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+ +Anniversaries
• (At 1997 ISMP) 50th of the simplex method
• 60th of Kantorovih's 1939 paper:\Mathematial Methods in theOrganization and Planning of Prodution"
• 50th of 0th Mathematial ProgrammingSymposium, Chiago 1949
• 45th of Frish's 1955 suggestion of thelogarithmi barrier funtion.
• 25th of the awarding of the 1975 NobelPrize in Eonomis
• 20th of Khahiyan's 1979 and 1980papers
• 15th of Karmarkar's 1984 paper.+ 2



+ +Quotations
• Kantorovih: \I want to emphasize againthat the greater part of the problems ...are onneted spei�ally with the Sovietsystem of eonomy and ... do not arise inthe eonomy of a apitalist soiety."
• Koopmans: \It has been found so far that,for any omputation method whih seemsuseful in relation to some set of data,another set of data an be onstrutedfor whih that method is obviously unsat-isfatory."
• Dantzig: \This olumn geometry gave methe insight whih led me to believe thatthe simplex method would be an eÆientsolution tehnique. I earlier had rejetedthe method when I viewed it in the rowgeometry beause running around theoutside edges seemed so unpromising."+ 3



+ +
Deades and Sope

• '50s: theory, industrial app'ns,ombinatorial app'ns;
• '60s: large-sale, struture, quadratiprogramming and omplementarity;
• '70s: omputational omplexity, Klee-Mintyexample.

We'll onentrate on developments sine then:hope restored by new polynomial-timealgorithms, by results on expeted number ofpivots, by amazing omputational studies.
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+ +Two paradigms
• linear optimization over a simplex(→ edge-following,ombinatorial geometry).
• linear optimization over a ball(→ solution by alulus,approximation of polyhedra by ellipsoids).

What are high-dimensional polyhedra like?Quartz rystals or diso balls?(See the next two slides.)
• the simplex method
• the ellipsoid method
• interior-point methods
• other methods+ 5
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(Thanks to Jay Shomer: image fromhttp://www.halyon.om/nemain/gallery/gallery.html)
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(Copyright 2000, 1999, eHow, In. Fromhttp://www.ehow.om/eHow/eHow/0,1053,4570,00.html)
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+ +
An interesting time warpPaper by Ho�man, Mannos, Sokolowsky, andWiegmann (1953): omparison of three meth-ods (�titious play, relaxation, and primal sim-plex) on LPs from symmetri games (of size5× 5 up to 10× 10). Simplex won, and ouldsolve large-sale problems of size about 50 ×100!Talk by Bixby on solving large MIPs (and LPs):omparison of three methods (primal and dualsimplex, and barrier) on LPs, with results foran LP of size 49,944 × 177,628. The dualsimplex method was the winner.

+ 8



+ +

Problems and NotationPrimal problem:min{cTx : Ax = b, x ≥ 0},with A an m × n matrix of rank m.
Dual problem:max{bTy : ATy ≤ c}.

Also s := s(y) := c − ATy, d := n − m.
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+ +
The Simplex MethodRemarkable fat:the (primal) simplex method typially requiresat most 2m to 3m pivots to attain optimality.Mentioned by Ho�man et al. (1953);numerial evidene through '50s and '60s.More reently: Bixby (1991) on 90 Netlibproblems gives a ratio of pivots to row sizeof < 3 on 72, between 3 and 7 for 16, and 10to 470 on 3. Bixby (1994) on 8 large prob-lems has < 2 on 3, 4 to 9 on 4, and 18 onthe last.Chosen to be nasty!Why?
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DiameterLet �(d, n) denote the largest diameter of a
d-polyhedron with n faets.Hirsh onjeture: �(d, n) ≤ n − d.Best bounds: �(d, n) ≤ min{2d−3n, n1+log d}.Conjeture holds for 0-1 polytopes, dual trans-portation polyhedra, ... . Fails for unboundedpolyhedra in general, still open for polytopes.Survey by Klee and Kleinshmidt (1987).
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+ +
Subexponential pivot rulesFound by Kalai and Matousek-Sharir-Welzl.All (thus far) randomized, with a best boundof exp(K√

d logn) for some onstant K.One version:
• Given a vertex v, hoose a faet F on-taining v at random;
• Apply the algorithm reursively to �nd theoptimizing vertex w in F ;
• Repeat the algorithm from w.

Survey by Kalai (1997).
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+ +
Probabilisti analysisHot topi in late '70s and '80s | muh lessativity reently.Main results:Borgwardt: expeted number of pivots

O(m3n1/(m−1)) for a dimension-by-dimensionsimplex method for the dual problem. Vetors
b and aj's generated from rotationallysymmetri distribution, all cj's equal to 1.Adler-Megiddo, Adler-Karp-Shamir, Todd:expeted number of pivots O(min{d2, m2}) fora lexiographi parametri simplex method.Problem generated from a sign-invariant model,possibly not feasible or unbounded.Survey by Borgwardt (1986).+ 13



+ +Big faes, long edgesResults of Kuhn (1953, 1991) and Goemans(1995) suggest that some interesting poly-topes for ombinatorial optimization an haverelatively few big faets, and many small ones.By polarity, there may be polytopes with avery large number of verties, but many ofthese may only be optimal for a very smallset of objetive funtions, and so \relevant"for a very small set of simplex methods.For d ≥ 4, there are neighborly polytopes,with every pair of verties adjaent.For d from 3 to 11 and n = 2d and 2d+1,I generated 100 random d-polytopes with nverties. In many ases, the two maximallydistant verties were joined by an edge of thepolytope.These results suggest that the \quartzrystal" model may be reasonable.+ 14



+ +
The Ellipsoid MethodOriginally for onvex programming by Yudin-Nemirovski (1976) and Shor (1977) but adaptedby Khahiyan for LP in 1979-80.Created a whirlwind of publiity:\Soviet Answer to `Traveling Salesmen' "\A Russian's Solution in Math Questioned."Result: an LP with n inequalities and integraldata with bit size L an be solved in O(n2L)iterations, requiring O(n4L) arithmetial op-erations on numbers with O(L) digits (1980).

LP ∈ P !Not a pratial method, but highly useful the-oretially: see Bland-Goldfarb-Todd (1981)and Gr�otshel-Lovasz-Shrijver (1988).+ 15



+ +
Traditional view and formulaeMethod: start with ellipsoid known to ontainsolution, then ut in half and enlose in thesmallest ellipsoid: repeat!Assume we want a point in Y := {y : ATy ≤ c},with onstraints aT

j y ≤ cj, j = 1, ..., n.Assume Y ⊆ E0 := {y : ‖y‖ ≤ R}.Any ellipsoid an be written as
E(�y, B) := {y : (y − �y)TB−1(y − �y) ≤ 1}.

Start with E0 = E(y0, B0) with y0 = 0, B0 =
R2I.
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+ +Iteration k:Given Ek = E(yk, Bk) ⊇ Y ,Find j with aT
j yk > cj (if none, STOP:

yk ∈ Y );Set yk+1 := yk − τBkaj(aT
j Bkaj)12 ;

Set Bk+1 = δ

(

Bk − σ
Bkaja

T
j Bk

aT
j Bkaj

).
Here τ = 1/(m + 1), δ = m2/(m2 − 1), and
σ = 2/(m+1).This gives Ek+1 = E(yk+1, Bk+1) as theminimum volume ellipsoid ontaining
{y ∈ Ek : aT

j y ≤ aT
j yk}.The systemati volume redution gives theomplexity bound.Improved formulae for double-sided or deeputs: same as above but with di�erentparameters.+ 17



+ +
Alternate representationSine Y is assumed bounded, we an �ndlower bounds on eah aT

j y for y ∈ Y .So suppose
Y = {y : ℓ ≤ ATy ≤ c}.

Let D be a nonnegative diagonal matrix. Then
Y ⊆ �E(D, ℓ) := {y : (ATy−ℓ)TD(ATy−c) ≤ 0},and this set is an ellipsoid if ADAT isnonsingular. Note that D gives a short er-ti�ate that �E(D, ℓ) ontains Y . From thisviewpoint, the ellipsoid method generates asequene Ek = �E(Dk, ℓk) of ellipsoids ontain-ing Y . The enter of Ek is yk, the solutionof

ADkATy = ADk(ℓk + c)/2.
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+ +Iteration k:Given Ek = �E(Dk, ℓk) ⊇ Y ,Find j with aT
j yk > cj (if none, STOP:

yk ∈ Y );Possibly update the jth omponent of thevetor ℓk to get ℓk+1;Inrease the jth diagonal entry of the matrix
Dk to get Dk+1.Details in Burrell and Todd (1985).Shows that the quadrati inequality de�ningeah ellipsoid an be viewed as a weightedsum of quadrati onstraints ensuring thateah aT

j y lies in an appropriate range.Indiates why onvergene may be slow: ad-justing one entry at a time of the diagonalof D to minimize the volume (like oordinatedesent).+ 19



+ +Interior-Point MethodsHistory and Pre-history: Frish (1955),Fiao and MCormik (1968).Modern era: Karmarkar (1984),2000 odd papers sine.\Breakthrough in Problem Solving,"NYT (J. Gleik).Closely related to (non-polynomial)aÆne-saling method, �rst onsidered byI. I. Dikin, student of Kantorovih (1967)!Polynomial onvergene + pratialimportaneProjetive method: O(n3.5L) arithmetioperations, muh better in pratie.Path-following, potential-redution methods.Primal, dual, primal-dual.+ 20



+ +Dual path-followingThe projetive method used a projetive trans-formation at eah iteration to enter the ur-rent iterate. Modern methods use a loalnorm to make the iterate \look entral."Suppose �y is a stritly feasible solution to (D):�s := s(�y) > 0. The largest ellipsoid enteredat �s in the nonnegative orthant is
{s : (s − �s)T �S−2(s − �s) ≤ 1},and the orresponding set of y's

E := {y : (y − �y)TA�S−2AT (y − �y) ≤ 1} ⊆ Y.Now we have �y ∈ Y , and E is insribed inrather than irumsribing Y , but otherwiseremarkably similar to �E(D, ℓ) in the ellipsoidmethod.The matrix A�S−2AT appearing in E de�nes aloal norm at �y. Unit ball is feasible! Notethat the matrix is the Hessian at �y of thelogarithmi barrier funtion
f(y) := −

∑

j

ln(c − ATy)j.+ 21



+ +Barrier and searh diretionsThis is a speial ase of aself-onordant barrier funtion,introdued and studied by Nesterov andNemirovski, and for these the loal norm hassome remarkable properties showing that theunit ball approximates the feasible region well.The steepest asent diretion for theobjetive funtion is
dAFF := (A�S−2AT )−1b,while the steepest desent diretion for thebarrier funtion is

dCEN := −(A�S−2AT)−1A�s−1,with �s−1 the vetor whose omponents are thereiproals of those of �s. Searh diretions inthe dual-barrier method are linear ombina-tions of these two.+ 22



+ +
Iterates are maintained in some neighborhoodof the dual entral path, the set of stritlyfeasible points where these two diretions arediametrially opposed.Note that omputing the searh diretion re-quires the solution of a linear system withoeÆient matrix ADAT for some diagonalmatrix D, exatly as in the ellipsoid method,but here all omponents of D vary from oneiteration to the next.Primal-dual methods are the methods of hoie,with the primal \helping" the dual and vieversa. Similar linear systems arise.The omplexity of these methods is O(√nL)iterations, �rst found by Renegar. In pratie,10 { 50 iterations usually suÆe.
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+ +Potential-redution methodsBased on reduing a suitable potential fun-tion. Karmarkar used the primal funtion
φP (x) := n ln(cTx − z∗)−∑

j

lnxj,where z∗ is the known optimal value of (P).Constant derease at eah iteration → theomplexity bound of O(nL) iterations.The primal-dual potential funtion�PD(x, y) := (n+√
n) ln(cTx − bTy)

−
∑

j

ln xj −
∑

j

ln(c − ATy)jof Tanabe and Todd-Ye an also be dereasedby a onstant → O(√nL) iterations.Note that potential-redution methods ahievethese omplexities without requiring theiterates to remain lose to the entral path.The primal-dual searh diretions are similarto those for primal-dual path-followingmethods.+ 24



+ +Other Methods
• Gradient-like methods: Brown and Koop-mans (1951), Zoutendijk (1960), Lemke(1961), Rosen (1961), Chang and Murty(1989).
• Fititious play: Brown (1951), Brown andvon Neumann (1950), von Neumann (1947-1963, 1954).First omplexity result: O([m+ n℄/ǫ2).
• Relaxation: Agmon (1954), Motzkin-Shoenberg (1954); ellipsoid method isrelated (GoÆn). SOR method of De Leoneand Mangasarian (1988) has promising re-sults.
• Ideas of omp. geom.: Megiddo (1984),Clarkson (1995), G�artner-Welzl (1996).+ 25



+ +The futureWhat will the next 50 (or 5?) years bring?At present there is a rough omputationalparity between simplex and interior-point ap-proahes.Will our omplaeny in the status quo beshattered by another omputationallye�etive lass of methods?I wouldn't bet on it in the next �ve years, butover the next ten, I'd take even odds.Big questions: does the bounded Hirsh on-jeture hold? Is there a polynomial pivot rulefor the simplex method? For interior-pointmethods, an we give a theoretial explana-tion for the di�erene between worst-asebounds and observed pratial performane?Let us hope that the next �fty years brings asmuh exitement as the last!+ 26


