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Anniversaries

(At 1997 ISMP) 50th of the simplex method

60th of Kantorovich's 1939 paper:
“Mathematical Methods in the
Organization and Planning of Production”

50th of Oth Mathematical Programming
Symposium, Chicago 1949

45th of Frisch's 1955 suggestion of the
logarithmic barrier function.

25th of the awarding of the 1975 Nobel
Prize in Economics

20th of Khachiyan's 1979 and 1980
papers

15th of Karmarkar's 1984 paper.



Quotations

e Kantorovich: "I want to emphasize again
that the greater part of the problems ...
are connected specifically with the Soviet
system of economy and ... do not arise in
the economy of a capitalist society.”

e Koopmans: “It has been found so far that,
for any computation method which seems
useful in relation to some set of data,
another set of data can be constructed
for which that method is obviously unsat-
isfactory.”

e Dantzig: “This column geometry gave me
the insight which led me to believe that
the simplex method would be an efficient
solution technique. I earlier had rejected
the method when I viewed it in the row
geometry because running around the
outside edges seemed so unpromising.”
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Decades and Scope

e '50s: theory, industrial app'ns,
combinatorial app’'ns;

e '60s: large-scale, structure, quadratic
programming and complementarity;

e '70s: computational complexity, Klee-Minty
example.

We'll concentrate on developments since then:
hope restored by new polynomial-time
algorithms, by results on expected number of
pivots, by amazing computational studies.



Two paradigms

e linear optimization over a simplex
(— edge-following,
combinatorial geometry).

e linear optimization over a ball
(— solution by calculus,
approximation of polyhedra by ellipsoids).

What are high-dimensional polyhedra like?
Quartz crystals or disco balls?
(See the next two slides.)

e the simplex method

e the ellipsoid method

e interior-point methods

e Oother methods
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(Thanks to Jay Schomer: image from
http://www.halcyon.com/nemain

/gallery/gallery.html)



(Copyright 2000, 1999, eHow, Inc. From
http://www.ehow.com/eHow/eHow/
0,1053,4570,00.html)



An interesting time warp

Paper by Hoffman, Mannos, Sokolowsky, and
Wiegmann (1953): comparison of three meth-
ods (fictitious play, relaxation, and primal sim-
plex) on LPs from symmetric games (of size
5x5 up to 10 x 10). Simplex won, and could
solve large-scale problems of size about 50 x

100!

Talk by Bixby on solving large MIPs (and LPs):
comparison of three methods (primal and dual
simplex, and barrier) on LPs, with results for
an LP of size 49,944 x 177,628. The dual
simplex method was the winner.



Problems and Notation

Primal problem:
min{cTa; : Az = b,x > 0},

with A an m X n matrix of rank m.

Dual problem:

max{bTy Ay < c}.

Also s 1= s(y) :=c— Aly, d:=n—m.



The Simplex Method

Remarkable fact:
the (primal) simplex method typically requires
at most 2m to 3m pivots to attain optimality.

Mentioned by Hoffman et al. (1953);
numerical evidence through '50s and '60s.

More recently: Bixby (1991) on 90 Netlib
problems gives a ratio of pivots to row size
of <3 on 72, between 3 and 7 for 16, and 10
to 470 on 3. Bixby (1994) on 8 large prob-
lems has < 2 on 3, 4 to 9 on 4, and 18 on
the last.

Chosen to be nasty!

Why?7?



Diameter

Let A(d,n) denote the largest diameter of a
d-polyhedron with n facets.

Hirsch conjecture: A(d,n) <n —d.
Best bounds: A(d,n) < min{2¢—3n, pltlogdl

Conjecture holds for O-1 polytopes, dual trans-
portation polyhedra, ... . Fails for unbounded
polyhedra in general, still open for polytopes.

Survey by Klee and Kleinschmidt (1987).



Subexponential pivot rules

Found by Kalai and Matousek-Sharir-Welzl.
All (thus far) randomized, with a best bound
of exp(K+/dlogn) for some constant K.

One version:

e Given a vertex v, choose a facet F' con-
taining v at random;

e Apply the algorithm recursively to find the
optimizing vertex w in F';

e Repeat the algorithm from w.

Survey by Kalai (1997).
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Probabilistic analysis

Hot topic in late '70s and '80s — much less
activity recently.

Main results:

Borgwardt: expected number of pivots
O(m3nl/(m=1)) for a dimension-by-dimension
simplex method for the dual problem. Vectors
b and a;'s generated from rotationally
symmetric distribution, all cj’S equal to 1.

Adler-Megiddo, Adler-Karp-Shamir, Todd:
expected number of pivots O(min{d?, m?}) for
a lexicographic parametric simplex method.
Problem generated from a sign-invariant model,
possibly not feasible or unbounded.

Survey by Borgwardt (1986).
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Big faces, long edges

Results of Kuhn (1953, 1991) and Goemans
(1995) suggest that some interesting poly-
topes for combinatorial optimization can have
relatively few big facets, and many small ones.
By polarity, there may be polytopes with a
very large number of vertices, but many of
these may only be optimal for a very small
set of objective functions, and so ‘“relevant”
for a very small set of simplex methods.

For d > 4, there are neighborly polytopes,
with every pair of vertices adjacent.

For d from 3 to 11 and n = 29 and 24t1
I generated 100 random d-polytopes with n
vertices. In many cases, the two maximally
distant vertices were joined by an edge of the
polytope.

These results suggest that the “quartz
crystal” model may be reasonable.
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The Ellipsoid Method

Originally for convex programming by Yudin-
Nemirovski (1976) and Shor (1977) but adapted
by Khachiyan for LP in 1979-80.

Created a whirlwind of publicity:
“Soviet Answer to ‘Traveling Salesmen
“A Russian’s Solution in Math Questioned.”

1 n

Result: an LP with n inequalities and integral
data with bit size L can be solved in O(n?L)
iterations, requiring O(n*L) arithmetical op-
erations on numbers with O(L) digits (1980).

LP e P!

Not a practical method, but highly useful the-
oretically: see Bland-Goldfarb-Todd (1981)
and Grotschel-Lovasz-Schrijver (1988).
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Traditional view and formulae
Method: start with ellipsoid known to contain
solution, then cut in half and enclose in the

smallest ellipsoid: repeat!

Assume we want a pointin Y := {y : Aly < ¢},
with constraints aJTy <eci,j=1,..n.

Assume Y C Eg :={y: ||ly|]| £ R}.
Any ellipsoid can be written as

E(,B) ={y: w—-N'By-7) <1}.

Start with EO = E(yO,BO) with Yo = O, BO =
R?].



+ +

Iteration k:
Given Ep, = E(yy, B) 2Y,

Find j with a]Tyk > ¢; (if none, STOP:
yr €Y);
TBkaj

1
(a?Bkaj) 2

Set yr4+1 = Yk —

Here 7 = 1/(m + 1), § = m?/(m? — 1), and
o=2/(m-+1).

This gives Ek—l—l = E(yk—l—laBk-I—l) as the
minimum volume ellipsoid containing

{y € By :ajy<ajy}.

The systematic volume reduction gives the
complexity bound.

Improved formulae for double-sided or deep
cuts: same as above but with different
parameters.
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Alternate representation

Since Y is assumed bounded, we can find
lower bounds on each a]Ty for y €Y.
SO suppose

Y ={y:¢< ATy <}

Let D be a nonnegative diagonal matrix. Then
Y C E(D,0) :=={y: (ATy—0)" D(A"y—c) < 0},

and this set is an ellipsoid if ADA? is
nonsingular. Note that D gives a short cer-
tificate that E(D,¢) contains Y. From this
viewpoint, the ellipsoid method generates a
sequence E, = E(Dy,¥;) of ellipsoids contain-
ing Y. The center of E, is y,, the solution
of

AD ATy = ADL(4), + ¢) /2.



+ +

Iteration k:
Given Ek = E(Dk,gk) DY,

Find j with a]Tyk > ¢; (if none, STOP:
yr €Y);

Possibly update the jth component of the
vector £ to get {4 q;

Increase the jth diagonal entry of the matrix
Dk to get Dk-l—l-

Details in Burrell and Todd (1985).

Shows that the quadratic inequality defining
each ellipsoid can be viewed as a weighted
sum of quadratic constraints ensuring that
each aJTy lies in an appropriate range.

Indicates why convergence may be slow: ad-
justing one entry at a time of the diagonal
of D to minimize the volume (like coordinate
descent).
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Interior-Point Methods

History and Pre-history: Frisch (1955),
Fiacco and McCormick (1968).

Modern era: Karmarkar (1984),

2000 odd papers since.

“Breakthrough in Problem Solving,”

NYT (J. Gleick).

Closely related to (non-polynomial)
affine-scaling method, first considered by
I. I. Dikin, student of Kantorovich (1967)!

Polynomial convergence + practical
importance

Projective method: O(n3-°L) arithmetic
operations, much better in practice.

Path-following, potential-reduction methods.
Primal, dual, primal-dual.
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Dual path-following

The projective method used a projective trans-
formation at each iteration to center the cur-
rent iterate. Modern methods use a local
norm to make the iterate “look central.”

Suppose gy is a strictly feasible solution to (D):

s := s(y) > 0. The largest ellipsoid centered

at s in the nonnegative orthant is
{s:(s—5)1582%(s—5) <1},

and the corresponding set of y’'s
E:={y:(y—)'AS AT (y—y) <1} CY
Now we have y € Y, and E is inscribed in
rather than circumscribing Y, but otherwise

remarkably similar to E(D,?¢) in the ellipsoid
method.

The matrix AS—2A71 appearing in E defines a
local norm at y. Unit ball is feasible!l Note
that the matrix is the Hessian at y of the
logarithmic barrier function

f(y) — —Z In(c — ATy)j.
J



Barrier and search directions
This is a special case of a
self-concordant barrier function,

introduced and studied by Nesterov and

Nemirovski, and for these the local norm has
some remarkable properties showing that the
unit ball approximates the feasible region well.

The steepest ascent direction for the
objective function is

dapg = (AS2AT) "1y,

while the steepest descent direction for the
barrier function is

degn = —(AS52AT)~tas 1

with 571 the vector whose components are the
reciprocals of those of s. Search directions in
the dual-barrier method are linear combina-

tions of these two.
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Iterates are maintained in some neighborhood
of the dual central path, the set of strictly
feasible points where these two directions are
diametrically opposed.

Note that computing the search direction re-
quires the solution of a linear system with
coefficient matrix ADA? for some diagonal
matrix D, exactly as in the ellipsoid method,
but here all components of D vary from one
iteration to the next.

Primal-dual methods are the methods of choice,
with the primal “helping” the dual and vice
versa. Similar linear systems arise.

The complexity of these methods is O(y/nL)
iterations, first found by Renegar. In practice,
10 — 50 iterations usually suffice.



Potential-reduction methods

Based on reducing a suitable potential func-
tion. Karmarkar used the primal function

op(x) i=nin(clz — 2z) — Z Inz;,
J

where z. is the known optimal value of (P).
Constant decrease at each iteration — the
complexity bound of O(nL) iterations.

The primal-dual potential function

®pp(z,y) = (n+vn)In(clz —bly)
—Z Inz; — Z In(c — ATy)j
J J

of Tanabe and Todd-Ye can also be decreased
by a constant — O(4/nL) iterations.

Note that potential-reduction methods achieve
these complexities without requiring the
iterates to remain close to the central path.
The primal-dual search directions are similar
to those for primal-dual path-following
methods.
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Other Methods

Gradient-like methods: Brown and Koop-
mans (1951), Zoutendijk (1960), Lemke
(1961), Rosen (1961), Chang and Murty
(1989).

Fictitious play: Brown (1951), Brown and
von Neumann (1950), von Neumann (1947-
1963, 1954).

First complexity result: O([m 4+ n]/e?).

Relaxation: Agmon (1954), Motzkin-
Schoenberg (1954); ellipsoid method is
related (Goffin). SOR method of De Leone
and Mangasarian (1988) has promising re-
sults.

Ideas of comp. geom.: Megiddo (1984),
Clarkson (1995), Gartner-Welzl (1996).
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The future
What will the next 50 (or 5?7) years bring?

At present there is a rough computational
parity between simplex and interior-point ap-
proaches.

Will our complacency in the status quo be
shattered by another computationally
effective class of methods?

I wouldn't bet on it in the next five years, but
over the next ten, I'd take even odds.

Big questions: does the bounded Hirsch con-
jecture hold? Is there a polynomial pivot rule
for the simplex method? For interior-point
methods, can we give a theoretical explana-
tion for the difference between worst-case

bounds and observed practical performance?

et us hope that the next fifty years brings as
much excitement as the last!
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