k)$ of a lattice (d, k)-polytope

2 Theoretical and Computational Framework

Since $\delta(2, k)$ and $\delta(d, 2)$ are known, we consider in the remainder of the paper that $d \geq 3$ and $k \geq 3$. While the number of lattice (d, k)-lattice polytopes is finite, a brute force search is typically intractable, even for small instances. Theorem 2.1, which recalls conditions established in [5], allows to drastically reduce the search space.

Theorem 2.1 For $d \ge 3$, let d(u, v) denote the distance between two vertices u and v in the edge-graph of a lattice (d, k)-polytope P such that $d(u, v) = \delta(d, k)$. For i = 1, ..., d, let F_i^0 , respectively F_i^k , denote the intersection of P with the facet of the cube $[0, k]^d$ corresponding to $x_i = 0$, respectively $x_i = k$. Then, $d(u, v) \le \delta(d-1, k) + k$, and the following conditions are necessary for the inequality to hold with equality:

- (1) $u + v = (k, k, \dots, k),$
- (2) any edge of P with u or v as a vertex is $\{-1, 0, 1\}$ -valued,
- (3) for i = 1, ..., d, F_i^0 , respectively F_i^k , is a (d-1)-dimensional face of P with diameter $\delta(F_i^0) = \delta(d-1, k)$, respectively $\delta(F_i^k) = \delta(d-1, k)$.

Thus, to show that $\delta(d, k) < \delta(d-1, k) + k$, it is enough to show that there is no lattice (d, k)-polytope admitting a pair of vertices (u, v) such that $d(u, v) = \delta(d, k)$ and the conditions (1), (2), and (3) are satisfied. The computational framework to determine, given (d, k), whether $\delta(d, k) = \delta(d-1, k) + k$ is outlined below and illustrated for (d, k) = (3, 4) or (3, 5).

Algorithm to determine whether $\delta(d,k) < \delta(d-1,k) + k$

Step 1: Initialization

Determine the set $\mathcal{F}_{d-1,k}^*$ of all the lattice (d-1,k)-polytopes P such that $\delta(P) = \delta(d-1,k)$. For example, for (d,k) = (3,4), the determination of all the 335 lattice (2,4)-polygons P such that $\delta(P) = 4$ is straightforward.

Step 2: Symmetries

Consider, up to the symmetries of the cube $[0,k]^d$, the possible entries for a pair of vertices (u,v) such that $u + v = \{k,k,\ldots,k\}$. For example, for (d,k) = (3,4), the following 9 vertices cover all possibilities for u up to symmetry: (0,0,0), (0,0,1), (0,0,2), (0,1,1), (0,1,2), (0,2,2), (1,1,1), (1,1,2), and (1,2,2), where v = (4,4,4) - u. The set $\mathcal{F}^*_{d-1,k}$ can be used to further reduce the search space. For example, for (d,k) = (3,4), one can check that the points (1,2) and (2,2) belong to any element of $\mathcal{F}^*_{2,4}$. Thus, the points (1,1,2) and (1,2,2) can be ruled out from the possible entries for u.

Step 3: Shelling

For each of the possible pairs (u, v) determined during Step 2, consider all possible ways for 2d elements of the set $\mathcal{F}_{d-1,k}^*$ determined during Step 1 to form the 2d facets of P lying on a facet of the cube $[0, k]^d$. For example, for (d, k) = (3, 4) and u = (0, 0, 0), we must find 6 elements of $\mathcal{F}_{2,4}^*$, 3 with (0, 0) as a vertex, and 3 with (4, 4) as a vertex. In addition, if an edge of an element of $\mathcal{F}_{d-1,k}^*$ with u or v as vertex is not $\{-1, 0, 1\}$ -valued, this element is disregarded.

Note that since the choice of an element of $\mathcal{F}_{d-1,k}^*$ defines the vertices of P belonging to a facet of the cube $[0,k]^d$, the choice for the next element of $\mathcal{F}_{d-1,k}^*$ to form a shelling is significantly restricted. In addition, if the set of vertices and edges belonging to the current elements of $\mathcal{F}_{d-1,k}^*$ considered for a shelling includes a path from u to v of length at most $\delta(d-1,k)+k-1$, a shortcut between u and v exists and the last added elements of $\mathcal{F}_{d-1,k}^*$ can be disregarded. A shortcut between u and v may be found using variants of Theorem 2.1 even if u and v are not connected by the set of current edges.

Step 4. Inner points

For each choice of 2d elements of $\mathcal{F}^*_{d-1,k}$ forming a shelling obtained during Step 3, consider the $\{1, 2, \ldots, k-1\}$ -valued points not in the convex hull of the vertices of the 2d elements of $\mathcal{F}^*_{d-1,k}$ forming a shelling. Each such $\{1, 2, \ldots, k-1\}$ -valued point is considered as a potential vertex of P in a binary tree. If the current set of edges includes a path from u to v of length at most $\delta(d-1,k)+k-1$, a shortcut between u and v exists and the corresponding node of the binary tree can be disregarded, and the the binary tree is pruned at this node.

A convex hull and diameter computation are performed for each node of the obtained binary tree. If there is a node yielding a diameter of $\delta(d-1,k) + k$ we can conclude that $\delta(d,k) = \delta(d-1,k) + k$. Otherwise, we can conclude that $\delta(d,k) < \delta(d-1,k) + k$. For example, for (d,k) = (3,5), no choice of 6 elements of $\mathcal{F}_{2,5}^*$ forming a shelling such that $d(u,v) \geq 10$ exist, and thus Step 4 is not executed.

3 Computational Results

For (d, k) = (3, 4), shellings exist for which path lengths are not decidable by the algorithm without convex hull computations. However, none of these shellings achieves a diameter of at least 8. For (d, k) = (3, 5) the algorithm stops at Step 3, as there is no combination of 6 elements of $\mathcal{F}_{2,5}^*$ which form a shelling such that $d(u, v) \geq \delta(2, 5) + 5$. A shortcut from u to v is typically found early on in the shelling, which leads to the algorithm terminating quickly. Consequently, $\delta(3,4) < 8$ and $\delta(3,5) < 10$. Since the Minkowski sum of (1, 0, 0), (0, 1, 0), (0, 0, 1), (0, 1, 1), (1, 0, 1), (1, 1, 0),and (1, 1, 1) forms a lattice (3, 4)-polytope with diameter 7, we conclude that $\delta(3, 4) = 7$. Similarly, since the Minkowski sum of (1,0,0), (0,1,0), (0,0,1), (0,1,1), (1,0,1), (1,1,0), (0, 1, -1), (1, 0, -1), and (1, -1, 0) forms, up to translation, a lattice (3, 5)polytope with diameter 9, we conclude that $\delta(3,5) = 9$. Computations for additional values of $\delta(d, k)$ are currently underway. In particular, the same algorithm may determine whether $\delta(d,k) = \delta(d-1,k) + k$ or $\delta(d-1,k) + k - 1$ for (d,k) = (5,3) and (4,4) provided the set of all lattice (d-1,k)-polytopes achieving $\delta(d-1,k)$ is determined for (d,k) = (5,3) and (4,4). Similarly, the algorithm could be adapted to determine whether $\delta(d,k) < \delta(d-1,k) + k - 1$ provided the set of all lattice (d-1, k)-polytopes achieving $\delta(d-1, k)$ or $\delta(d-1, k)$ (1,k) - 1 is determined. For example, the adapted algorithm may determine whether $\delta(3, 6) = 10$.

Acknowledgement

This work was partially supported by the Natural Sciences and Engineering Research Council of Canada Discovery Grant program (RGPIN-2015-06163).

References

- Dragan Acketa and Joviša Žunić, On the maximal number of edges of convex digital polygons included into an m×m-grid, Journal of Combinatorial Theory A 69 (1995), 358–368.
- [2] Antal Balog and Imre Bárány, On the convex hull of the integer points in a disc, Proceedings of the Seventh Annual Symposium on Computational Geometry (1991), 162–165.
- [3] Alberto Del Pia and Carla Michini, On the diameter of lattice polytopes, Discrete and Computational Geometry 55 (2016), 681–687.
- [4] Antoine Deza, George Manoussakis, and Shmuel Onn, *Primitive zonotopes*, Discrete and Computational Geometry (to appear).
- [5] Antoine Deza and Lionel Pournin, Improved bounds on the diameter of lattice polytopes, arXiv:1610.00341 (2016).
- [6] Peter Kleinschmidt and Shmuel Onn, On the diameter of convex polytopes, Discrete Mathematics 102 (1992), 75–77.
- [7] Dennis Naddef, The Hirsch conjecture is true for (0, 1)-polytopes, Mathematical Programming 45 (1989), 109–110.
- [8] Torsten Thiele, *Extremalprobleme für Punktmengen*, Master thesis, Freie Universität, Berlin, 1991.