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Abstract We show that the simplex method with Dantzig’s pivoting rule may require an exponential
number of iterations over two highly degenerate instances. The feasible region of the first instance is a full
dimensional simplex, and a single point for the second one. In addition, the entries of the constraint matrix,
the right-hand-side vector, and the cost vector are {0, 1, 2}-valued. Those instances, with few vertices and
small input data length, illustrate the impact of degeneracy on simplex methods.
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1. Introduction

While simplex methods are highly efficient in practice for solving linear optimization, many
instances requiring an exponential number of iterations are known. One such instance is
the Klee-Minty cube [6] and its variants. In dimension m, the simplex method visits all the
2m non-degenerate basic feasible solutions corresponding to the vertices of the Klee-Minty
cube. Thus, the simplex method requires 2m − 1 iterations.

In this note, we essentially perturb the right-hand-side of a Klee-Minty cube considered
by Kitahara and Mizuno [4, 5] so that the feasible region becomes a full dimensional simplex.
Further perturbing the right-hand-side, the feasible region is reduced to a zero-dimensional
simplex, i.e. a single point. Let (LO0) denote the linear optimization instance considered
by Kitahara and Mizuno, and (LO1) and (LO2) the instances obtained by perturbing the
right-hand-side of (LO0). We observe that the analysis of Kitahara and Mizuno, showing
that (LO0) requires 2

m−1 iterations, can be adapted to show that (LO1) and (LO2) require,
respectively, 2m−1 + 1 and 2m − 1 iterations. For both (LO1) and (LO2), an exponential
number of iterations are performed at a single degenerate vertex. In addition, the entries of
the constraint matrix, the right-hand-side vector, and the cost vector are {0, 1, 2}-valued for
both (LO1) and (LO2). Those instances, with few vertices and small input data length, illus-
trate the impact of degeneracy on simplex methods, and could be of instructional interest.
Relevant instances arise from linear optimization formulations of combinatorial problems,
such as set covering and set partitioning, which are degenerate and with small input data
length.

In a 1980 technical report, reprinted as [9] with a postscript by Avis [1], Zadeh introduced
and studied instances requiring an exponential number of iterations whose entries are small
integers. In addition, Zadeh pointed out that his constructions, and many others requiring
an exponential number of iterations, occur in so-called deformed products of polytopes. For
more details about pivot based algorithms, instances requiring an exponential number of
iterations for simplex methods, and related results, we refer to the surveys of Meunier [7],
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Terlaky and Zhang [8], and Ziegler [10], and to the recent results of Avis and Friedmann [2],
and references therein.

2. Two Small Degenerate Linear Optimization Instances

Let 0 denote the origin, and 2 the vector whose coordinates are all equal to 2. The linear
optimization instance (LO0) considered by Kitahara and Mizuno in [4, 5], with x ∈ Rm, is:

maximize
m∑
i=1

xi

subject to x1 ≤ 1

2
k−1∑
i=1

xi + xk ≤ 2k − 1 for k = 2, 3, . . . ,m

x ≥ 0

(LO0)

The feasible region of (LO0) is a Klee-Minty cube and the simplex method with Dantzig’s
pivoting rule visits all its vertices. Thus, 2m − 1 iterations may be required to solve the
standard form of (LO0) as observed by Kitahara and Mizuno [4, 5].

The first small linear optimization instance (LO1) is obtained from (LO0) by multiplying
the first inequality of (LO0) by 2, and setting to 2 the right-hand-side of the next m − 1
inequalities:

maximize
m∑
i=1

xi

subject to 2x1 ≤ 2

2
k−1∑
i=1

xi + xk ≤ 2 for k = 2, 3, . . . ,m

x ≥ 0

(LO1)

One can check that the first m − 1 inequalities of (LO1) are redundant, and that the
feasible region of (LO1) is the simplex obtained by intersecting the positive orthant with
the half-space defined by 2

∑m−1
i=1 xi + xm ≤ 2. The vertices of this simplex are

{0, e1, e2, . . . , em−1, 2em}

where ei denotes the i-th unit vector of Rm. Note that e1 is a highly degenerate vertex of
degree 2m− 1 as it satisfies with equality all the inequalities of (LO1) except x1 ≥ 0. The
standard form associated to (LO1), with slack variable y ∈ Rm, is:

maximize
m∑
i=1

xi

subject to 2x1 + y1 = 2

2
k−1∑
i=1

xi + xk + yk = 2 for k = 2, 3, . . . ,m

x ≥ 0, y ≥ 0

(LO∗
1)

The second small degenerate linear optimization instance (LO2) is obtained from (LO0)
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by setting to 0 the right-hand-side of the first m inequalities:

maximize
m∑
i=1

xi

subject to x1 ≤ 0

2
k−1∑
i=1

xi + xk ≤ 0 for k = 2, 3, . . . ,m

x ≥ 0

(LO2)

One can check that the feasible region of (LO2) is reduced to the origin 0 which forms the
unique and highly degenerate optimal point. The standard form associated to (LO2) is:

maximize
m∑
i=1

xi

subject to x1 + y1 = 0

2
k−1∑
i=1

xi + xk + yk = 0 for k = 2, 3, . . . ,m

x ≥ 0, y ≥ 0

(LO∗
2)

Proposition 2.1.
(i) For both (LO1) and (LO2), the entries of the constraint matrix, the right-hand-side vector,

and the cost vector are {0, 1, 2}-valued.
(ii) The feasible region of (LO1) is a full dimensional simplex including a highly degenerate

vertex, and that of (LO2) is reduced to a highly degenerate point.

(iii) For (LO∗
1), starting from (x,y) = (0,2), the simplex method with Dantzig’s pivoting rule

visits exactly 3 distinct vertices, and makes 2m−1 + 1 iterations, including 2m−1 − 1 at a
highly degenerate vertex.

(iv) For (LO∗
2), starting from (x,y) = (0,0), the simplex method with Dantzig’s pivoting rule

visits exactly 1 vertex, and makes 2m − 1 iterations at this highly degenerate vertex.

3. Proof of Proposition 2.1

Items (i) and (ii) of Proposition 2.1 restate the features of (LO1) and (LO2). Item (iii)
deals with the behaviour of the simplex method with Dantzig’s pivoting rule for (LO∗

1). We
first outline the simplex pivot sequences for (LO∗

1) with m = 3; that is:

maximize x1 +x2 +x3

subject to 2x1 +y1 = 2
2x1 +x2 +y2 = 2
2x1 +2x2 +x3 +y3 = 2

x1, x2, x3, y1, y2, y3 ≥ 0

Setting y1, y2, and y3 as initial basic variables, the first dictionary, or tableau, is:

z = x1 +x2 +x3

y1 = 2 −2x1

y2 = 2 −2x1 −x2

y3 = 2 −2x1 −2x2 −x3
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where nonnegativity conditions x ≥ 0 and y ≥ 0 are omitted, and z represents the objective
function. The reduced costs, i.e. the coefficients of nonbasic variables x1, x2, and x3 in z,
are positive. Thus, dual feasibility is not satisfied and the dictionary is not optimal.

The adopted pivoting rule is Dantzig’s rule, and the minimum index rule is used in case
of ties as follows:

The entering variable should be a nonbasic variable with the largest reduced cost. If two
or more nonbasic variables have the largest reduced cost, the one with the smallest index
is chosen.

The leaving variable should be a basic variable reaching 0 as the entering variable in-
creases. If two or more basic variables reach 0 simultaneously, the one with the smallest
index is chosen.

Applying this pivoting rule to the first dictionary, x1 is the entering variable, y1 is the leaving
one, and the second dictionary is:

z = 1 −y1
2

+x2 +x3

x1 = 1 −y1
2

y2 = y1 −x2

y3 = y1 −2x2 −x3

x2 is the next entering variable, y2 the leaving one, and the third dictionary is:

z = 1 +y1
2

−y2 +x3

x1 = 1 −y1
2

x2 = y1 −y2
y3 = −y1 +2y2 −x3

x3 is the next entering variable, y3 the leaving one, and the fourth dictionary is:

z = 1 −y1
2

+y2 −y3

x1 = 1 −y1
2

x2 = y1 −y2
x3 = −y1 +2y2 −y3

y2 is the next entering variable, x2 the leaving one, and the fifth dictionary is:

z = 1 +y1
2

−x2 −y3

x1 = 1 −y1
2

y2 = y1 −x2

x3 = y1 −2x2 −y3

y1 is the next entering variable, x1 the leaving one, the sixth dictionary is:

z = 2 −x1 −x2 −y3

y1 = 2 −2x1

y2 = 2 −2x1 −x2

x3 = 2 −2x1 −2x2 −y3
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which is optimal as all reduced costs are nonpositive, and the optimal value is 2.
The observed pivot sequence starts at the initial basic feasible solution (x,y) = (0,2)

with an objective value of 0. The highly degenerate second basic feasible solution is (x,y) =
(e1,0) with an objective value of 1. The following 22 − 1 basic feasible solutions remain
at the same vertex with an objective value of 1 until the penultimate iteration. The last
iteration reaches the optimal basic feasible solution (x,y) = (2e3,2−2e3) with an objective
value of 2. This sequence of 5 simplex pivots is summarized in (S3

1) where 2 square blocks
are highlighted to layout the recursive pattern followed by the sequence (Sm

1 ) of the 2m−1

simplex pivots required for m ≥ 3. The sequence (Sm
1 ) is described in Proposition 3.1 which

implies item (iii) of Proposition 2.1

iteration: 0 1 2 3 4 5

basic variables:
y1 x1 x1 x1 x1 y1
y2 y2 x2 x2 y2 y2
y3 y3 y3 x3 x3 x3

(S3
1)

Proposition 3.1. For m ≥ 3, the sequence (Sm
1 ) of the 2m−1 + 1 pivots followed by the

simplex method with Dantzig’s pivoting rule for (LO∗
1) satisfies:

(i) the basic variables at iteration 0 are {y1, y2, . . . , ym}; that is, the initial basic feasible
solution is (x,y) = (0,2),

(ii) the basic variables at iteration 2m−1 + 1 are {y1, y2, . . . , ym−1, xm},
(iii) ym remains a basic variable until iteration 2m−2 where it is replaced by xm which remains

a basic variable until iteration 2m−1 + 1,

(iv) for iterations 1 to 2m−2, the basic variables are obtained by adding ym to the basic variables
of (Sm−1

1 ),

(v) for iterations 2m−2+1 to 2m−1, the basic variables are obtained by adding xm to the basic
variables corresponding to the iterations 2m−2 to 1 of (Sm−1

1 ).

Consequently, starting from the initial basic feasible solution (x,y) = (0,2) with an objective
value of 0, the pivot sequence first reaches the highly degenerate second basic feasible solution
(x,y) = (e1,0) with an objective value of 1. The following 2m−1 − 1 basic feasible solutions
remain at the same vertex with an objective value of 1 until the penultimate iteration. The
last iteration reaches the optimal basic feasible solution (x,y) = (2em,2 − 2em) with an
objective value of 2. Thus, while visiting exactly 3 vertices, the simplex method with Dantzig’s
pivoting rule solves (LO∗

1) by 2m−1+1 iterations — including 2m−1−1 iterations at a highly
degenerate vertex.

Proof. The exponential number of iterations results from the fact that for any k = 2, . . . ,m,
xk becomes a basic variable for the first time at iteration 2k−2 + 1. This can be shown
recursively by exploiting the lower triangular structure of the dictionaries. The analysis
is essentially adapted from the one used by Kitahara and Mizuno [5] to show that (LO0)
requires 2m − 1 iterations. Thus, we simply illustrate the recursive pattern from (Sm

1 ) to
(Sm+1

1 ) for m = 2 and 3. One can check that (S2
1) is equal to:

iteration: 0 1 2 3

basic variables:
y1 x1 x1 y1
y2 y2 x2 x2

(S2
1)
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Note that the first highlighted block of (S3
1) corresponds to the iterations 1 and 2 of (S2

1),
and that the second highlighted block of (S3

1) is the mirror image of the first highlighted
block. Then, one can check that (S4

1) is equal to:

iteration: 0 1 2 3 4 5 6 7 8 9

basic variables:

y1 x1 x1 x1 x1 x1 x1 x1 x1 y1
y2 y2 x2 x2 y2 y2 x2 x2 y2 y2
y3 y3 y3 x3 x3 x3 x3 y3 y3 y3
y4 y4 y4 y4 y4 x4 x4 x4 x4 x4

(S4
1)

Note that the first highlighted block of (S4
1) corresponds to the iterations 1,2,3 and 4 of (S3

1),
and that the second highlighted block of (S4

1) is the mirror image of the first highlighted
block. The variable xk is bolded the first time it becomes basic; that is, at iteration 2k−2 +
1.

Item (iv) of Proposition 2.1 deals with the behaviour of the simplex method with
Dantzig’s pivoting rule for (LO∗

2). We first outline the simplex pivot sequences for (LO∗
2)

with m = 2; that is:
maximize x1 +x2

subject to x1 +y1 = 0
2x1 +x2 +y2 = 0

x1, x2, y1, y2 ≥ 0

Setting y1 and y2 as initial basic variables, the first dictionary is:

z = x1 +x2

y1 = −x1

y2 = −2x1 −x2

where nonnegativity conditions x ≥ 0 and y ≥ 0 are omitted, and z represents the objective
function. While (x,y) = (0,0) corresponds to an optimal vertex, the reduced costs, i.e.
the coefficients of nonbasic variables x1 and x2 in z, are positive. Thus, dual feasibility is
not satisfied and the dictionary is not optimal. As for (LO∗

1), the adopted pivoting rule is
Dantzig’s rule, and the minimum index rule is used in case of ties.

Applying the pivoting rule to the first dictionary, x1 is the entering variable, y1 is the
leaving one, and the second dictionary is:

z = −y1 +x2

x1 = −y1
y2 = 2y1 −x2

x2 is the next entering variable, y2 the leaving one, and the third dictionary is:

z = y1 −y2

x1 = −y1
x2 = 2y1 −y2

y1 is the next entering variable, x1 the leaving one, and the fourth dictionary is optimal as
all the reduced costs are nonpositive, and the optimal value is 0:

z = −x1 −y2

y1 = −x1

x2 = −2x1 −y2
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The observed pivot sequence starts at the initial basic feasible solution (x,y) = (0,0) with
an objective value of 0. The following 22 − 1 basic feasible solutions remain at the same
vertex with an objective value of 0 until reaching an optimal basis for the same solution
(x,y) = (0,0). Using an approach similar to the one used for item (iii) of Proposition 2.1,
one can derive Proposition 3.2 which implies item (iv) of Proposition 2.1.

Proposition 3.2. For m ≥ 3, the sequence (Sm
2 ) of the 2m−1 pivots followed by the simplex

method with Dantzig’s pivoting rule for (LO∗
2) satisfies:

(i) the basic variables at iteration 0 are {y1, y2, . . . , ym}; that is, the initial basic feasible
solution is (x,y) = (0,0),

(ii) the basic variables at iteration 2m − 1 are {y1, y2, . . . , ym−1, xm},
(iii) ym remains a basic variable until iteration 2m−1 − 1 where it is replaced by xm which

remains a basic variable until iteration 2m − 1,

(iv) for iterations 0 to 2m−1 − 1, the basic variables are obtained by adding ym to the basic
variables of (Sm−1

2 ),

(v) for iterations 2m−1 to 2m − 1, the basic variables are obtained by adding xm to the basic
variables corresponding to the iterations 2m−1 − 1 to 0 of (Sm−1

2 ).

Consequently, starting from the initial basic feasible solution (x,y) = (0,0) with an objective
value of 0, the following 2m − 1 basic feasible solutions remain at the same vertex with an
objective value of 0 until reaching an optimal basis for the same solution (x,y) = (0,0).
Thus, while visiting exactly one vertex, the simplex method with Dantzig’s pivoting rule
solves (LO∗

2) by 2m − 1 iterations at a highly degenerate vertex.

Proof. The exponential number of iterations results from the fact that for any k = 2, . . . ,m,
xk becomes a basic variable for the first time at iteration 2k−1. As for the proof of Propo-
sition 3.1, we simply illustrate the recursive pattern from (Sm

2 ) to (Sm+1
2 ) for m = 2. One

can check that (S2
2) and (S3

2) are equal to:

iteration: 0 1 2 3

basic variables:
y1 x1 x1 y1
y2 y2 x2 x2

(S2
2)

iteration: 0 1 2 3 4 5 6 7

basic variables:
y1 x1 x1 y1 y1 x1 x1 y1
y2 y2 x2 x2 x2 x2 y2 y2
y3 y3 y3 y3 x3 x3 x3 x3

(S3
2)

Note that the first highlighted block of (S3
2) corresponds to the iterations 0, 1, 2, and 3

of (S2
2), and that the second highlighted block of (S3

2) is the mirror image of the first
highlighted block. The variable xk is bolded the first time it becomes basic; that is, at
iteration 2k−1.
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A. Appendix

This section complements the sketch of the proofs for Propositions 3.1 and 3.2. Since the
proofs are very similar, we only detail the proof of Proposition 3.2.

The sequence (Sm
2 ) of basic feasible solutions generated by the simplex method with

Dantzig’s pivoting rule for the problem (LO∗
2) satisfies the following properties:

(i) the basic variables at iteration 0 are {y1, y2, . . . , ym}; that is, the initial basic feasible
solution is (x,y) = (0,0),

(ii) the number of iterations is 2m − 1,

(iii) the reduced cost of any dictionary is {−1, 1}-valued,
(iv) the basic variables at iteration 2m − 1 are {y1, . . . , ym−1, xm}; that is, the optimal basic

feasible solution is (x,y) = (0,0).
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Proof. The properties are shown inductively. As noted in the sketch of the proof of Proposi-
tion 3.2, the properties hold for m = 2. Let assume the properties hold until k and consider
the sequence (Sk+1

2 ) . The initial dictionary, associated to the initial solution (x,y) = (0,0)
with basic variables {y1, y2, . . . , yk+1}, is:

z = x1 · · · +xk +xk+1

y1 = −x1
...

yk = −2x1 · · · −xk

yk+1 = −2x1 · · · −2xk −xk+1

(D0)

Note that the nonbasic variable xk+1 appears only in the objective function and in the last
constraint of (D0). As its reduced cost is 1, xk+1 is not chosen as an entering variable by
Dantzig’s pivoting rule until all other reduced costs are less than 1. Furthermore, yk+1 is
not chosen as a leaving variable when other basic variable can be chosen, since each right
hand side constant is zero and the minimum index rule is used in case of ties. While the
variable xk+1 remain nonbasic, the dictionaries are essentially, i.e. except for the last row
and column, in a one-to-one correspondence with the dictionaries associated to (Sk

2 ). Note
that the reduced costs are {−1, 1}-valued and that they, except the one for xk+1, become
less than 1 precisely when a dictionary associated to an optimal basic feasible solution of
(Sk

2 ) is obtained. In other words, the first 2k − 1 iterations of (Sk+1
2 ) can be associated to

the 2k − 1 iterations of (Sk
2 ). The next dictionary; that is, the dictionary at iteration 2k

with basic variables {y1, . . . , yk−1, xk, yk+1}, is equal to:

z = −x1 · · · −yk +xk+1

y1 = −x1
...

xk = −2x1 · · · −yk
yk+1 = 2x1 · · · +2yk −xk+1

(D2k)

At this iteration, xk+1 is chosen as the entering variable, and the next dictionary is equal
to:

z = x1 · · · +yk −yk+1

y1 = −x1
...

xk = −2x1 · · · −yk
xk+1 = 2x1 · · · +2yk −yk+1

(D2k+1)

Note that reduced cost is {−1, 1}-valued. The nonbasic variable yk+1 appears only in the
objective function and in the last constraint of (D2k+1). As its reduced cost is −1, yk+1 is not
chosen as an entering variable by Dantzig’s pivoting rule until the last pivot. Furthermore,
xk+1 is not chosen as a leaving variable when other basic variable can be chosen, since each
right hand side constant is zero and the minimum index rule is used in case of ties. Hence,
the last 2k − 1 iterations of (Sk+1

2 ) can be associated to the 2k − 1 iterations of (Sk
2 ). Note

that the dictionary (D2k+1) is, except for the last row and column, the same as dictionary
(D0) where yk and xk are swapped. Thus, the optimal dictionary; that is, the dictionary at
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iteration 2k+1 with basic variables {y1, . . . , yk, xk+1}, is equal to:

z = −x1 · · · −xk −yk+1

y1 = −x1
...

yk = −2x1 · · · −xk

xk+1 = −2x1 · · · −2xm −yk+1

(D2k+1−1)

Hence, the properties hold for k + 1.
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