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Abstract

A lattice (d, k)-polytope is the convex hull of a set of points in dimension d whose
coordinates are integers between 0 and k. Let 0(d, k) be the largest diameter over all
lattice (d, k)-polytopes. We develop a computational framework to determine §(d, k)
for small instances. We show that 6(3,4) = 7 and d(3,5) = 9; that is, we verify for
(d,k) = (3,4) and (3,5) the conjecture whereby d(d, k) is at most |(k+ 1)d/2] and
is achieved, up to translation, by a Minkowski sum of lattice vectors.
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1 Introduction

Finding a good bound on the maximal edge-diameter of a polytope in terms
of its dimension and the number of its facets is not only a natural question of
discrete geometry, but also historically closely connected with the theory of
the simplex method, as the diameter is a lower bound for the number of pivots
required in the worst case. Considering bounded polytopes whose vertices are
rational-valued, we investigate a similar question where the number of facets
is replaced by the grid embedding size.

The convex hull of integer-valued points is called a lattice polytope and
if all the vertices are drawn from {0, 1,...,k}, it is referred to as a lattice
(d, k)-polytope. Let 6(d, k) be the largest edge-diameter over all lattice (d, k)-
polytopes. Naddef [7] showed in 1989 that §(d,1) = d, Kleinschmidt and
Onn [6] generalized this result in 1992 showing that §(d, k) < kd. In 2016,
Del Pia and Michini [3] strengthened the upper bound to d(d, k) < kd— [d/2]
for k > 2, and showed that 0(d,2) = [3d/2]. Pursuing Del Pia and Michini’s
approach, Deza and Pournin [5] showed that §(d, k) < kd — [2d/3] — (k — 3)
for k > 3, and that 6(4,3) = 8. The determination of §(2, k) was investigated
independently in the early nineties by Thiele [8], Balog and Barany [2], and
Acketa and Zunié¢ [1]. Deza, Manoussakis, and Onn [4] showed that §(d, k) >
|(k+1)d/2] for all £ < 2d — 1 and proposed Conjecture 1.1.

Conjecture 1.1 6(d, k) < |(k+1)d/2], and 6(d, k) is achieved, up to trans-
lation, by a Minkowski sum of lattice vectors.

In Section 2, we propose a computational framework which drastically reduces
the search space for lattice (d, k)-polytopes achieving a large diameter. Ap-
plying this framework to (d, k) = (3,4) and (3,5), we determine in Section 3
that 0(3,4) =7 and 6(3,5) = 9.

Theorem 1.2 Conjecture 1.1 holds for (d,k) = (3,4) and (3,5); that is,
§(3,4) = 7 and 6(3,5) = 9, and both diameters are achieved, up to trans-
lation, by a Minkowski sum of lattice vectors.

Note that Conjecture 1.1 holds for all known values of §(d, k) given in Ta-
ble 1, and hypothesizes, in particular, that d(d,3) = 2d. The new entries
corresponding to (d, k) = (3,4) and (3,5) are entered in bold.
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k
p 1 2 3 4 5 6 7 8 9 10
1 1 1 1 1 1 1 1 1 1 1
2 2 3 4 4 5 6 6 7 8 8
3 3 4 6 7 9
4 4 6 8
d d 1%
Table 1

The largest possible diameter §(d, k) of a lattice (d, k)-polytope
2 Theoretical and Computational Framework

Since 6(2, k) and 0(d, 2) are known, we consider in the remainder of the paper
that d > 3 and k£ > 3. While the number of lattice (d, k)-lattice polytopes
is finite, a brute force search is typically intractable, even for small instances.
Theorem 2.1, which recalls conditions established in [5], allows to drastically
reduce the search space.

Theorem 2.1 For d > 3, let d(u,v) denote the distance between two vertices
u and v in the edge-graph of a lattice (d, k)-polytope P such that d(u,v) =
5(d, k). Fori=1,...,d, let F?, respectively FF, denote the intersection of P
with the facet of the cube [0, k] corresponding to x; = 0, respectively x; = k.
Then, d(u,v) < §(d—1,k) +k, and the following conditions are necessary for
the inequality to hold with equality:

(1) u+v=_(kk,... k),
(2) any edge of P with uw or v as a vertex is {—1,0, 1}-valued,

(3) fori=1,...,d, F?, respectively FF, is a (d—1)-dimensional face of P with
diameter 5(F?) = 6(d — 1, k), respectively 6(FF) = 5(d — 1, k).

Thus, to show that d(d, k) < 6(d— 1, k) + k, it is enough to show that there is
no lattice (d, k)-polytope admitting a pair of vertices (u, v) such that d(u,v) =
d(d, k) and the conditions (1), (2), and (3) are satisfied. The computational
framework to determine, given (d, k), whether 6(d, k) = 6(d — 1,k) + k is
outlined below and illustrated for (d, k) = (3,4) or (3,5).
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Algorithm to determine whether §(d, k) < d(d —1,k) + k

Step 1: INITIALIZATION

Determine the set Fj_y, of all the lattice (d — 1,k)-polytopes P such that
d(P) =40(d—1,k). For example, for (d,k) = (3,4), the determination of all
the 335 lattice (2,4)-polygons P such that 6(P) = 4 is straightforward.

Step 2: SYMMETRIES

Consider, up to the symmetries of the cube [0,k]¢, the possible entries for
a pair of vertices (u,v) such that w+ v = {k,k,...,k}. For example, for
(d, k) = (3,4), the following 9 vertices cover all possibilities for u up to sym-
metry: (0,0,0), (0,0,1), (0,0,2), (0,1,1), (0,1,2), (0,2,2), (1,1,1), (1,1,2),
and (1,2,2), where v = (4,4,4) — u. The set F; |, can be used to further
reduce the search space. For example, for (d,k) = (3,4), one can check that
the points (1,2) and (2,2) belong to any element of F3,. Thus, the points
(1,1,2) and (1,2,2) can be ruled out from the possible entries for u.

Step 3: SHELLING

For each of the possible pairs (u,v) determined during Step 2, consider all
possible ways for 2d elements of the set F;_, . determined during Step 1 to
form the 2d facets of P lying on a facet of the cube [0,k]¢. For example, for
(d,k) = (3,4) and v = (0,0,0), we must find 6 elements of F3 4, 3 with (0,0)
as a vertex, and 3 with (4,4) as a vertex. In addition, if an edge of an ele-
ment of Fj 1, with u or v as vertex is not {—1,0,1}-valued, this element is
disregarded.

Note that since the choice of an element of Fj ,, defines the vertices of P
belonging to a facet of the cube [0, k]¢, the choice for the next element of Fi_14
to form a shelling is significantly restricted. In addition, if the set of vertices
and edges belonging to the current elements of Fj_, . considered for a shelling
includes a path from u to v of length at most 6(d—1,k)+k—1, a shortcut be-
tween u and v exists and the last added elements of F;_,, can be disregarded.
A shortcut between u and v may be found using variants of Theorem 2.1 even
if u and v are not connected by the set of current edges.

Step 4. INNER POINTS

For each choice of 2d elements of Fj_q, forming a shelling obtained dur-
ing Step 3, consider the {1,2, ...,k — 1}-valued points not in the convex hull
of the vertices of the 2d elements of Fj_,, forming a shelling. Each such
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{1,2,...,k — 1}-valued point is considered as a potential vertex of P in a bi-
nary tree. If the current set of edges includes a path from u to v of length at
most 0(d—1,k)+k—1, a shortcut between u and v exists and the corresponding
node of the binary tree can be disregarded, and the the binary tree is pruned
at this node.

A convex hull and diameter computation are performed for each node of the
obtained binary tree. If there is a node yielding a diameter of 6(d — 1,k) + k
we can conclude that §(d, k) = d(d — 1,k) + k. Otherwise, we can conclude
that §(d, k) < 6(d — 1,k) + k. For example, for (d,k) = (3,5), no choice of 6
elements of F; 5 forming a shelling such that d(u,v) > 10 exist, and thus Step
4 18 not executed.

3 Computational Results

For (d,k) = (3,4), shellings exist for which path lengths are not decidable
by the algorithm without convex hull computations. However, none of these
shellings achieves a diameter of at least 8. For (d,k) = (3,5) the algorithm
stops at Step 3, as there is no combination of 6 elements of 3 5 which form a
shelling such that d(u,v) > §(2,5)+5. A shortcut from u to v is typically found
early on in the shelling, which leads to the algorithm terminating quickly.
Consequently, 6(3,4) < 8 and 4(3,5) < 10. Since the Minkowski sum of
(1,0,0), (0,1,0), (0,0,1), (0,1,1), (1,0,1), (1,1,0), and (1,1, 1) forms a lattice
(3,4)-polytope with diameter 7, we conclude that §(3,4) = 7. Similarly, since
the Minkowski sum of (1,0,0), (0,1,0), (0,0,1), (0,1,1), (1,0,1), (1,1,0),
(0,1,-1), (1,0,—1), and (1,—1,0) forms, up to translation, a lattice (3,5)-
polytope with diameter 9, we conclude that §(3,5) = 9. Computations for
additional values of §(d, k) are currently underway. In particular, the same
algorithm may determine whether §(d, k) = 6(d—1,k)+kor 6(d—1,k)+k—1
for (d, k) = (5,3) and (4, 4) provided the set of all lattice (d — 1, k)-polytopes
achieving 6(d — 1, k) is determined for (d, k) = (5,3) and (4,4). Similarly, the
algorithm could be adapted to determine whether 6(d, k) < §(d—1,k)+k—1
provided the set of all lattice (d — 1, k)-polytopes achieving §(d—1, k) or 6(d—
1,k) — 1 is determined. For example, the adapted algorithm may determine
whether 6(3,6) = 10.
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