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+ +Anniversaries
• (At 1997 ISMP) 50th of the simplex method
• 60th of Kantorovi
h's 1939 paper:\Mathemati
al Methods in theOrganization and Planning of Produ
tion"
• 50th of 0th Mathemati
al ProgrammingSymposium, Chi
ago 1949
• 45th of Fris
h's 1955 suggestion of thelogarithmi
 barrier fun
tion.
• 25th of the awarding of the 1975 NobelPrize in E
onomi
s
• 20th of Kha
hiyan's 1979 and 1980papers
• 15th of Karmarkar's 1984 paper.+ 2



+ +Quotations
• Kantorovi
h: \I want to emphasize againthat the greater part of the problems ...are 
onne
ted spe
i�
ally with the Sovietsystem of e
onomy and ... do not arise inthe e
onomy of a 
apitalist so
iety."
• Koopmans: \It has been found so far that,for any 
omputation method whi
h seemsuseful in relation to some set of data,another set of data 
an be 
onstru
tedfor whi
h that method is obviously unsat-isfa
tory."
• Dantzig: \This 
olumn geometry gave methe insight whi
h led me to believe thatthe simplex method would be an eÆ
ientsolution te
hnique. I earlier had reje
tedthe method when I viewed it in the rowgeometry be
ause running around theoutside edges seemed so unpromising."+ 3
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De
ades and S
ope

• '50s: theory, industrial app'ns,
ombinatorial app'ns;
• '60s: large-s
ale, stru
ture, quadrati
programming and 
omplementarity;
• '70s: 
omputational 
omplexity, Klee-Mintyexample.

We'll 
on
entrate on developments sin
e then:hope restored by new polynomial-timealgorithms, by results on expe
ted number ofpivots, by amazing 
omputational studies.
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+ +Two paradigms
• linear optimization over a simplex(→ edge-following,
ombinatorial geometry).
• linear optimization over a ball(→ solution by 
al
ulus,approximation of polyhedra by ellipsoids).

What are high-dimensional polyhedra like?Quartz 
rystals or dis
o balls?(See the next two slides.)
• the simplex method
• the ellipsoid method
• interior-point methods
• other methods+ 5
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(Thanks to Jay S
homer: image fromhttp://www.hal
yon.
om/nemain/gallery/gallery.html)
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(Copyright 2000, 1999, eHow, In
. Fromhttp://www.ehow.
om/eHow/eHow/0,1053,4570,00.html)
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An interesting time warpPaper by Ho�man, Mannos, Sokolowsky, andWiegmann (1953): 
omparison of three meth-ods (�
titious play, relaxation, and primal sim-plex) on LPs from symmetri
 games (of size5× 5 up to 10× 10). Simplex won, and 
ouldsolve large-s
ale problems of size about 50 ×100!Talk by Bixby on solving large MIPs (and LPs):
omparison of three methods (primal and dualsimplex, and barrier) on LPs, with results foran LP of size 49,944 × 177,628. The dualsimplex method was the winner.
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Problems and NotationPrimal problem:min{cTx : Ax = b, x ≥ 0},with A an m × n matrix of rank m.
Dual problem:max{bTy : ATy ≤ c}.

Also s := s(y) := c − ATy, d := n − m.
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The Simplex MethodRemarkable fa
t:the (primal) simplex method typi
ally requiresat most 2m to 3m pivots to attain optimality.Mentioned by Ho�man et al. (1953);numeri
al eviden
e through '50s and '60s.More re
ently: Bixby (1991) on 90 Netlibproblems gives a ratio of pivots to row sizeof < 3 on 72, between 3 and 7 for 16, and 10to 470 on 3. Bixby (1994) on 8 large prob-lems has < 2 on 3, 4 to 9 on 4, and 18 onthe last.Chosen to be nasty!Why?
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DiameterLet �(d, n) denote the largest diameter of a
d-polyhedron with n fa
ets.Hirs
h 
onje
ture: �(d, n) ≤ n − d.Best bounds: �(d, n) ≤ min{2d−3n, n1+log d}.Conje
ture holds for 0-1 polytopes, dual trans-portation polyhedra, ... . Fails for unboundedpolyhedra in general, still open for polytopes.Survey by Klee and Kleins
hmidt (1987).
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Subexponential pivot rulesFound by Kalai and Matousek-Sharir-Welzl.All (thus far) randomized, with a best boundof exp(K√

d logn) for some 
onstant K.One version:
• Given a vertex v, 
hoose a fa
et F 
on-taining v at random;
• Apply the algorithm re
ursively to �nd theoptimizing vertex w in F ;
• Repeat the algorithm from w.

Survey by Kalai (1997).
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Probabilisti
 analysisHot topi
 in late '70s and '80s | mu
h lessa
tivity re
ently.Main results:Borgwardt: expe
ted number of pivots

O(m3n1/(m−1)) for a dimension-by-dimensionsimplex method for the dual problem. Ve
tors
b and aj's generated from rotationallysymmetri
 distribution, all cj's equal to 1.Adler-Megiddo, Adler-Karp-Shamir, Todd:expe
ted number of pivots O(min{d2, m2}) fora lexi
ographi
 parametri
 simplex method.Problem generated from a sign-invariant model,possibly not feasible or unbounded.Survey by Borgwardt (1986).+ 13



+ +Big fa
es, long edgesResults of Kuhn (1953, 1991) and Goemans(1995) suggest that some interesting poly-topes for 
ombinatorial optimization 
an haverelatively few big fa
ets, and many small ones.By polarity, there may be polytopes with avery large number of verti
es, but many ofthese may only be optimal for a very smallset of obje
tive fun
tions, and so \relevant"for a very small set of simplex methods.For d ≥ 4, there are neighborly polytopes,with every pair of verti
es adja
ent.For d from 3 to 11 and n = 2d and 2d+1,I generated 100 random d-polytopes with nverti
es. In many 
ases, the two maximallydistant verti
es were joined by an edge of thepolytope.These results suggest that the \quartz
rystal" model may be reasonable.+ 14
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The Ellipsoid MethodOriginally for 
onvex programming by Yudin-Nemirovski (1976) and Shor (1977) but adaptedby Kha
hiyan for LP in 1979-80.Created a whirlwind of publi
ity:\Soviet Answer to `Traveling Salesmen' "\A Russian's Solution in Math Questioned."Result: an LP with n inequalities and integraldata with bit size L 
an be solved in O(n2L)iterations, requiring O(n4L) arithmeti
al op-erations on numbers with O(L) digits (1980).

LP ∈ P !Not a pra
ti
al method, but highly useful the-oreti
ally: see Bland-Goldfarb-Todd (1981)and Gr�ots
hel-Lovasz-S
hrijver (1988).+ 15
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Traditional view and formulaeMethod: start with ellipsoid known to 
ontainsolution, then 
ut in half and en
lose in thesmallest ellipsoid: repeat!Assume we want a point in Y := {y : ATy ≤ c},with 
onstraints aT

j y ≤ cj, j = 1, ..., n.Assume Y ⊆ E0 := {y : ‖y‖ ≤ R}.Any ellipsoid 
an be written as
E(�y, B) := {y : (y − �y)TB−1(y − �y) ≤ 1}.

Start with E0 = E(y0, B0) with y0 = 0, B0 =
R2I.
+ 16



+ +Iteration k:Given Ek = E(yk, Bk) ⊇ Y ,Find j with aT
j yk > cj (if none, STOP:

yk ∈ Y );Set yk+1 := yk − τBkaj(aT
j Bkaj)12 ;

Set Bk+1 = δ

(

Bk − σ
Bkaja

T
j Bk

aT
j Bkaj

).
Here τ = 1/(m + 1), δ = m2/(m2 − 1), and
σ = 2/(m+1).This gives Ek+1 = E(yk+1, Bk+1) as theminimum volume ellipsoid 
ontaining
{y ∈ Ek : aT

j y ≤ aT
j yk}.The systemati
 volume redu
tion gives the
omplexity bound.Improved formulae for double-sided or deep
uts: same as above but with di�erentparameters.+ 17
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Alternate representationSin
e Y is assumed bounded, we 
an �ndlower bounds on ea
h aT

j y for y ∈ Y .So suppose
Y = {y : ℓ ≤ ATy ≤ c}.

Let D be a nonnegative diagonal matrix. Then
Y ⊆ �E(D, ℓ) := {y : (ATy−ℓ)TD(ATy−c) ≤ 0},and this set is an ellipsoid if ADAT isnonsingular. Note that D gives a short 
er-ti�
ate that �E(D, ℓ) 
ontains Y . From thisviewpoint, the ellipsoid method generates asequen
e Ek = �E(Dk, ℓk) of ellipsoids 
ontain-ing Y . The 
enter of Ek is yk, the solutionof

ADkATy = ADk(ℓk + c)/2.
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+ +Iteration k:Given Ek = �E(Dk, ℓk) ⊇ Y ,Find j with aT
j yk > cj (if none, STOP:

yk ∈ Y );Possibly update the jth 
omponent of theve
tor ℓk to get ℓk+1;In
rease the jth diagonal entry of the matrix
Dk to get Dk+1.Details in Burrell and Todd (1985).Shows that the quadrati
 inequality de�ningea
h ellipsoid 
an be viewed as a weightedsum of quadrati
 
onstraints ensuring thatea
h aT

j y lies in an appropriate range.Indi
ates why 
onvergen
e may be slow: ad-justing one entry at a time of the diagonalof D to minimize the volume (like 
oordinatedes
ent).+ 19



+ +Interior-Point MethodsHistory and Pre-history: Fris
h (1955),Fia

o and M
Cormi
k (1968).Modern era: Karmarkar (1984),2000 odd papers sin
e.\Breakthrough in Problem Solving,"NYT (J. Glei
k).Closely related to (non-polynomial)aÆne-s
aling method, �rst 
onsidered byI. I. Dikin, student of Kantorovi
h (1967)!Polynomial 
onvergen
e + pra
ti
alimportan
eProje
tive method: O(n3.5L) arithmeti
operations, mu
h better in pra
ti
e.Path-following, potential-redu
tion methods.Primal, dual, primal-dual.+ 20



+ +Dual path-followingThe proje
tive method used a proje
tive trans-formation at ea
h iteration to 
enter the 
ur-rent iterate. Modern methods use a lo
alnorm to make the iterate \look 
entral."Suppose �y is a stri
tly feasible solution to (D):�s := s(�y) > 0. The largest ellipsoid 
enteredat �s in the nonnegative orthant is
{s : (s − �s)T �S−2(s − �s) ≤ 1},and the 
orresponding set of y's

E := {y : (y − �y)TA�S−2AT (y − �y) ≤ 1} ⊆ Y.Now we have �y ∈ Y , and E is ins
ribed inrather than 
ir
ums
ribing Y , but otherwiseremarkably similar to �E(D, ℓ) in the ellipsoidmethod.The matrix A�S−2AT appearing in E de�nes alo
al norm at �y. Unit ball is feasible! Notethat the matrix is the Hessian at �y of thelogarithmi
 barrier fun
tion
f(y) := −

∑

j

ln(c − ATy)j.+ 21



+ +Barrier and sear
h dire
tionsThis is a spe
ial 
ase of aself-
on
ordant barrier fun
tion,introdu
ed and studied by Nesterov andNemirovski, and for these the lo
al norm hassome remarkable properties showing that theunit ball approximates the feasible region well.The steepest as
ent dire
tion for theobje
tive fun
tion is
dAFF := (A�S−2AT )−1b,while the steepest des
ent dire
tion for thebarrier fun
tion is

dCEN := −(A�S−2AT)−1A�s−1,with �s−1 the ve
tor whose 
omponents are there
ipro
als of those of �s. Sear
h dire
tions inthe dual-barrier method are linear 
ombina-tions of these two.+ 22



+ +
Iterates are maintained in some neighborhoodof the dual 
entral path, the set of stri
tlyfeasible points where these two dire
tions arediametri
ally opposed.Note that 
omputing the sear
h dire
tion re-quires the solution of a linear system with
oeÆ
ient matrix ADAT for some diagonalmatrix D, exa
tly as in the ellipsoid method,but here all 
omponents of D vary from oneiteration to the next.Primal-dual methods are the methods of 
hoi
e,with the primal \helping" the dual and vi
eversa. Similar linear systems arise.The 
omplexity of these methods is O(√nL)iterations, �rst found by Renegar. In pra
ti
e,10 { 50 iterations usually suÆ
e.
+ 23



+ +Potential-redu
tion methodsBased on redu
ing a suitable potential fun
-tion. Karmarkar used the primal fun
tion
φP (x) := n ln(cTx − z∗)−∑

j

lnxj,where z∗ is the known optimal value of (P).Constant de
rease at ea
h iteration → the
omplexity bound of O(nL) iterations.The primal-dual potential fun
tion�PD(x, y) := (n+√
n) ln(cTx − bTy)

−
∑

j

ln xj −
∑

j

ln(c − ATy)jof Tanabe and Todd-Ye 
an also be de
reasedby a 
onstant → O(√nL) iterations.Note that potential-redu
tion methods a
hievethese 
omplexities without requiring theiterates to remain 
lose to the 
entral path.The primal-dual sear
h dire
tions are similarto those for primal-dual path-followingmethods.+ 24



+ +Other Methods
• Gradient-like methods: Brown and Koop-mans (1951), Zoutendijk (1960), Lemke(1961), Rosen (1961), Chang and Murty(1989).
• Fi
titious play: Brown (1951), Brown andvon Neumann (1950), von Neumann (1947-1963, 1954).First 
omplexity result: O([m+ n℄/ǫ2).
• Relaxation: Agmon (1954), Motzkin-S
hoenberg (1954); ellipsoid method isrelated (GoÆn). SOR method of De Leoneand Mangasarian (1988) has promising re-sults.
• Ideas of 
omp. geom.: Megiddo (1984),Clarkson (1995), G�artner-Welzl (1996).+ 25



+ +The futureWhat will the next 50 (or 5?) years bring?At present there is a rough 
omputationalparity between simplex and interior-point ap-proa
hes.Will our 
ompla
en
y in the status quo beshattered by another 
omputationallye�e
tive 
lass of methods?I wouldn't bet on it in the next �ve years, butover the next ten, I'd take even odds.Big questions: does the bounded Hirs
h 
on-je
ture hold? Is there a polynomial pivot rulefor the simplex method? For interior-pointmethods, 
an we give a theoreti
al explana-tion for the di�eren
e between worst-
asebounds and observed pra
ti
al performan
e?Let us hope that the next �fty years brings asmu
h ex
itement as the last!+ 26


