
Global Routing in VLSI Design:

Algorithms, Theory,

and Computational Practice

Antoine Deza a,∗ Chris Dickson b Tamás Terlaky c

Anthony Vannelli d Hu Zhang e

aMcMaster University, Department of Computing and Software, Hamilton,
Ontario, L8S 4K1, Canada

bBedlam Game, Toronto, Ontario, M5A 3C4, Canada
cLehigh University, Department of Industrial and Systems Engineering,

Bethlehem, Pennsylvania, USA
dUniversity of Guelph, College of Physical and Engineering Science, Guelph,

Ontario, Canada
eRBC Financial Group, 200 Bay Street, Royal Bank Plaza, 11th Floor,

South Tower, Toronto, Ontario, M5J 2J5, Canada

Abstract

Global routing in VLSI (very large scale integration) design is one of the most
challenging discrete optimization problems in computational theory and practice.
In this paper, we present a polynomial time algorithm for the global routing problem
based on integer programming formulation with a theoretical approximation bound.
The algorithm ensures that all routing demands are satisfied concurrently, and the
overall cost is approximately minimized.

We provide both serial and parallel implementation as well as develop several
heuristics used to improve the quality of the solution and reduce running time.
We provide computational results on two sets of well-known benchmarks and show
that, with a certain set of heuristics, our new algorithms perform extremely well
compared with other integer-programming models.

Key words: Global routing in VLSI design, Approximation algorithms, Integer
programming model.

∗ Corresponding author.
Email addresses: deza@mcmaster.ca (Antoine Deza),

cdickson@bedlamgames.com (Chris Dickson), terlaky@lehigh.edu (Tamás

Preprint submitted to JCMCC 12 May 2011

1 Introduction

VLSI circuit layout is the process by which the physical layout of a circuit
is realized from its functional description and specifications. Due to the ex-
ponential increase in complexity of integrated circuits, computer-aided design
(CAD) tools have been instrumental in this design process.

VLSI physical design is a multi-phase process, where each phase typically falls
into one of the following three classes: partitioning, placement, and routing.
In the partitioning phase, we split the chip into smaller, more manageable
pieces. The assumption is that each of these pieces may be designed inde-
pendently of one another. In the placement phase, we fix the locations of all
blocks within the chip, as well as produce a list of blocks which need to be
connected with wires. In the routing phase, the goal is to find a realization
of the connections provided from the placement phase. Typically, routing is
broken into two distinct processes: global routing, and detailed routing. In
global routing, we wish to find the approximate interconnections between the
blocks. Detailed routing takes the output from the global router and produces
the exact geometric layout of the wires to connect the blocks.

In this paper, we focus on the global routing problem and provide a polynomial-
time algorithm with an approximation bound. Additionally, we will provide
a set of heuristics which improve the quality of the approximate solutions, as
well as reduce the time taken to obtain them.

1.1 Global Routing in VLSI Design

In the global routing phase of VLSI design, we assume that the circuits are in
a one-layer frame. We model the chip as a lattice graph, where each channel
in the chip corresponds to an edge in the lattice graph. Pins of the chip
components are found at the intersections of these edges, which correspond
to vertices in the lattice graph. We define a net to be a group of pins which
are to be connected. In an instance, we are given a set of nets, each of which
has pins that must be connected by wires. Additionally, there are constraints
to the number of wires that may pass through any given channel. A solution
is a set of trees in the lattice graph, one for each net, corresponding to the
wires in the chip routing the given nets, while the constraints are satisfied.
The goal is to minimize some cost of these connections (such as wire-length
or edge congestion).

Terlaky), vannelli@uoguelph.ca (Anthony Vannelli), Hu.Zhang@rbccm.com (Hu
Zhang).

2

The global routing problem is NP-hard [22]. Thus, heuristics have been used
to obtain approximate solutions. In general, the solution methodologies may
be split into two classes: (i) sequential routing and (ii) concurrent routing.

In sequential routing, the nets are ordered based on certain criteria and routed
one by one in this sequential order. This idea was first introduced by Lee [21]
and is known as the Maze Runner heuristic. Several enhancements to this idea
have been shown in [12,20]. One disadvantage to sequential routing is that the
nets must be ordered in some artificial way. In general, nets are ordered based
on their importance, bounding-box areas, or numbers of terminals [31]. The
quality of the solution depends heavily on the ordering. As well, there is no
theoretical guarantee on performance.

In concurrent routing, integer programming approaches are often utilized,
which attempt to route all nets at once (concurrently). In a sense, this is
more of a “global” approach to the problem. Generally, we model the prob-
lem as a {0, 1}-integer linear programming (ILP) problem where we select one
tree to route each net. This selection should minimize the desired objective
function, while still enforcing the given edge capacity constraints.

The choice of the objective function is important to obtain a good solution. In
[34] and [27], the goal is to minimize the total wire-length required for all nets.
These methods do not take into account the number of bends in the trees (vias
in the physical layer). Vias increase the cost of chip manufacturing, as well
as decreasing the performance of the chip by increasing the heat generated.
Other models attempt to minimize the maximum tree length [23], or minimize
the maximum edge congestion. Minimizing the maximum edge congestion is
essentially equivalent to the multicast congestion problem in communication
networks [16,2]. Another approach for the objective function is to take a linear
combination of the above properties. In this way, we can control many factors
at once [3,33]. For recent progresses on sequential routing with congestion
and via count please refer to [5,6,25,26,39]. However, note that in contrast to
our approach, these sequential routing algorithms do not provide a theoretical
approximation guarantee.

Generally, it is impractical to solve the ILP directly as practical problems
in VLSI design are usually too large. Recent approaches to these ILPs relax
the ILP to a linear program (LP), and round the solution of this LP to find
an approximate feasible solution. In [32], a linear relaxation of the routing
problem is formulated as a multi-commodity network flow problem. One can
employ randomized rounding [28,29] to obtain an integer solution from the
fractional solution to the LP-relaxation.

Some computational results for recent ISPD global routing contests and bench-
marks can be found in [14,15].

3

In this paper, we study the model proposed in [33]. The objective function is
a convex combination of total wire-length and total number of vias of trees
selected for routing the nets. This model covers the impact of wire-length,
vias, and also edge congestion. For the global routing problem, this model
generalizes the previous models developed in [3,4,29,34]. They consider three
important factors: total wire-length, edge congestion, and the number of vias.
The edge capacity is allowed to vary according to local requirements instead
of posing additional edge length for areas of high congestion. For instance, one
may wish to reduce the edge congestion to a relatively small number in and
around potential hot spots. The goal is to minimize a convex combination of
the total wire-length and total number of bends in the trees. This combination
can vary to conform to the user’s actual requirements.

The ILP based global router Sidewinder see [13] considers underlying paths
rather than Steiner trees for routing nets. BoxRouter [8] is a hybrid algorithm
combining sequential routing on the same physical layer and ILP formulation
for layer assignment to minimize the number of vias. Our ILP model is similar
to the formulation GRIP [38]. However, in contrast to our approach, none of
these three global routers, provides theoretical approximation bound for the
solutions.

In the approximation algorithms for the routing problem in [33], they first
apply a binary search strategy to reformulate the linear relaxations to convex
min-max resource-sharing problems (packing problems in the linear case). Then
they use the approximation algorithm in [16] as a subroutine to solve the
packing problem, which generalizes the approximation algorithm for convex
min-max resource-sharing problems by [10] to the case when the sub-problem
is hard to approximate (APX -hard).

We will present the detailed ILP formulation in Section 2 and present an
implementation of the asymptotic approximation algorithm in Section 3. In
Section 4 we propose some heuristics used to improve the quality of the solu-
tion, as well as reduce computation time. In Section 5 and 6 we present the
computational results and conclusions.

1.2 Our Contribution

In this paper, we present the methodology towards a high-performance se-
rial and parallel implementation of the generalized model for the global rout-
ing problem proposed in [33]. This algorithm approximately solves the LP-
relaxation to obtain approximate solutions to the global routing problem by
applying randomized rounding. A 2-approximate Steiner minimal tree solver
that was first presented by Mehlhorn in [24] is employed as a subroutine. Al-

4

though there exist worst case instances making the algorithm attaining the
theoretical 2-approximation bound, we find that for our application the ob-
jective function values of our solutions are close to 1.10 times of the lower
bounds. The serial version of our global routing algorithm uses a path saving
technique to reduce the time in approximating minimum Steiner trees. This
can reduce running time by up to a factor of 10 in our test sets. Since we
must store a significant amount of data to save paths, a parallel version of the
algorithm was developed to lower the memory demand. We generate trees in
parallel which is highly suitable to our algorithm, as this constitutes the ma-
jority of computation. Since the order in which we find trees does not matter,
this part of our algorithm scales perfectly.

Additionally, we have also developed a class of heuristics to reduce running
time as well as to improve the solution quality. The idea is to confine a certain
percentage of the total nets to a single tree generated in the first iteration. We
investigate two approaches for choosing nets in non-decreasing bounding-box
area order or in non-decreasing sum of bounding-box dimensions order such
that their routing trees are fixed throughout the algorithm. We find that using
the heuristic of bounding-box area, we can decrease the overflow by up to 25%
as well as reducing the wire-length by up to 5%. Fixing based on the sum of
bounding-box dimensions is also able to reduce overflow by up to 20%, while
making no sacrifices in terms of wire-length.

2 Mathematical Formulation

Fig. 1. A path with
a bend on v.

Fig. 2. A path with
a bend on v.

Fig. 3. A path
without bend on v.

Formally, given an planar edge-weighted lattice graph G = (V,E) (rectangular
holes are allowed) and nets S1, . . . , SK ⊆ V , the edge set is associated with a
length function l : E → IR+ ∪ {0} and a capacity function c : E → IR+. We
assume that |Sk| is bounded by some constant for all k = 1, . . . , K. The given
edge capacity can be less than the physical channel capacity in order to reduce
the possibility of hot spots in the solution. A feasible solution is a set of K
trees spanning S1, . . . , SK with respect to the edge capacity constraints. The
overall cost of the solution consists of two parts: (i) the edge cost and (ii) the
total number of bends in the trees called the bend-dependent vertex cost (see

5

Figures 1, 2, and 3). The goal is to minimize the overall cost defined as a linear
combination αltotal+βvtotal, where ltotal is the sum of edge length of all K trees
and vtotal is the sum of numbers of bends of all K trees, while α, β ≥ 0 are
artificial weights corresponding to the impact of the total wire-length and the
total number of vias whose values are set according to the design requirements
and are given in advance. For simplicity, we denote by ci the capacity of edge
ei ∈ E from now on. In addition, by scaling, we can set α + β = 1, i.e., the
overall cost is a convex combination of the total edge length and the total
number of bends.

The global routing problem in VLSI design is NP-hard. It is at least as hard
as the minimum Steiner tree problem in graphs because the global routing
problem contains the minimum Steiner tree problem as a special case.

We now develop the ILP formulation of our generalized model. Denote by Tk

the set of all trees in G connecting the vertices in Sk. It is worth noting that
|Tk| can be exponentially large. We also denote by xk(T) the indicator variable
as follows:

xk(T) =

1, if T ∈ Tk is selected for the net Sk;

0, otherwise.

In addition, we define by l(T) and v(T) the length of tree T and the number
of bends in the tree T , respectively. Therefore, the ILP of the global routing
problem is as follows:

min α
∑K

k=1

∑
T∈Tk

l(T)xk(T)+

β
∑K

k=1

∑
T∈Tk

v(T)xk(T)

s.t.
∑

T∈Tk
xk(T) = 1, ∀k = 1, . . . , K;

∑K
k=1

∑
T∈Tk&ei∈T xk(T) ≤ ci, ∀ei ∈ E;

xk(T) ∈ {0, 1}, ∀T & k = 1, . . . , K.

(1)

Here the first set of constraints mean that for any set Tk we choose exactly
one tree for Sk, and the second set of constraints are capacity constraints.

As shown in [33], the following lemma holds:

Lemma 2.1 For any given ε ∈ (0, 1), if we can solve the following linear

6

program

min λ

s.t.
∑K

k=1

∑
T∈Tk&ei∈T xk(T)/ci ≤ λ, ∀ei ∈ E;

α
∑K

k=1

∑
T∈Tk

l(T)xk(T)/g+

β
∑K

k=1

∑
T∈Tk

v(T)xk(T)/g ≤ λ,
∑

T∈Tk
xk(T) = 1, ∀k = 1, . . . , K;

xk(T) ∈ [0, 1], ∀T & k = 1, . . . , K,

(2)

then we can find a (1 + ε)-approximate solution to the LP-relaxation of (1).

The formulation (2) is a convex min-max resource-sharing problem [10,16] as
follows:

min{λ|fj(x) ≤ λ, j ∈ {1, . . . , J}, x ∈ B}, (3)

where f : B → IRJ
+ is a vector of J non-negative continuous convex func-

tions defined on a non-empty convex compact set B ∈ IRN . In this way, we
may approximately solve (1) by using existing algorithms for the convex min-
max resource-sharing problem. We shall refer to this LP relaxation (2) as the
fractional global routing problem.

Since |Tk| may be exponentially large, many exact algorithms for LPs such as
standard interior point methods cannot be applied to obtain a polynomial time
algorithm. It is possible to solve such a problem by the volumetric-center [1] or
the ellipsoid methods with separation oracle [11]. However, those approaches
will lead to a large running time, which is very unsuitable for global routing,
as instances of these problems are typically very large.

We will apply the approximation algorithm presented in [16] for convex min-
max resource-sharing problems to avoid dealing with an exponential sized
T . The approximation algorithm considered in [16] generates K minimum
Steiner trees for the K nets in each iteration. Thus, only a polynomial num-
ber of Steiner trees are generated in total. In fact, it is shown in [33] that
the approximation algorithm generates at most O(Km(log m + ε−2 log ε−1))
Steiner trees, and the following result for the fractional global routing holds:

Theorem 2.1 There exists an r(1 + ε)-approximation algorithm for the frac-
tional global routing problem (2) provided an r-approximate minimum Steiner
tree solver exists.

7

Fig. 4. Original lattice graph G. Fig. 5. Virtual layer graph H.

It is shown in [33] that the block problem is as follows:

min
x∈B

pT f(x) =
K∑

k=1

Wk =
K∑

k=1

min
T∈Tk

 ∑

ei∈T

(
pi

ci

+
αpm+1li

g

)
+

pm+1βv(T)

g

 .

Here the first term can be regarded as the weights associated with edges in
G, while the second term corresponds to the bend-dependent vertex cost. In
order to deal with the bend-dependent vertex cost, the virtual layer method is
proposed in [33] as follows.

We begin by partitioning the edge set E from G (see Figure 4) into two disjoint
subsets Ex and Ey, where E = Ex∪Ey. Ex contains only the horizontal edges
from E, while Ey contains only vertical edges. A two-layer graph H (see Figure
5) is constructed as follows. For each vertex v ∈ G, there are two vertices v and
v′ in H. These vertices have the same x and y-coordinates as in G but differ in
their z-coordinates. To construct the edge set of H we consider the edge sets
Ex and Ey. Ex connects vertices of H in the lower (horizontal) layer, while
Ey connects vertices of H in the upper (vertical) layer. In order to connect
vertices v and v′ we introduce an additional edge set Ez. Each edge in Ez

connects a pair of vertices v and v′ in H. We can see that if a path in G has
a bend on vertex vi, this corresponds to using an edge in Ez that connects
vertices vi and v′i in H. Similarly, a path in H that uses an edge in Ez must
have a bend on its corresponding path in G.

We now set the weights to the edges in H. For any edge ei ∈ Ex ∪ Ey, we
assign a weight wi = pi/ci+αpm+1li/g according to their indices in the original
graph G. For every edge in Ez, we assign a weight pm+1β/g. In this weighted,
two-layer graph H, a minimum Steiner tree for a net Sk corresponds to a tree
for Sk in G with the minimum Wk. So when we apply Algorithm L, the block
problem corresponds to the classical Steiner tree problem in the graph H to
minimize the overall edge weight of the Steiner tree connecting the vertices in
Sk. We can apply an approximate solver for the Steiner tree problem as the

8

block solver of the approximation algorithm in [16].

Once we have a fractional solution given by the approximation algorithm
presented in [16], we must round it to find a feasible integer solution, and have
a performance guarantee of the approximation ratio. We use a randomized
rounding as described in [29,28]. Then the following theorem holds:

Theorem 2.2 There is an approximation algorithm for (2) such that the ob-
jective value is bounded by:

r(1 + ε)OPT + (exp(1)− 1)(1 + ε)
√

r ·OPT ln m, if r ·OPT > ln m;

r(1 + ε)OPT +
exp(1)(1 + ε) ln m

1 + ln(ln m/(r ·OPT))
, otherwise,

where OPT denotes the optimal value of the instance, r is the approximation
ratio of the block solver, and m is the number of edges in the grid graph.

3 Implementation

In this section, we present an implementation of the approximation algorithm
in [33] for the ILP formulation of the global routing problem in VLSI design.
We first present a basic outline of this algorithm, then go into some details
about the methods for Steiner tree approximation, as well as rounding ap-
proximate solutions to the ILP formulation.

3.1 Outline

We now present a basic outline of the approximation algorithm used to solve
the LP (2) in Section 2. A graph re-weighting technique is used to reduce edge
congestion. We outline this in Algorithm 1.

Our input is given as a lattice graph G = (V, E). Usually, this is simplified
to two integers corresponding to the length and the width of graph G. Ad-
ditionally, we may be given a list of missing vertices (holes) and/or an edge
length function. If no edge lengths are specified, then they are assumed to be
of unit length. We are also given a non-empty set of nets. Each net Sk is a set
of vertices (coordinates) in G, where |Sk| ≥ 2 for k ∈ {1 . . . K}.

Line 1 involves initializing local variables as well as transforming the grid
graph G into a virtual layer graph which will be denoted as H. In lines 2− 4
we generate a tree for each net in S. To achieve this, we simply call our

9

Algorithm 1: Approximation algorithm for global routing in VLSI design.

Input: A graph G = (V, E) and a set of nets S1, . . . , SK , where Sk ⊆ V for
k ∈ {1 . . . K}.

Output: A set of K trees where the k-th tree in the set spans Sk.
Initialization of variables and virtual layer graph generation1

for k ← 1 to K do2

Call approximate Steiner tree solver to generate a tree for Sk3

end4

Compute edge congestion5

while stopping criteria not satisfied do6

Reweight edges in graph7

for k ← 1 to K do8

Call approximate Steiner tree solver to generate a tree for Sk9

end10

Compute a step length τ and move to new solution11

Update edge congestion12

end13

Perform rounding such that we choose one tree to route each net Si14

approximate Steiner tree solver which will generate a tree when given the
graph H and a net Sk. In line 5 we compute the edge congestion for each
edge in G. The edge congestion for the edge ei is equal to the number of trees
crossing it.

We now enter the main loop of our algorithm. Line 7 reweights the edges in our
virtual layer graph H. The edge weights are chosen carefully such that highly
congested edges will have a larger weight in H than those edges that are less
congested. In this way, when we compute the next set of trees in lines 8− 10,
the edges that are frequently used in previous iterations will be avoided. In
line 11 we compute a step length τ ∈ (0, 1] for the current iteration. This step
length can be thought of as a measure of “goodness” for the current iteration.
The details of computing the step length are discussed in Section 4.

After each iteration of the main loop (lines 6 through 12), we compute the
congestion for each edge ei. However, since we keep the trees generated in pre-
vious iterations, we must measure how often each edge is used in all iterations.
Without loss of generality, the edge congestion for an edge ei can be scaled
by its capacity such that it is a non-negative real number. We will denote this
scaled congestion as fi. Formally, fi = ni/ci where ni is the number of edge
crossing edge ei and ci is the capacity. A value of fi that is strictly greater
than 1 implies that this edge is over capacity. This leads to the concept of
fractional edge congestion. We compute the new fractional edge congestion for
edge ei by the following formula:

10

fi = (1− τ)fi + τ f̂i.

Here, f̂i corresponds to the scaled edge congestion of edge ei for the trees
generated in the current iteration for all i = 1, . . . ,m. Additionally, we have an
extra constraint that corresponds to the objective value. During initialization,
the value of τ is set to be 1. Thus, for the first iteration, the fractional edge
congestion is equal to the congestion of the current block solution. Now, define
λ to be the maximum fractional edge congestion for all edges. That is:

λ = max
ei∈E

fi.

After each iteration, we wish to decrease the value of λ.

The stopping rules can be varied according to the problem being solved. The
problem is fractionally feasible when fi ≤ 1 for all i = 1, . . . , m.

Finally, in line 13 we finalize a trees, one for routing each net. The details of
this procedure are discussed in Section 3.3.

3.2 Minimum Steiner Tree Approximation

The minimum Steiner tree problem is APX -hard [7]. For certain instances,
it is possible to get a true minimum Steiner tree fast for certain instances
(but not in polynomial time for all instances). Geosteiner [35,36] is a software
package that computes minimum Steiner trees, however it operates only on
planar lattice graphs. Also, these graphs are assumed to have unit length.
Although the edge lengths in our grid graph may have unit length, the edge
weights in the virtual layer graph may not have unit length. Thus, this pack-
age is unsuitable in our algorithm. Additionally, Geosteiner does not run in
polynomial time in the worst case. Recently developed Flute [9] provides im-
proved techniques for generating rectilinear minimum Steiner trees but in our
model the weighted graph H needed to obtain the theoretical approximation
bound can not be assumed to be always rectilinear. We wish to clarify some
similarities with existing approaches and stress that the main difference is the
obtained theoretical approximation bound. In fact our algorithm does not use
either Geosteiner or Flute to generate the minimum Steiner trees. The column
generation technique in [38] is similar to our reweighting technique but, while
we search for the minimum among all possible Steiner trees in Tk for each net
Sk, the column generation technique in [38] uses only the minimum within a
pre-determined subset of Tk. Again the main difference is that no theoretical
approximation ratio for GRIP is given by the column generation technique in

11

[38]. From now on, the notion of minimum Steiner tree will be abbreviated as
MST.

There are many known approximation algorithms for computing MST’s, where
some have performance guarantees or approximation ratios while others do
not. We will discuss only those with an approximation ratio, as this is needed
to provide a performance guarantee for our overall algorithm. In general, a
k-approximation algorithm guarantees that the computed Steiner tree is of no
more than k times the length of an optimal MST. Mehlhorn [24] presented
a simple 2-approximation algorithm. Robins and Zelikovsky [30] developed a
1.55-approximation method, but yield large running times due to hidden large
constant number of operations which is unsuitable for our applications. The
best known lower bound of the approximation ratio is 95

94
[7].

We choose to use the 2-approximation algorithm in [24] due to its simplicity
and low running time as well as its theoretical performance. Computation
results indicate that for our application, the bound is much closer to optimal.
The algorithm is as follows:

Algorithm 2: Generates 2-approximate Steiner trees in graphs

Input: A weighted graph G = (V, E) and a set of terminals S ⊆ V .
Output: A steiner tree T for the terminal set S in the graph G.
Compute the complete distance network N1

Compute a minimum spanning tree MN of N2

Transform MN into a reduced graph N [MN] by replacing each edge of MN3

by the corresponding shortest path
Compute a minimum spanning tree M in N [MN]4

Transform T into a Steiner tree T by deleting all leaves that are not5

terminals

An example of this algorithm is illustrated in Figure 6. The computational
bottleneck of this algorithm is the computation of the complete distance net-
work, which requires the solution to the single-source shortest path for each
terminal in the set S. We use Dijkstra’s algorithm with a binary heap as pri-
ority queue in order to achieve a complexity of O(|E| log |V |). There are other
advanced data structures such a Fibonacci heaps or pairing heaps which give
a better theoretical complexity result. However, these heaps require signifi-
cant overhead and only have better performance in the case of vertices with
high degree (dense graphs), while our underlying graphs are sparse. We use a
O(|V |2) version of Prim’s algorithm to compute minimum spanning trees. It
should be noted that the graphs in which we run Prim’s algorithm have sig-
nificantly less vertices than the original lattice graph, so we would not expect
to see a big improvement in running time if we used a minimum spanning tree
algorithm with a better time complexity.

Additional improvements have been made to this algorithm that not only im-

12

Fig. 6. Illustrates the various steps of Steiner tree approximation algorithm.

prove the running time but also the quality of the solution. These are discussed
in Section 4.

3.3 Rounding

We implement randomized rounding in order to obtain an integer solution
from our fractional solution. Assume that we perform a total of p iterations
while solving the LP (2) in Section 2. We know that for each net Sk we will
have a total of p + 1 Steiner trees corresponding to this net. Each tree for net
Sk has a corresponding value of x ∈ (0, 1]. Additionally, for each net, the sum
of corresponding x values is 1. We regard this value as the probability that
this tree will be chosen to route the given net.

We can think of this randomized rounding as a lottery system. For each net,
we have a set of trees, each with a given probability. Trees with an x value
close to 1 will almost always be picked while trees with an x value close to zero
will rarely be picked. Once we do this for each net, we have our final integer
solution.

In practice, we repeat randomized rounding several times in order to obtain
the best possible solution. The amount of time spent in rounding is extremely
small compared to the time spent generation trees and solving the LP because
it only involves the generation of uniform random numbers. Also, in the case
that we cannot generate a feasible integer solution, we only keep solutions
which have fewer constraint violations than the solutions that came previously.
In the case of ties in the number of edge capacity violations, we keep the

13

solution that has the lowest objective value.

4 Heuristics and Improvements

We now show some practical improvements we have made to this algorithm.
We will present the details of choosing the step length τ in this section. As
well, we will discuss some improvements made to the running time of the
Steiner tree solver. A multithreaded version of the algorithm is discussed, as
well as several heuristics used to improve the quality of the solution.

4.1 Potential Function Minimization

We base our LP solver on a given algorithm for solving convex min-max
resource-sharing problems. A potential function for convex min-max resource-
sharing problems (3) is introduced in [16] as follows:

φt(x) = ln θ − t

M

M∑

m=1

ln(θ − fm(x)), (4)

where t is a parameter depending on the error tolerance ε and the parameter
θ is the solution of the following equation:

t

M

M∑

m=1

θ

θ − fm(x)
= 1. (5)

It is shown in [16] that a good approximation of the minimum of λ can be
attained at an x minimizing the potential function φt(x). The approximation
algorithm for convex min-max resource-sharing problems in [16] is based on
this property and is applied in [33] for developing the approximation algorithm
for the VLSI global routing problem.

In this algorithm, there is a given formula to compute the step length τ .
However, in practice we notice that this produces extremely small values for
τ . This causes the algorithm to converge very slowly and thus requires many
iterations though the complexity bound in [33] still holds. Therefore, we need
to decide a relatively larger step length for speedup. On the other hand, we
cannot choose τ to be too large. Otherwise our algorithm will begin to cycle
and not converge.

14

Our heuristic to determine the step length τ is to find a new iterate x′ between
the old iterate x and the block solution x̂ by line search such that the new frac-
tional congestion f ′ minimizes the potential function φt(x) over all x′ between
x and x̂. We have used a bisection method in order to minimize this function.
Specifically, we approximate the derivative of the potential function by using
divided-differences. We then find the zero of this function using the bisection
method. It should be noted that we have several fail-safe mechanisms for this
line search. We have safe-guarded a maximum number of iterations in case of
numerical instability. Also, in the case that a zero does not exist, we simply
use the default step length. However, generally when no zero of the derivative
to the potential function can be found, the stopping criteria for solving the
LP have been met and the approximation bound has been reached. That is to
say, no step length can further reduce the congestion, so we can go no further.

4.2 Recording Shortest Paths

With regards to the Steiner tree solver, there are some simple improvements
that can be made to significantly reduce the running time. When we compute
Steiner trees, it is necessary to first compute a complete distance network of
the terminal set. This involves

(|Sk|
2

)
calls to Dijkstra’s algorithm for each net

Sk for k = 1 . . . K. However, since in each iteration of our algorithm, we are
working with the same graph, the shortest paths from any given vertex in H
do not change. By storing the paths, we can eliminate the unnecessary calls to
Dijkstra’s algorithm. Once we call Dijkstra’s algorithm for a given terminal,
we can reduce the complexity of finding shortest paths to O(|V |) as we need
only to do a linear search to find the destination vertex, and trace its path back
to the source vertex. This technique yields a great improvement in running
time, especially for large instances with many nets. The only drawback is that
this significantly increases the memory demand on the system. After each
iteration, we must re-weight the graph H. Thus, the stored paths are only
valid for the current iteration and must be computed again in the following
iteration.

4.3 Parallel Tree Generation

Similar to the improvement we made in the Steiner tree solver, we are able
to exploit the fact that the graph weights remain constant throughout one
iteration. Because of this, we may generate trees in any order without changing
the result of the solution. This naturally leads to the idea of parallelization. If
Np is the number of processors on our machine, then we may assign a total of
Np threads to generate trees. We can assume that, for each instance, each net

15

is labeled from 1 to K where K is the total number of nets. We assign each
thread a lower bound and an upper bound which represent the range of nets
for which it must produce trees. Specifically, each thread will generate bK/Npc
trees. We also assign the last thread the additional K mod Np trees. It is worth
noting that since K is generally much larger than Np, these additional trees
do not have a large effect on upsetting the workload balance for each thread.
In Section 5 we will provide computational results on the time improvement
using this technique.

4.4 Hybridization of Concurrent and Sequential Routing

The motivation for this heuristic is that sequential routers are generally able
to find a good solution in terms of feasibility, but not in terms of wire-length.
However, if we begin our algorithm with a “good” set of trees, then we may be
able to improve the total wire-length of the solution, while still maintaining
as much feasibility as possible.

In our implementation, we allow the solutions from a sequential router called
Labyrinth [18] to warm start our algorithm. Labyrinth uses the maze runner
heuristic introduced by Lee in [21]. While being very good at finding feasible
solutions, Labyrinth has serveral limitations. First, the grid graph must be
uniform. That is, there may not be holes in the graph. Also, capacity must be
uniform across the graph, restricted to a single horizontal and vertical value.
Additionally, this program does not take into account vias or bends in the
trees. We may use these warm solutions to reduce the running time of our own
algorithm, but in order to fully exploit this technique, further investigation is
needed.

4.5 Fixing Trees

Another class of heuristics that have been implemented deal with a fixed subset
of nets to a single tree generated in the first iteration. The idea is to determine
a certain subset of the K total nets, and generate only a single tree for this
net. A similar heuristic has been implemented in [18] which allows the user to
route all 2-terminal nets first. As a consequence, after the first iteration, we
reduce the number of nets we need to find trees for in subsequent iterations.
This reduces the problem size, and thus reduces the overall time taken to solve
the problem.

We use bounding-box area, and the sum of bounding-box dimensions as the
properties for determining which nets become fixed. First, the nets are sorted
in non-decreasing order based on the given property. We then select a certain

16

percentage of the total nets for which we wish to fix. A tree is then generated
for each of the nets we have selected. The remaining steps of the algorithm
are run as usual.

The idea for sorting the nets in non-decreasing order is as follows. If we assume
that our heuristic is to use bounding-box area, then selecting the nets with
the smallest bounding-box area will reduce the probability that the fixed nets
will overlap. This increases the probability that the congestion will be spread
out more evenly over the area of the chip.

The justification for using the sum of bounding-box dimensions is as follows.
Many of the nets in a given instance have a low number of terminals (two or
three). Since nets with two colinear terminals have a bounding-box with area
zero, we wish to include some nets with more than two terminals in the set of
nets to be fixed. However, if we only use bounding box area as a heuristic to
fix nets, we are guaranteed to fix all colinear two terminal nets first. By using
the dimension sum heuristic, we add the possibility to fix nets with a higher
number of terminals. This is desirable as some two terminal nets with colinear
terminals may be very long, while some three or more terminal nets may be
very close together.

Another question that arises in the discussion of this class of heuristics, is how
to appropriately choose the percentage of nets to be fixed for a given instance.
In general, there is no way to determine ahead of time what percentage will
work the best for a given problem. Additionally, we have tried sorting in non-
increasing order, but this method showed no improvement. In Section 5 we
will aim to determine some trends for a given set of benchmarks and show
that the use of any of these heuristics leads to some improvement.

5 Computational Results

In this section we provide the computational results for our algorithm, as well
as for all the heuristics described in Section 4. We will be using the well-known
MCNC benchmark collection for our computational tests [19]. All experiments
are performed on an 8x AMD Opteron 885 workstation with 64GB of RAM
running OpenSUSE 10.2 Linux.

It is worth noting that it is unknown whether there exist feasible solutions
(edge capacities constraints are fulfilled) for the MCNC benchmark instances.
Therefore, our algorithm cannot always deliver feasible solutions, similar to
other global routers, e.g., [40]. For solving the MCNC benchmark instances, we
set the feasibility with the highest priority, i.e., to first minimize the violation
of edge capacity constraints. Then we try to minimize the objective function

17

(wire-length and via number) without increasing infeasibility. The motivation
of this strategy is as follows: If the edge capacity is exceeded in a routing
solution (even if on only one edge), we have, in parctice, to add an extra
identical routing layer (a parallel grid graph) to accommodate the overflow
wires for routing all nets, which leads to significant increase of manufacture
costs. Therefore, we allow slight increase on the objective function value as
the price to reach better feasibility in our routing solutions.

We begin with a comparison of the two main versions of our code. The first
uses the path saving technique. The table in Figure 7 compares the running
times of the algorithm without the heuristic versus using the heuristic. Only
the running time for solving the LP is given. The time taken to round the
fractional solution is independent of the method used to solve the LP. It should
be noted that only the largest sets of test data are shown in this table.

Fig. 7. Comparison of tree generation times with and without path saving.

As we can see, the running time is greatly reduced using this method. From the
benchmarks specified in the table, we can see there is an average of a six times
reduction in running time. This reduction depends greatly on the instance of
the problem. The exact reduction depends on the number of nets that use a
given vertex over all nets in the instance. For example, an instance with 20
nets that has distinct terminals in each net shows no improvement. The more
times a terminal is repeated throughout the K total nets, the more time im-
provement we see. Fortunately, the instances of these problems are very large,
and terminals are repeated frequently throughout an instance. However, one
must consider the space versus time tradeoff when using this method. As the
graph increases in size, the amount of memory required to store the shortest
paths will increase rapidly. Furthermore, there are techniques emerging that
apply refinement techniques to the global routing problem [40]. These tech-
niques start with a small graph and gradually refine the dimensions until the
true size is attained. Because the first few steps would typically be small, this
heuristic is very beneficial to reduce computation time.

We now present the results for parallel tree generation in our algorithm. A
shared memory model is utilized with POSIX threads underlying the multi-
threading. We run our algorithm on a select subset of the MCNC benchmarks
using 1, 2, 4, 8, and 16 threads in the tree generation phase. The table in

18

Figure 8 illustrates this result. Again, we only test the larger benchmarks in
the data set.

Fig. 8. Effect of multithreading tree generation

The dotted line labeled “Ref” represents perfect scaling. That is, each time we
double the number of threads, the running time is halved. Clearly, in practice
there is overhead involved in multithreading. Also, only the tree generation
phase of our algorithm is parallelized. The other steps of the algorithm such
as updating the edge weights in the graph, and computing step lengths are
not computed in parallel. However, we can still see that our algorithm scales
extremely well. This is due to the fact that the majority of the time in each
iteration is spent in generating trees. Thus, speeding up tree generation has a
large effect on speeding up the whole algorithm.

We now evaluate the set of heuristics that involve fixing the routing trees
for a certain percentage of the nets after the first iteration. The graphs in
Figure 9 show the results for fixing nets based on their bounding box area.
The x-axis shows the percentage of the total nets that are fixed after the first
iteration. The y-axis shows the scaled values of the tree property we wish to
evaluate. The three tree properties we focus on are wire-length, edge overflow
(as a percentage of the total number of edges) and maximum edge congestion,
also known as maximum routing density (MRD). We scale each y-value to
the reference value which occurs when we fix none of the nets. We can make
several observations from these graphs. First, we can see that for almost all

19

(a) Area Wire-length (b) Sum Wire-length

(c) Area Overflow (d) Sum Overflow

(e) Area MRD (f) Sum MRD

Fig. 9. Heuristics used to fixed a given percentage of nets

instances, the wire-length is inversely related to the percentage of nets we fix.
This is intuitive as in the first iteration, the nets will be short. As we progress
throughout the algorithm, the nets grow in length to detour around congested
areas. If we fix nets after the first iteration, these nets will not grow in length.
However, we must be careful as fixing too many nets will cause congested
edges that can never be feasible. This is illustrated in Figure 9(e). We can see
that as we fix too many nets, we have edges that are very highly congested. It
should also be noted that in Figure 9(c), we see that fixing nets does reduce
the total number of infeasible edges. On average, it appears that the 50% to
70% range is optimal for reducing the total number of overflowed edges.

20

Another considered heuristic is based on fixing routing trees for nets with
small sums of bounding box dimensions. Figures 9(b), 9(d), and 9(f) illustrate
the results of these tests. For our benchmark set, this heuristic appears to
work well at reducing the number of infeasible edges, however the results for
reducing the wire-length were mixed. We can see that fixing too many nets
indeed reduces the wire-length, but we pay the price in terms of feasibility.
We see that fixing 80% or more of the nets causes some edges to be highly
congested. This is seen in Figure 9(f).

Our final results in Figures 10 and 11 show tables comparing our results to that
of another concurrent router, which uses an ILP based algorithm proposed in
[40]. The column “WL Lower Bound” represents the best possible wire-length
if we ignore edge capacities, i.e., if the optimal MST is chosen to route each
net regardless edge capacities. GeoSteiner v3.1 is used to find optimal MST’s
[37]. In [40], they make the assumption that any net with 10 or more terminals
may be ignored by the global router. In order to compare results, we also make
the same assumption.

Fig. 10. Wire-length minimization results

Fig. 11. Via minimization results

For wire-length minimization, we notice that our algorithm finds solutions
with better feasibility than in [40] in all but one of the test cases. As well, it
can be observed that wire-length is only slightly sacrificed in order to achieve
a large reduction in the maximum routing density. On average, we reduce
the maximum routing density by 25.8% while only increasing the wire-length
by 1.4%. The results show that our algorithm has significantly improvement
compared with other concurrent global routing approaches.

21

6 Conclusion and Future Work

In this paper, we have provided an implementation of an approximation al-
gorithm for the global routing problem in VLSI design. This algorithm has a
theoretical approximation bound, however, in practice, our approximate so-
lutions are far closer to optimal than the bound suggests. From Table 10 we
found there is very little distance between the lower bounds for the optimal so-
lutions and our approximate solutions. On average, we find that we are within
3% of the lower bound on wire-length, and in some cases, less than 1%.

Furthermore, a number of techniques and heuristics have been developed that
can be used to decrease the objective function value, as well as to reduce
computation time.

We found that by preserving the shortest paths computed throughout an it-
eration of our algorithm, we can reduce the running time of our sequentially
implemented algorithm by up to a factor of 9 and nearly a factor of 5 on
average. Additionally, we provided a parallel implementation of the algorithm
which allows for a significant reduction in running time, as well as lower mem-
ory usage compared to our sequential version which uses path saving. The tree
generation phase was multi-threaded in order to minimize the time spent in
this step of the algorithm. Since this is the most costly part of the algorithm in
terms of running time, we see excellent scaling results as we increase the num-
ber of processors, especially in the largest instances that contain many nets.
Our computational experiments also showed that confining a certain percent-
age of the total nets to a single tree not only led to better feasibility results,
but helped to reduce the objective function value. In some cases, we are able
to reduce the wire-length by 6% while at the same time, reducing the number
of overflown edges by nearly 22%. In general, we see that for our test data,
fixing 50% to 70% of the nets based on bounding-box area or bounding-box
sum does not lead to an increase in the maximum routing demand and in
many cases, we see a reduction in overflow as well as wire-length.

Our future work involves changing the way the edge congestion is estimated.
We believe that by updating the edge congestion several times throughout a
given iteration, we can improve the quality of the solution as well as reduce
the number of iterations required to obtain it.

Acknowledgments The authors are grateful to the anonymous referees
for many helpful suggestions and for pointing out relevant papers [5,6,8,9,13–
15,25,26,38,39]. Research supported in part by grants from the Natural Sci-
ences and Engineering Research Council of Canada (NSERC) and MITACS,
and by the Canada Research Chairs program.

22

References

[1] K. M. Anstreicher, Towards a practical volumetric cutting plane method for
convex programming, SIAM Journal on Optimization, 9 (1999), 190-206.

[2] A. Baltz and A. Srivastav, Fast approximation of minimum multicast congestion
- implementation versus theory, RAIRO Operations Research, 38 (2004), 319-
344.

[3] L. Behjat, New modeling and optimization techniques for the global routing
problem, Ph.D. Thesis, University of Waterloo, 2002.

[4] L. Behjat, A. Vannelli and W. Rosehart, Integer linear programming models
for global routing, INFORMS Journal on Computing, 18(2) (2005), 137-150.

[5] Y. J. Chang, Y. T. Lee and T. C. Wang, NTHU-Route 2.0: a fast and
stable global router, Proceedings of IEEE/ACM Conference on Computer Aided
Design (ICCAD 2008), 338-343.

[6] H. Y. Chen, C. H. Hsu and Y. W. Chang, high performance global routing with
fast overflow reduction, Proceedings of IEEE Asia and South Pacific Design
Automation Conference (ASP-DAC 2009), 582-587.

[7] M. Chleb́ık and J. Chleb́ıková, Approximation hardness of the Steiner tree
problem, Proceedings of the 8th Scandinavian Workshop on Algorithm Theory
(SWAT 2002), LNCS 2368, 170-179.

[8] M. Cho, K. Lu, K. Yuan and D. Z. Pan, BoxRouter 2.0: a hybrid and robust
global router with layer assignment for routability, ACM Transactions on
Design Automation of Electronic Systems, 14(2) (2009).

[9] C. C. N. Chu and Y. C. Wong, Flute: fast lookup table based rectilinear
Steiner minimal tree algorithm for VLSI design, IEEE Transactions on CAD
of Integrated Circuits and Systems, 27(1) (2008), 70-83.

[10] M. D. Grigoriadis and L. G. Khachiyan, Coordination complexity of parallel
price-directive decomposition, Mathematics of Operations Research, 2 (1996),
321-340.

[11] M. Grötschel, L. Lovász, and A. Schrijver, The ellipsoid method and its
consequences in combinatorial optimization, Combinatorica, 1 (1981), 169-197.

[12] F. Hadlock, Finding a maximum cut of a planar graph in polynomial time,
SIAM Journal on Computing, 4(3) (1975), 221-225.

[13] J. Hu, J. A. Roy and I. L. Markov, Sidewinder: A scalable ILP based router,
Proceedings of ACM Workshop on System Level Interconnect Prediction (SLIP
2008), 73-80.

[14] ISPD global routing contest and benchmark suite (2007).
http://archive.sigda.org/ispd2007/contest.html

23

[15] ISPD global routing contest and benchmark suite (2008).
http://archive.sigda.org/ispd2008/contests/ispd08rc.html

[16] K. Jansen and H. Zhang, Approximation algorithms for general packing
problems and their application to the multicast congestion problem,
Mathematical Programming, 114(1) (2008), 183-206.

[17] R. Kastner, Methods and algorithms for coupling reduction, M.S. Thesis,
Department of Electrical and Computer Engineering, Northwestern University,
2000.

[18] R. Kastner, Labyrinth: A global router and routing development tool.
http://cseweb.ucsd.edu/~kastner/research/labyrinth/

[19] K. Kozminski, MCNC homepage.
http://www.cbl.ncsu.edu/benchmarks/layoutsynth92/

[20] E. S. Kuh and M. Marek-Sadowska, Global routing, in Layout design and
verification (T. Ohtsuki Eds.), Elsevier Science Publishers B.V., Amsterdam,
1985, vol. 1, 133-168.

[21] C. Y. Lee, An algorithm for path connection and its application, IRE
Transactions on Electronic Computers, 10 (1961), 346-365.

[22] T. Lengauer, Combinatorial algorithms for integrated circuit layout, J. Wiley,
New York, 1990.

[23] T. Lengauer and M. Lungering, Provably good global routing of integrated
circuits, SIAM Journal on Optimization, 11(1) (2000), 1-30.

[24] K. Mehlhorn, A faster approximation algorithm for the Steiner problem in
graphs, Information Processing Letters 27 (1988), 125-128.

[25] M. D. Moffitt, Maizerouter: engineering an effective global router, IEEE
Transactions on CAD of Integrated Circuits and Systems, 27(11) (2008), 2017-
2026.

[26] M. M. Ozdal and M. D. F. Wong, Archer: a history-based global routing
algorithm, IEEE Transactions on CAD of Integrated Circuits and Systems,
28(4) (2009), 528-540.

[27] W. R. Pulleyblank, Two Steiner tree packing problems, Proceedings of the 27th
Annual ACM Symposium on Theory of Computing (STOC 1995), 383-387.

[28] P. Raghavan, Probabilistic construction of deterministic algorithms:
approximating packing integer programs, Journal of Computer and System
Sciences, 37 (1988), 130-143.

[29] P. Raghavan and C. D. Thompson, Randomized rounding: a technique for
provably good algorithms and algorithmic proofs, Combinatorica, 7 (4) (1987),
365-374.

24

[30] G. Robins and A. Zelikovsky, Improved Steiner tree approximation in graphs,
Proceedings of the 11th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA 2000), 770-779.

[31] N. Sherwani, Algorithms for VLSI physical design automation, Kluwer
Academic Publishers, Dordrecht, 1999.

[32] E. Shragowitz and S. Keel, A global router on a multi-commodity flow model,
Interaction, 5 (1987), 3-16.

[33] T. Terlaky, A. Vannelli, and H. Zhang, On routing in VLSI design and
communication networks, Discrete Applied Mathematics, 156 (11) (2008), 2178-
2194.

[34] A. Vannelli, An adaptation of the interior point method for solving the global
routing problem, IEEE Transactions on Computer-Aided Design, 10 (2) (1991),
193-203.

[35] D. M. Warme, Spanning Trees in Hypergraphs with Applications to Steiner
Trees, Ph.D. Thesis, Computer Science Department, University of Virginia,
1998.

[36] D. M. Warme, P. Winter and M. Zachariasen, Exact algorithms for plane Steiner
tree problems: a computational study, in Advances in Steiner Trees (D.Z. Du,
J.M. Smith and J.H. Rubinstein Eds.), Kluwer Academic Publishers, 2000, 81-
116.

[37] D. M. Warme, P. Winter and M. Zachariasen, GeoSteiner homepage.
http://www.diku.dk/hjemmesider/ansatte/martinz/geosteiner/

[38] T. H. Wu, A. Davoodi and J. T. Linderoth, GRIP: global routing via integer
programming, IEEE Transactions on CAD of Integrated Circuits and Systems,
30(1) (2011), 72-84.

[39] Y. Xu, Y. Zhang and C. Chu, FastRoute 4.0: global router with efficient via
minimization, Proceedings of IEEE Asia and South Pacific Design Automation
Conference (ASP-DAC 2009), 576-581.

[40] Z. Yang, S. Areibi and A. Vannelli, An ILP based hierarchical global routing
approach for VLSI ASIC design, Optimization Letters, 1(3) (2007), 281-297.

25

