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Abstract. We give a lower bound for the number of vertices of a general d-dimensional polytope 
with a given number ra of/-faces for each i = 0 .... , [d/2j - 1. The tightness of those bounds is 
proved using McMullen's conditions. For rn greater than a small constant, those lower bounds are 
attained by simplicial i-neighbourly polytopes. 

Mathematics Subject Classifications (1991): 52B05, 52B 11. 

1. M a i n  T h e o r e m  

Convex polytopes are the d-dimensional analogues of 2-dimensional convex poly- 
gones and 3-dimensional convex polyhedra. A polytope is a bounded convex set 
in R d that is the intersection of a finite number of closed halfspaces. The faces of a 
polytope are its intersections with supporting hyperplanes. The/-dimensional faces 
are called the i-faces and f i ( P )  denotes the number of i-faces of a polytope P; the 
d-tuple ( fo(P) ,  f l ( P ) ,  . . . ,  f d - l ( P ) ) i s  called the f-vector of P. In particular, 0- 
faces, 1-faces and ( d -  1)-faces are respectively called vertices, edges and facets of 
a d-dimensional polytope. One of the most important question in the combinatorial 
theory of convex polytopes is the determination of the largest and the smallest 
number of/-faces of a d-dimensional polytope with a given number of k-faces. 
Moreover, it is also interesting to find out which class of polytopes attains these 
bounds. General references to the topics discussed in our paper are [5], [6], [9]. In 
this section we first recall McMullen's upper bound theorem and Barnette's lower 
bound theorem for simplicial polytopes. Then we present our lower bounds for 
general convex polytopes. 

The upper bound theorem was conjectured by Motzkin [10] in 1957 and proved 
by McMullen [7] in 1970. In order to state this theorem, we define for i >_ 0: 

j=O 
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1) 
+ - -  d - i - 1  j ' 

j=o 
(1) 

where d' = [d/21 and d" = [(d - 1)/2J. Note that d = d' + d" + 1. 
We also recall that, with k a nonnegative integer, a polytope P is k-neighbourIy 

if every k-subset of  the set of vertices of P is the vertex set of a proper face of P.  
A [d/2J-neighboufly polytope is simply called a neighbourly polytope. 

With those notations the upper bound theorem can be stated as follows: 

THEOREM 1.1 [7]. For any d-dimensional polyope P with m vertices we have: 

f i (P)  < ud(m) for i = O , . . . , d - 1 .  

Furthermore, if P is a neighbourly simplicial polytope, then 

f i (P)  = u~(m) for i = O , . . . , d - 1 .  

Remark 1.2. Some calculation shows that: 

ud(m)=  i + l  f o r i = 0 , . . . , d ' - l .  

The lower bound theorem was proved by Barnette [1], [2] in 1971-1973. As 
for the upper bound theorem, we first need to define: 

= d + 1 
m -  i + l  i i f i = O , . . . , d - 2 .  

With this notation the lower bound theorem can be stated as follows: 

THEOREM 1.3 ([1], [2]). For any simplicial d-dimensional polytope P with ra 
vertices we have: 

f i (P)  >_ ~d(rn) for i = 0 , . . . , d -  1. 

Furthermore, there are simplicial polytopes P with m vertices such that 

f i (P)  = ~ ( m )  for i = O , . . . , d - 1 .  

While the upper bound theorem is valid for general convex polytopes, the lower 
bound theorem holds only for simplicial polytopes. In the next theorem we present 
lower bounds valid for general polytopes. 
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First we define for i = 0 , . . . ,  ~d/2l - 1 the following step functions l~(m) by 
the relation: 

l ~ ( r a ) = k  if and only if ( k - l )  ( k ) 
i + 1  < m <  i + 1  " 

Those functions are a sort of inverse functions of u~(m). Moreover, we see in 
Section 4 that one can easily prove that l~(m) is a lower bound for the number of 
vertices of a polytope with m/-faces .  The following theorem actually establishes 
the tightness of l~(ra) and characterizes the class of polytopes which attain those 
lower bounds. 

THEOREM 1.4. For any d-dimensional polytope P with ra i-faces we have: 

fo(P) >_ l~(ra) for i = 0 , . . . ,  [d/ZJ - 1. 

Furthermore, for m greater than a small constant cai, there are simplicial i- 
neighbourly polytopes P with ra i-faces such that: 

fo(P) = l~i(m) for i = 0 , . . . ,  Ld/2J - 1. 

Remark 1.5. One can easily check that: 

(i) for each i = 0 , . . . ,  Ld/2J - 1, for d fixed, l~(m) is O(i+lv/-m), 

(ii) c~ = 3 / 2 ( d -  1 ) ( 2 d -  1). 

Before giving a complete proof of Theorem 1.4 in Section 3, we first recall in 
Section 2 the characterization of f-vector for simplicial polytopes. This character- 
ization is used to prove the tightness of those lower bounds for general polytopes. 

2. Characterization of the f-Vector of a Simplicial Polytope 

In this section we present a characterization of the f-vector of a simplicial poly- 
tope. This characterization, called McMullen's conditions, was conjectured by 
McMullen [8] in 1971. The sufficiency of the conditions was proved by Billera and 
Lee [3], [4] in 1980-1981; the necessity was established by Stanley [11] in 1980. 

For a d-tuple f = (f0, f l , . . . ,  f d - l )  of positive integers, we define the associ- 
ated g-vector as: 

gj = 
j - 1  

k = - I  

f o r j  = 0 , . . . , d +  1, 

with the conventions f-1 = 1 and fd = 0. 
Some calculation [9] shows that 

j + l  

d - j  9k f o r j  = O , . . . , d -  1. 
h=O 

(2) 
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For positive integers h and i, there exist uniquely determined positive integers 
r0, r l , . . . ,  rq with q < i such that 

h = ( 7"0 1"1 • • rq ) • 
i ) + ( i - 1 )  +"  + ( i - q  

This representation is called the i-canonical representation of h. The i-canonical 
representation of 0 is 0. 

Then, f o r j  > i, h (j[i) is defined by: 

h(Jli) = (ro+j. - i )  + ( r l + j - i  3 j - 1  ) + " ' +  ( r q / 3 q i )  " 

We also recall that d' = [d/2J and d" = /(d - 1)/2J. 

THEOREM 2.1 ([3], [4], [11]).A d-tuple f = (f0, f l , .  • . ,  fd-1) ofpositive integers 
is the f-vector of a simplicial polytope if and only if the associated g-vector satisfies 
the following three conditions: 

(Cl) gj =--gd-j+l 
(c2) gj _> o 

(C3) ffj ~ gJJ_l~ -1) 

f o r j  = 0 , . . . , d "  + 1, 

for j = 1 , . . . , d ' a n d  go = 1, 

for j = 2,.. . ,d'.  

Remark 2.2. For a simplicial i-neighbourly polytope P,  the dimension d and 
the number of vertices fo(P) are sufficient to determine the first i terms of the 
f-vector of P;  moreover, for k = 0 , . . . ,  i - 1 we have: 

f k (P)= k + l  " 

Restating this in term of gk, we can say that for a simplicial i-neighboudy 
polytope, the first i terms of the g-vector: gl, . . . ,  gi are fully determined by the 
dimension d and gl. Moreover, some calculation shows that 

gk(P) = ( g l + k - 1 )  f o r k = l ,  i. 
k . . . ,  

3. Lower Bound for the Number  of  Vertices of  a Convex Polytope 
with m i-faces 

This section is devoted to the proof of Theorem 1.4. First we explain why we chose 
l~(m) as a candidate to be the lower bound for the number of vertices for a convex 
polytope with m/-faces .  Then we introduce a family of i-neighbourly simplicial 
polytopes. Finally, using this family, we prove the tightness of l~(m). 
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First, using Theorem 1.1 and Remark 1.2, we get the upper bound for the number 
m of/-faces of a d-dimensional polytope P with f0 vertices: 

( f0 ) f o r i = O ,  d' 1. (3) m ~  i + l  " ' "  - 

This last inequality led us to define ld(m) as the step function presented in 
Section 2. Indeed, inequality (3) implies that a polytope, with ra/-faces, such as 

m >  i + 1  ' 

has necessarily at least f0 + 1 vertices. Therefore, with fo(P) denoting the number 
of vertices of a d-dimensional polytope P with m/-faces,  we have: 

fo(P) >_Id(m) f o r i = 0 , . . . , d ' - l ,  

which means that Id(ra) is a lower bound for the number of vertices of a polytope 
with ra/-faces.  Now, we have to prove that this lower bound is attained. First, 
we recall that (3) is satisfied with equality if P is a neighbourly polytope with f0 
vertices, i.e. for 

( f° ) fo>d+l 
m =  i + 1  ' - " 

Therefore the lower bound Id(m) is attained for 

m =  i + 1  

by neighbourly polytopes with f0 vertices since, obviously, 

f0 

In other words, l{(m) is a tight lower bound for 

(( so )) 
m =  i + 1  ' f ° > - d + l "  

Our objective is to prove the tightness of this lower bound for other values of 
m, i.e. for 

i + 1  < r a <  i + 1  
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with f0 > d + 2. In order to do so we introduce a family of polytopes with suitable 
properties. 

For each i = 0 , . . . ,  d' - 1, we consider a d-tuple f = (f0, f l , . . . ,  fd-1) such 
that the associated g-vector g = (go, . . . ,  gd+l) satisfies the following conditions: 

(ai)  

(~) gJ = ( g1+ 4 

(a~) g i+ , - -  ( g l : l ~ ) - - ~ 5  

gj = 0 

fo r j  = O , . . . , d " +  1, 

fo r j  = O, . . . , i ,  withgl >__ O, 

with iS E {0, 1 , . . . ,  ( g l : l i )  } ,  

f o r / +  1 < j  < d ' +  1. 

We recall that the associated g-vector is given by: 

gj = Z ( - 1 ) j - k - 1  d - j +  1 fk 
k=-i  

fo r j  = O , . . . , d +  1, 

with the conventions f-1 = 1 and fd = O. 

LEMMA 3.1. For each i = 0 , . . . ,  d ~ - 1, a d-tuple f such that the associated 
g-vector satisfies conditions (a]), (a~), (a~) and (a D is the f-vector of a simplicial 
polytope. 

Proof. To prove it we just need to check the McMullen's conditions present- 
ed in Section 3 are satisfied. (Cl), respectively (c2), obviously holds using (a]), 
respectively (a~), (a~) and (a~). To check (c3), we first have to calculate the ( j  - 1)- 
canonical representation of gj-1 for j = 2 . . . ,  d'. Using (a~) we have: 

g J - l = ( g l - f  j - 2  ) "  1 for j = 2, ...  , i + 1 ,  

then the (j  - 1 )-canonical representation of gj_ 1 is obviously 

( g l ~ j - 2 ) = ( g l ~ j - 2 ) .  1 " 1 f o r j = 2 , . . . , i + l ,  

that is, 

f ' ~ { g l + j - 1 ]  f o r j = 2 ,  i + l ,  (jlj-1) 
gj-1 = k " '"  

thus 

g(Jlj-1) j-1 = gj f o r j = 2 , . . . , i .  (4) 
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(4) implies that (C3) holds for j = 2 , . . . ,  i. As (a~) implies that (C3) holds for 
j = i + 2 , . . . ,  £ ,  to complete the proof we have to check that (c3) holds for 
j = i + 1. Using (4) we notice that (at) can be read as: 

gi+l ~_ g!i+lli)~ 

which is the desired inequality and completes the proof. [] 

The next lemma give us more details about the f-vector of a simplicial polytope 
such that the associated g-vector satisfies conditions (ai), (a~), (a~) and (a~). 

LEMMA 3.2. For each i = 0 , . . . , , d  ~ - 1, let P[ be a polytope of the class 
of simplicial polytopes such that the associated g-vector satisfies the conditions 
(ai), (a~), (a~) and (a~); we have: 

(i) Pi 5 is an i-neighbourly polytope with gl + d + 1 vertices. 

(ii) P ~ h a s ( g l + d +  l )  - 5 i + 1  i-faces. 

Proof Since gj for j = 0 , . . . ,  d + 1 are given by (ai), (a~), (at) and (aD; we 
are able to calculate the f-vector of P{ using (2). If we set j = 0 in (2), we have 

fo(P~) = d + 1 + 91, 

thus P[ has gl + d + 1 vertices. 
Then, to determine the degree of neighbourliness of P[ ,  using Remark 2.2, we 

notice that (at) means that P[ has the same gk as a simplicial neighboufly polytope 
for k = 0 , . . . ,  i. Now, using (2), we remark that for j = 0 , . . . ,  i - 1, fj depends 
only on gk for k = 0 , . . .  , j  + 1. This implies that the f j  (P[ )  are the same as for a 
neighbourly polytope with gl + d + 1 vertices f o r j  = 0 , . . . ,  i - 1, which means 
that P [  is an i-neighbourly polytope and completes the proof of part (i) of Lemma 
3.2. Moreover, using the same argument, we obtain that for each i = 0 , . . . ,  d ~ - 1, 
pO is an (i + 1)-neighbourly polytope with 91 + d + 1 vertices. 

To complete the proof of Lemma 3.2, we have to evaluate fi(P[), the number 
of/-faces of P[ .  Using (2), we have: 

i+1 

d - i gk 
k=0 

= d -  i gk + gi+~ 
k--O 

k=O 
(5) 
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Since pO is an (i + 1)-neighbourly polytope with 91 + d + 1 vertices, we have: 

fi(P~) = ( gl + d + l + l f o r , = 0 ,  

and this, together with (5), implies: 

fi(Pi~) = ( gl + d + l ) - +1 

which completes the proof of Lemma 3.2. [] 

PROOF OF THEOREM 1.4. At the beginning of this section we noticed that l~(m) 
was a lower bound for the number of vertices of a polytope with m/-faces.  Then 
we added that Idi(ra) was attained for 

m =  i + 1  

by neighboufly polytopes with fo vertices, f0 >_ d + 1. Therefore, to complete the 
proof of Theorem 1.4 we need to fill the gap between 

( I 0  - 

with polytopes having fo vertices, fo > d + 1. The candidates are, of course, P{ 
with gl = fo - d - 1. 

Lemma 3.2 implies that, for a given 91 = fo - d - 1, as ~ increases by 1 from 

0 to ( f o - d - l + i )  
i + 1  

the number of/-faces of P~, decreases by 1 from 

f0 ) t o  ( i f ° ) - (  f ° - d - l + i  +1 ) 
As P[ has f0 vertices, these numbers completely fill the gap between two 

neighbourly polytopes with fo - 1 and f0 vertices if the following inequality holds: 

) 
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Hence 

i + 1  +1_> i " 

For a given dimension d, the left-hand side is o(fio +t) while the right-hand 
side is O(f~). Therefore, for f0 greater than some constant, i.e. for m greater 
than a constant c d, the above inequality holds. In other words, l~(ra) is attained 
by i-neighbourly polytopes for m _> c d, which completes the proof of 
Theorem 1.4. [] 
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