Computational determination of the largest lattice polytope diameter

Nathan Chadder1

\textit{Department of Computing and Software}
\textit{McMaster University}
\textit{Hamilton, Canada}

Antoine Deza2

\textit{Department of Computing and Software}
\textit{McMaster University}
\textit{Hamilton, Canada}

Abstract

A lattice \((d, k)\)-polytope is the convex hull of a set of points in dimension \(d\) whose coordinates are integers between 0 and \(k\). Let \(\delta(d, k)\) be the largest diameter over all lattice \((d, k)\)-polytopes. We develop a computational framework to determine \(\delta(d, k)\) for small instances. We show that \(\delta(3, 4) = 7\) and \(\delta(3, 5) = 9\); that is, we verify for \((d, k) = (3, 4)\) and \((3, 5)\) the conjecture whereby \(\delta(d, k)\) is at most \(\lfloor (k + 1)d/2 \rfloor\) and is achieved, up to translation, by a Minkowski sum of lattice vectors.

Keywords: Lattice polytopes, edge-graph diameter, enumeration algorithm

1 Email: chaddens@mcmaster.ca
2 Email: deza@mcmaster.ca

https://doi.org/10.1016/j.endm.2017.10.019
1571-0653/© 2017 Elsevier B.V. All rights reserved.
1 Introduction

Finding a good bound on the maximal edge-diameter of a polytope in terms of its dimension and the number of its facets is not only a natural question of discrete geometry, but also historically closely connected with the theory of the simplex method, as the diameter is a lower bound for the number of pivots required in the worst case. Considering bounded polytopes whose vertices are rational-valued, we investigate a similar question where the number of facets is replaced by the grid embedding size.

The convex hull of integer-valued points is called a lattice polytope and if all the vertices are drawn from \(\{0, 1, \ldots, k\}^d \), it is referred to as a lattice \((d, k)\)-polytope. Naddef [7] showed in 1989 that \(\delta(d, 1) = d \), Kleinschmidt and Onn [6] generalized this result in 1992 showing that \(\delta(d, k) \leq kd \). In 2016, Del Pia and Michini [3] strengthened the upper bound to \(\delta(d, k) \leq kd - \lceil d/2 \rceil \) for \(k \geq 2 \), and showed that \(\delta(d, 2) = \lfloor 3d/2 \rfloor \). Pursuing Del Pia and Michini’s approach, Deza and Pournin [5] showed that \(\delta(d, k) \leq kd - \lceil 2d/3 \rceil - (k - 3) \) for \(k \geq 3 \), and that \(\delta(4, 3) = 8 \). The determination of \(\delta(2, k) \) was investigated independently in the early nineties by Thiele [8], Balog and Bárány [2], and Acketa and Žunić [1]. Deza, Manoussakis, and Onn [4] showed that \(\delta(d, k) \geq \lfloor (k + 1)d/2 \rfloor \) for all \(k \leq 2d - 1 \) and proposed Conjecture 1.1.

Conjecture 1.1 \(\delta(d, k) \leq \lfloor (k + 1)d/2 \rfloor \), and \(\delta(d, k) \) is achieved, up to translation, by a Minkowski sum of lattice vectors.

In Section 2, we propose a computational framework which drastically reduces the search space for lattice \((d, k)\)-polytopes achieving a large diameter. Applying this framework to \((d, k) = (3, 4)\) and \((3, 5)\), we determine in Section 3 that \(\delta(3, 4) = 7 \) and \(\delta(3, 5) = 9 \).

Theorem 1.2 Conjecture 1.1 holds for \((d, k) = (3, 4)\) and \((3, 5)\); that is, \(\delta(3, 4) = 7 \) and \(\delta(3, 5) = 9 \), and both diameters are achieved, up to translation, by a Minkowski sum of lattice vectors.

Note that Conjecture 1.1 holds for all known values of \(\delta(d, k) \) given in Table 1, and hypothesizes, in particular, that \(\delta(d, 3) = 2d \). The new entries corresponding to \((d, k) = (3, 4)\) and \((3, 5)\) are entered in bold.
<table>
<thead>
<tr>
<th>k</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>d</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>4</td>
<td>6</td>
<td>7</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>6</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
</tr>
<tr>
<td>d</td>
<td>d</td>
<td>$\lfloor \frac{3d}{2} \rfloor$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 1
The largest possible diameter $\delta(d, k)$ of a lattice (d, k)-polytope

2 Theoretical and Computational Framework

Since $\delta(2, k)$ and $\delta(d, 2)$ are known, we consider in the remainder of the paper that $d \geq 3$ and $k \geq 3$. While the number of lattice (d, k)-lattice polytopes is finite, a brute force search is typically intractable, even for small instances. Theorem 2.1, which recalls conditions established in [5], allows to drastically reduce the search space.

Theorem 2.1 For $d \geq 3$, let $d(u, v)$ denote the distance between two vertices u and v in the edge-graph of a lattice (d, k)-polytope P such that $d(u, v) = \delta(d, k)$. For $i = 1, \ldots, d$, let F^0_i, respectively F^k_i, denote the intersection of P with the facet of the cube $[0, k]^d$ corresponding to $x_i = 0$, respectively $x_i = k$. Then, $d(u, v) \leq \delta(d - 1, k) + k$, and the following conditions are necessary for the inequality to hold with equality:

1. $u + v = (k, k, \ldots, k)$,
2. any edge of P with u or v as a vertex is $\{-1, 0, 1\}$-valued,
3. for $i = 1, \ldots, d$, F^0_i, respectively F^k_i, is a $(d - 1)$-dimensional face of P with diameter $\delta(F^0_i) = \delta(d - 1, k)$, respectively $\delta(F^k_i) = \delta(d - 1, k)$.

Thus, to show that $\delta(d, k) < \delta(d - 1, k) + k$, it is enough to show that there is no lattice (d, k)-polytope admitting a pair of vertices (u, v) such that $d(u, v) = \delta(d, k)$ and the conditions (1), (2), and (3) are satisfied. The computational framework to determine, given (d, k), whether $\delta(d, k) = \delta(d - 1, k) + k$ is outlined below and illustrated for $(d, k) = (3, 4)$ or $(3, 5)$.

Algorithm to determine whether $\delta(d, k) < \delta(d - 1, k) + k$

Step 1: Initialization
Determine the set $F_{d-1,k}^*$ of all the lattice $(d - 1, k)$-polytopes P such that $\delta(P) = \delta(d - 1, k)$. For example, for $(d, k) = (3, 4)$, the determination of all the 335 lattice $(2, 4)$-polygons P such that $\delta(P) = 4$ is straightforward.

Step 2: Symmetries
Consider, up to the symmetries of the cube $[0, k]^d$, the possible entries for a pair of vertices (u, v) such that $u + v = \{k, k, \ldots, k\}$. For example, for $(d, k) = (3, 4)$, the following 9 vertices cover all possibilities for u up to symmetry: (0, 0, 0), (0, 0, 1), (0, 0, 2), (0, 1, 1), (0, 1, 2), (0, 2, 2), (1, 1, 1), (1, 1, 2), and (1, 2, 2), where $v = (4, 4, 4) - u$. The set $F_{d-1,k}^*$ can be used to further reduce the search space. For example, for $(d, k) = (3, 4)$, one can check that the points (1, 2) and (2, 2) belong to any element of $F_{2,4}^*$. Thus, the points (1, 1, 2) and (1, 2, 2) can be ruled out from the possible entries for u.

Step 3: Shelling
For each of the possible pairs (u, v) determined during Step 2, consider all possible ways for 2d elements of the set $F_{d-1,k}^*$ determined during Step 1 to form the 2d facets of P lying on a facet of the cube $[0, k]^d$. For example, for $(d, k) = (3, 4)$ and $u = (0, 0, 0)$, we must find 6 elements of $F_{2,4}^*$, 3 with (0, 0) as a vertex, and 3 with (4, 4) as a vertex. In addition, if an edge of an element of $F_{d-1,k}^*$ with u or v as vertex is not $\{-1, 0, 1\}$-valued, this element is disregarded.

Note that since the choice of an element of $F_{d-1,k}^*$ defines the vertices of P belonging to a facet of the cube $[0, k]^d$, the choice for the next element of $F_{d-1,k}^*$ to form a shelling is significantly restricted. In addition, if the set of vertices and edges belonging to the current elements of $F_{d-1,k}^*$ considered for a shelling includes a path from u to v of length at most $\delta(d - 1, k) + k - 1$, a shortcut between u and v exists and the last added elements of $F_{d-1,k}^*$ can be disregarded. A shortcut between u and v may be found using variants of Theorem 2.1 even if u and v are not connected by the set of current edges.

Step 4: Inner points
For each choice of 2d elements of $F_{d-1,k}^*$ forming a shelling obtained during Step 3, consider the $\{1, 2, \ldots, k - 1\}$-valued points not in the convex hull of the vertices of the 2d elements of $F_{d-1,k}^*$ forming a shelling. Each such
\{1, 2, \ldots, k-1\}\text{-valued point is considered as a potential vertex of }P\text{ in a binary tree. If the current set of edges includes a path from }u\text{ to }v\text{ of length at most }\delta(d-1,k)+k-1\text{, a shortcut between }u\text{ and }v\text{ exists and the corresponding node of the binary tree can be disregarded, and the the binary tree is pruned at this node.}

A convex hull and diameter computation are performed for each node of the obtained binary tree. If there is a node yielding a diameter of }\delta(d-1,k)+k\text{ we can conclude that }\delta(d,k)=\delta(d-1,k)+k.\text{ Otherwise, we can conclude that }\delta(d,k)<\delta(d-1,k)+k.\text{ For example, for }(d,k)=(3,5),\text{ no choice of }6\text{ elements of }\mathcal{F}_{2,5}^*\text{ forming a shelling such that }d(u,v)\geq10\text{ exist, and thus Step 4 is not executed.}

3 Computational Results

For \((d,k)=(3,4)\), shellings exist for which path lengths are not decidable by the algorithm without convex hull computations. However, none of these shellings achieves a diameter of at least 8. For \((d,k)=(3,5)\) the algorithm stops at Step 3, as there is no combination of 6 elements of }\mathcal{F}_{2,5}^*\text{ which form a shelling such that }d(u,v)\geq\delta(2,5)+5.\text{ A shortcut from }u\text{ to }v\text{ is typically found early on in the shelling, which leads to the algorithm terminating quickly. Consequently, }\delta(3,4)<8\text{ and }\delta(3,5)<10.\text{ Since the Minkowski sum of }\((1,0,0),(0,1,0),(0,0,1),(0,1,1),(1,0,1),(1,1,0)\text{, and }\((1,1,1)\text{ forms a lattice }\text{(3,4)-polytope with diameter 7, we conclude that }\delta(3,4)=7.\text{ Similarly, since the Minkowski sum of }\((1,0,0),(0,1,0),(0,0,1),(0,1,1),(1,0,1),(1,1,0),(0,1,-1),(1,0,-1),(1,-1,0)\text{ forms, up to translation, a lattice }\text{(3,5)-polytope with diameter 9, we conclude that }\delta(3,5)=9.\text{ Computations for additional values of }\delta(d,k)\text{ are currently underway. In particular, the same algorithm may determine whether }\delta(d,k)=\delta(d-1,k)+k\text{ or }\delta(d-1,k)+k-1\text{ for }\(d,k)=(5,3)\text{ and }\text{(4,4) provided the set of all lattice }\text{(d-1,k)-polytopes achieving }\delta(d-1,k)\text{ is determined for }\(d,k)=(5,3)\text{ and }\text{(4,4). Similarly, the algorithm could be adapted to determine whether }\delta(d,k)<\delta(d-1,k)+k-1\text{ provided the set of all lattice }\text{(d-1,k)-polytopes achieving }\delta(d-1,k)\text{ or }\delta(d-1,k)-1\text{ is determined. For example, the adapted algorithm may determine whether }\delta(3,6)=10.\)
Acknowledgement

This work was partially supported by the Natural Sciences and Engineering Research Council of Canada Discovery Grant program (RGPIN-2015-06163).

References

