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Abstract

A lattice (d, k)-polytope is the convex hull of a set of points in dimension d whose
coordinates are integers between 0 and k. Let δ(d, k) be the largest diameter over all
lattice (d, k)-polytopes. We develop a computational framework to determine δ(d, k)
for small instances. We show that δ(3, 4) = 7 and δ(3, 5) = 9; that is, we verify for
(d, k) = (3, 4) and (3, 5) the conjecture whereby δ(d, k) is at most �(k+ 1)d/2� and
is achieved, up to translation, by a Minkowski sum of lattice vectors.
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1 Introduction

Finding a good bound on the maximal edge-diameter of a polytope in terms
of its dimension and the number of its facets is not only a natural question of
discrete geometry, but also historically closely connected with the theory of
the simplex method, as the diameter is a lower bound for the number of pivots
required in the worst case. Considering bounded polytopes whose vertices are
rational-valued, we investigate a similar question where the number of facets
is replaced by the grid embedding size.

The convex hull of integer-valued points is called a lattice polytope and
if all the vertices are drawn from {0, 1, . . . , k}d, it is referred to as a lattice
(d, k)-polytope. Let δ(d, k) be the largest edge-diameter over all lattice (d, k)-
polytopes. Naddef [7] showed in 1989 that δ(d, 1) = d, Kleinschmidt and
Onn [6] generalized this result in 1992 showing that δ(d, k) ≤ kd. In 2016,
Del Pia and Michini [3] strengthened the upper bound to δ(d, k) ≤ kd−�d/2�
for k ≥ 2, and showed that δ(d, 2) = �3d/2�. Pursuing Del Pia and Michini’s
approach, Deza and Pournin [5] showed that δ(d, k) ≤ kd− �2d/3� − (k − 3)
for k ≥ 3, and that δ(4, 3) = 8. The determination of δ(2, k) was investigated
independently in the early nineties by Thiele [8], Balog and Bárány [2], and
Acketa and Žunić [1]. Deza, Manoussakis, and Onn [4] showed that δ(d, k) ≥
�(k + 1)d/2� for all k ≤ 2d− 1 and proposed Conjecture 1.1.

Conjecture 1.1 δ(d, k) ≤ �(k + 1)d/2�, and δ(d, k) is achieved, up to trans-
lation, by a Minkowski sum of lattice vectors.

In Section 2, we propose a computational framework which drastically reduces
the search space for lattice (d, k)-polytopes achieving a large diameter. Ap-
plying this framework to (d, k) = (3, 4) and (3, 5), we determine in Section 3
that δ(3, 4) = 7 and δ(3, 5) = 9.

Theorem 1.2 Conjecture 1.1 holds for (d, k) = (3, 4) and (3, 5); that is,
δ(3, 4) = 7 and δ(3, 5) = 9, and both diameters are achieved, up to trans-
lation, by a Minkowski sum of lattice vectors.

Note that Conjecture 1.1 holds for all known values of δ(d, k) given in Ta-
ble 1, and hypothesizes, in particular, that δ(d, 3) = 2d. The new entries
corresponding to (d, k) = (3, 4) and (3, 5) are entered in bold.
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d

k
1 2 3 4 5 6 7 8 9 10

1 1 1 1 1 1 1 1 1 1 1

2 2 3 4 4 5 6 6 7 8 8

3 3 4 6 7 9

4 4 6 8

...
...

...

d d �3d
2
�

Table 1
The largest possible diameter δ(d, k) of a lattice (d, k)-polytope

2 Theoretical and Computational Framework

Since δ(2, k) and δ(d, 2) are known, we consider in the remainder of the paper
that d ≥ 3 and k ≥ 3. While the number of lattice (d, k)-lattice polytopes
is finite, a brute force search is typically intractable, even for small instances.
Theorem 2.1, which recalls conditions established in [5], allows to drastically
reduce the search space.

Theorem 2.1 For d ≥ 3, let d(u, v) denote the distance between two vertices
u and v in the edge-graph of a lattice (d, k)-polytope P such that d(u, v) =
δ(d, k). For i = 1, . . . , d, let F 0

i , respectively F k
i , denote the intersection of P

with the facet of the cube [0, k]d corresponding to xi = 0, respectively xi = k.
Then, d(u, v) ≤ δ(d− 1, k) + k, and the following conditions are necessary for
the inequality to hold with equality:

(1) u+ v = (k, k, . . . , k),

(2) any edge of P with u or v as a vertex is {−1, 0, 1}-valued,
(3) for i = 1, . . . , d, F 0

i , respectively F k
i , is a (d−1)-dimensional face of P with

diameter δ(F 0
i ) = δ(d− 1, k), respectively δ(F k

i ) = δ(d− 1, k).

Thus, to show that δ(d, k) < δ(d− 1, k)+ k, it is enough to show that there is
no lattice (d, k)-polytope admitting a pair of vertices (u, v) such that d(u, v) =
δ(d, k) and the conditions (1), (2), and (3) are satisfied. The computational
framework to determine, given (d, k), whether δ(d, k) = δ(d − 1, k) + k is
outlined below and illustrated for (d, k) = (3, 4) or (3, 5).
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Algorithm to determine whether δ(d, k) < δ(d− 1, k) + k

Step 1: Initialization

Determine the set F∗
d−1,k of all the lattice (d − 1, k)-polytopes P such that

δ(P ) = δ(d − 1, k). For example, for (d, k) = (3, 4), the determination of all
the 335 lattice (2, 4)-polygons P such that δ(P ) = 4 is straightforward.

Step 2: Symmetries

Consider, up to the symmetries of the cube [0, k]d, the possible entries for
a pair of vertices (u, v) such that u + v = {k, k, . . . , k}. For example, for
(d, k) = (3, 4), the following 9 vertices cover all possibilities for u up to sym-
metry: (0, 0, 0), (0, 0, 1), (0, 0, 2), (0, 1, 1), (0, 1, 2), (0, 2, 2), (1, 1, 1), (1, 1, 2),
and (1, 2, 2), where v = (4, 4, 4) − u. The set F∗d−1,k can be used to further
reduce the search space. For example, for (d, k) = (3, 4), one can check that
the points (1, 2) and (2, 2) belong to any element of F∗

2,4. Thus, the points
(1, 1, 2) and (1, 2, 2) can be ruled out from the possible entries for u.

Step 3: Shelling

For each of the possible pairs (u, v) determined during Step 2, consider all
possible ways for 2d elements of the set F∗

d−1,k determined during Step 1 to

form the 2d facets of P lying on a facet of the cube [0, k]d. For example, for
(d, k) = (3, 4) and u = (0, 0, 0), we must find 6 elements of F∗

2,4, 3 with (0, 0)
as a vertex, and 3 with (4, 4) as a vertex. In addition, if an edge of an ele-
ment of F∗

d−1,k with u or v as vertex is not {−1, 0, 1}-valued, this element is
disregarded.

Note that since the choice of an element of F∗
d−1,k defines the vertices of P

belonging to a facet of the cube [0, k]d, the choice for the next element of F∗
d−1,k

to form a shelling is significantly restricted. In addition, if the set of vertices
and edges belonging to the current elements of F∗

d−1,k considered for a shelling
includes a path from u to v of length at most δ(d−1, k)+k−1, a shortcut be-
tween u and v exists and the last added elements of F∗

d−1,k can be disregarded.
A shortcut between u and v may be found using variants of Theorem 2.1 even
if u and v are not connected by the set of current edges.

Step 4. Inner points

For each choice of 2d elements of F∗
d−1,k forming a shelling obtained dur-

ing Step 3, consider the {1, 2, . . . , k − 1}-valued points not in the convex hull
of the vertices of the 2d elements of F∗

d−1,k forming a shelling. Each such
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{1, 2, . . . , k − 1}-valued point is considered as a potential vertex of P in a bi-
nary tree. If the current set of edges includes a path from u to v of length at
most δ(d−1, k)+k−1, a shortcut between u and v exists and the corresponding
node of the binary tree can be disregarded, and the the binary tree is pruned
at this node.

A convex hull and diameter computation are performed for each node of the
obtained binary tree. If there is a node yielding a diameter of δ(d− 1, k) + k
we can conclude that δ(d, k) = δ(d − 1, k) + k. Otherwise, we can conclude
that δ(d, k) < δ(d− 1, k) + k. For example, for (d, k) = (3, 5), no choice of 6
elements of F∗2,5 forming a shelling such that d(u, v) ≥ 10 exist, and thus Step
4 is not executed.

3 Computational Results

For (d, k) = (3, 4), shellings exist for which path lengths are not decidable
by the algorithm without convex hull computations. However, none of these
shellings achieves a diameter of at least 8. For (d, k) = (3, 5) the algorithm
stops at Step 3, as there is no combination of 6 elements of F∗

2,5 which form a
shelling such that d(u, v) ≥ δ(2, 5)+5. A shortcut from u to v is typically found
early on in the shelling, which leads to the algorithm terminating quickly.
Consequently, δ(3, 4) < 8 and δ(3, 5) < 10. Since the Minkowski sum of
(1, 0, 0), (0, 1, 0), (0, 0, 1), (0, 1, 1), (1, 0, 1), (1, 1, 0), and (1, 1, 1) forms a lattice
(3, 4)-polytope with diameter 7, we conclude that δ(3, 4) = 7. Similarly, since
the Minkowski sum of (1, 0, 0), (0, 1, 0), (0, 0, 1), (0, 1, 1), (1, 0, 1), (1, 1, 0),
(0, 1,−1), (1, 0,−1), and (1,−1, 0) forms, up to translation, a lattice (3, 5)-
polytope with diameter 9, we conclude that δ(3, 5) = 9. Computations for
additional values of δ(d, k) are currently underway. In particular, the same
algorithm may determine whether δ(d, k) = δ(d−1, k)+k or δ(d−1, k)+k−1
for (d, k) = (5, 3) and (4, 4) provided the set of all lattice (d− 1, k)-polytopes
achieving δ(d− 1, k) is determined for (d, k) = (5, 3) and (4, 4). Similarly, the
algorithm could be adapted to determine whether δ(d, k) < δ(d− 1, k)+ k− 1
provided the set of all lattice (d−1, k)-polytopes achieving δ(d−1, k) or δ(d−
1, k) − 1 is determined. For example, the adapted algorithm may determine
whether δ(3, 6) = 10.
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