
Journal of the Operations Research Society of Japan c⃝ The Operations Research Society of Japan
Vol. 61, No. 2, April 2018, pp. 186–196

AN ENHANCED PRIMAL-SIMPLEX BASED TARDOS’ ALGORITHM

FOR LINEAR OPTIMIZATION

Shinji Mizuno Noriyoshi Sukegawa Antoine Deza
Tokyo Institute of Technology Chuo University McMaster University / Université Paris Sud
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Abstract While the algorithmic complexity is in general worse than the one of Tardos’ original algorithms,
the authors, motivated by the practicality of such methods, recently proposed a simplex-based variant that
is strongly polynomial if the coefficient matrix is totally unimodular and the auxiliary problems are non-
degenerate. In this paper, we introduce a slight modification that circumvents the determination of the
largest sub-determinant while keeping the same theoretical performance. Assuming that the coefficient ma-
trix is integer-valued and the auxiliary problems are non-degenerate, the proposed algorithm is polynomial
in the dimension of the input data and the largest absolute value of a sub-determinant of the coefficient
matrix.
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1. Introduction, Main Result, and Related Work

1.1. Introduction

Linear optimization deals with the minimization problem: min{ c⊤x | Ax = b, x ≥ 0 }
where the coefficient matrix A ∈ Rm×n, the right hand side vector b ∈ Rm, and the objective
function vector c ∈ Rn are given data. The celebrated Tardos’ algorithm [24, 25] for linear
optimization runs in polynomial time in m, n, and the size LA of A. We recall that the size
of a matrix A = [aij] is defined for integer A as LA = mn+

∑
i,j(1+⌈log2(|aij|+ 1)⌉). Thus,

Tardos’ algorithm is strongly-polynomial if LA is polynomial in m and n which is the case
for combinatorial problems such as minimum cost flow, bipartite matching, multicommodity
flow, and vertex packing in chordal graphs.

A key element of Tardos’ algorithm is to identify the coordinates equal to zero at opti-
mality by solving several auxiliary dual problems via an ellipsoid or interior-point method.
Considering only the primal problem, Orlin [17] proposed a modification of Tardos’ algo-
rithm which specifically identifies the coordinates strictly positive at optimality. Mizuno [15]
modified Tardos’ algorithm by using a dual simplex method to solve the auxiliary problems.
Assuming that A is integer-valued and the auxiliary problems are non-degenerate, Mizuno’s
algorithm runs in polynomial time in m, n, and ∆A. We recall that ∆A denotes the largest
absolute value of a sub-determinant of A and that the non-degeneracy assumption holds
if the basic variables are strictly positive for every basic feasible solution. In particular,
Mizuno’s algorithm is strongly polynomial if A is totally unimodular and non-degeneracy
holds. Note that the complexity analysis uses Kitahara and Mizuno’s bounds [11, 12] which
depend on the values of the entries rather than on the data length. Thus, the complexity of
Mizuno’s algorithm depends on ∆A rather than on LA. Combining Orlin’s and Mizuno’s ap-
proaches, the authors introduced a primal-simplex based Tardos’ algorithm with the same
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theoretical complexity as Mizuno’s algorithm, see [16]. Tardos’ algorithm and the men-
tioned modifications by Orlin, Mizuno, and Mizuno et al. are of rather theoretical interest.
In particular, the determination of ∆A might be challenging as the naive upper bound of
m!Am

max is typically impractically large; we recall that Amax = max |ai,j|. In addition, the
coefficients of the auxiliary problems might be impractically large too. For instance, the
size of the coefficients in Orlin’s algorithm can be m times larger than those in Tardos’
or Mizuno’s algorithm. The complexity analysis of the Mizuno et al. algorithm requires
total unimodularity for A. Zadeh [29] showed that the original network simplex method
may require an exponential number of pivots for some specific min-cost flow problems; that
is, the simplex method may be inefficient even if A is totally unimodular. This issue was
addressed by Orlin [18] who proposed a variant of the network simplex method which is
strongly polynomial for min-cost flow problems.

1.2. Main result

We propose an enhanced primal-simplex based Tardos’ algorithm circumventing the com-
putation of ∆A while achieving a strong-polynomial complexity for a slightly wider class of
problems. The enhanced algorithm is obtained by modifying the auxiliary problem used in
the Mizuno et al. algorithm. Assuming A is integer-valued and the auxiliary problems are
non-degenerate, the enhanced Mizuno et al. algorithm is polynomial in m, n, and ∆A. Thus
the strong polynomiality holds for a slightly larger class than totally unimodular matrices,
e.g. a coefficient matrix resulting from the addition to a totally unimodular matrix of a
fixed number of rows (constraints) with entries polynomially bounded in m and n. The
determination of ∆A is circumvented via a simple search procedure and the practicality of
the algorithm improves as the coefficients of the auxiliary problems are typically substan-
tially smaller in the enhanced Mizuno et al. algorithm. Note that the results hold under
dual degeneracy via lexicographic treatment of the basis exchange in Dantzig’s rule. After
recalling some related work in Section 1, the pre-processing and reformulations into auxil-
iary problems are presented in Section 2. Sections 3 and 4 outline the proposed algorithm:
the main procedure – which requires the determination of ∆A – and, then, the enhanced
algorithm which circumvents the determination of ∆A. The correctness and the complexity
analysis of the algorithm are proven in Sections 5 and 6.

1.3. Related work

We recall a few results dealing with the geometry, combinatorics and computational aspects
of linear optimization. Finding a good bound on the maximal diameter ∆(n,m) of the
vertex-edge graph of a polytope in terms of its dimension n and the number of its facets m
is one of the basic open questions in polytope theory. Although some bounds are known, the
behaviour of the function ∆(n,m) is largely unknown. The Hirsch conjecture, formulated
in 1957 and reported in [7], states that ∆(n,m) is linear in m and n: ∆(n,m) ≤ m − n.
The conjecture was recently disproved by Santos [20]. However, the asymptotic behaviour
of ∆(n,m) is not well understood: the best upper bounds — due to Kalai and Kleit-
man [10], Todd [27], and the subsequent improvements [22, 23] — are quasi-polynomial.
The behaviour of ∆(n,m) is historically closely connected with the theory of the simplex
method as ∆(n,m) is a lower bound for the worst complexity of simplex methods. Bonifas
et al. [3] showed that the diameter is an O(n4∆2

A log(n∆A)) extending the previous bound
of O(m16n3(logmn)3) by Dyer and Frieze [8] for totally unimodular instances. Dadush and
Hähnle [6] used another parameter associated to the coefficient matrix A, called the cur-
vature δA, to analyze the behaviour of the shadow simplex method. They showed that the
expected number of pivots of the shadow simplex method is an O(n

3

δA
log n

δA
). Both δA and
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∆A can be regarded as a measure of how well-conditioned A is. Note that 1/δA ≤ n∆2
A. Un-

der a non-degeneracy assumption weaker than the one assumed for the complexity analysis
of our algorithm, Bilen, Csizmadia, and Illés [2] proposed an algorithm for linear feasibility
which runs in polynomial time in m and ∆ where ∆ involves A and b, and hence differs
from ∆A. Bilen, Csizmadia, and Illés’ algorithm is a version of the simplex method with a
special pivot rule for dealing with degenerate bases, See Csizmadia [5] for further details.
Vavasis and Ye [28] proposed a primal-dual path-following interior-point algorithm with an
O(n3.5 log(nχ̄A)) iteration complexity bound where χ̄A can be regarded as condition num-
ber associated with A. Megiddo et al. [13] proposed a modification that circumvents the
computation of χ̄A to enhance the implementability. Another variant of Vavasis and Ye
algorithm was proposed by Monteiro and Tsuchiya [14]

In a similar fashion, we circumvent the determination of ∆A while Megiddo et al. cir-
cumvent the determination of χ̄A. While we assume non-degeneracy, Dadush and Hähnle
algorithm is non-deterministic. In practice, degenerate pivots are typically rare and our
algorithm may exhibit reasonable performance under moderate degeneracy. The proposed
algorithm may visit infeasible points as, for example, Anstreicher and Terlaky’s monotonic
build-up simplex and Paparrizos exterior point simplex, or Fukuda and Terlaky’s criss-cross
method; see [1, 9, 19, 26] and references therein.

2. Pre-processing and Reformulation via Auxiliary Problems

We consider the following linear optimization formulation:

minimize c⊤x
subject to Ax = b,

x ≥ 0
(2.1)

where A ∈ Rm×n, b ∈ Rm, and c ∈ Rn are given. In addition, A is assumed to have full row
rankm and be integer. We recall that Amax and ∆A, respectively, denote the largest absolute
value of an entry and a sub-determinant of A. Note that Amax ≤ ∆A and ∆A ≤ m!Am

max.

2.1. Pre-processing and problem reformulations: reduction and scaling

An optimal solution of (2.1), if any, is assumed without loss of generality to be unique.
Otherwise c could be perturbed by (ϵ, ϵ2, . . . , ϵn) for a sufficiently small ϵ > 0. Such per-
turbations have no impact on the analysis of the proposed algorithm as it is based on the
results of Kitahara and Mizuno [11, 12] which are independent of c. From an algorithmic
viewpoint, perturbations are not required as one can instead consider a lexicographical order
if a tie occurs when choosing the entering variable via the simplex method with Dantzig’s
rule.

Let K∗ ⊆ N = {1, 2, . . . , n} be the set of indices i such that x∗
i > 0 for the optimal

solution x∗ of (2.1) – which is assumed to exist. The proposed algorithm inductively builds
a subset K̄ ⊆ K∗ through solving auxiliary problems. If K̄ = K∗, we obtained the optimal
solution. Otherwise, we obtain a smaller, yet equivalent, problem by deleting the variables
corresponding to K̄. We first observe that (2.1) is equivalent to:

minimize c⊤
K̄
xK̄ + c⊤KxK

subject to AK̄xK̄ + AKxK = b,
xK̄ free, xK ≥ 0

(2.2)

where K = N \ K̄ and K̄ is an arbitrary subset of K∗, and XM denotes the restriction of
X to the coordinates belonging to M .
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The reduced problem (2.3) is obtained by eliminating free variables in xK̄ as follows. Let
G be a m×m sub-matrix of A such that the first |K̄| columns form AK̄ , and H = G−1. The
Gaussian elimination for Ax = b of the variables xi for i ∈ K̄ is performed via HAx = Hb.
Let H1 consist of the first |K̄| rows of H, and H2 denote the remainder. The equality
HAx = Hb yields:

H1AK̄xK̄ +H1AKxK = H1b,
H2AK̄xK̄ +H2AKxK = H2b

where H1AK̄ = I and H2AK̄ = 0 by the definition of H. Hence, the reduced problem is:

minimize (c⊤K − c⊤
K̄
H1AK)xK + c⊤

K̄
H1b

subject to H2AKxK = H2b,
xK ≥ 0.

(2.3)

Let xK be an optimal solution of (2.3). Then x = (xK̄ ,xK) with xK̄ = H1b − H1AKxK

is an optimal solution of (2.2). Setting A′ = H2AK , b
′ = H2b, c

′ = cK − A⊤
KH

⊤
1 cK̄ , and

x′ = xK , the reduced problem (2.3) is reformulated as the standard linear optimization
problem (2.4) where the constant in the objective function is omitted:

minimize c′⊤x′

subject to A′x′ = b′,
x′ ≥ 0.

(2.4)

Observe that HA has full row rank and thus A′ too. Problems (2.1) and (2.4) are equivalent:
If L∗ is an optimal basis of (2.4), then K̄∪L∗ is an optimal basis of (2.1). Let m′ = m−|K̄|,
respectively n′ = n− |K̄|, denote the number of equality constraints and variables of (2.4).
To obtain the desired auxiliary problem, we rewrite (2.4) and get a simplex tableau with
respect to some basis L ⊆ K of A′ and set L̄ = K \ L as follows:

minimize c′⊤x′

subject to x′
L + (A′

L)
−1A′

L̄
x′
L̄
= (A′

L)
−1b′,

x′ ≥ 0.
(2.5)

Considering a scaling factor κ = ∥A′⊤(A′A′⊤)−1b′∥2/(mnn′Amax∆+m′) for some ∆, yields
the following scaled problem:

minimize c′⊤x′

subject to x′
L + (A′

L)
−1A′

L̄
x′
L̄
= (A′

L)
−1b′/κ,

x′ ≥ 0.
(2.6)

The scaling factor κ is always strictly positive in our algorithm and, thus, a basis is optimal
for (2.6) if and only if it is optimal for (2.4) and for the simplex tableau (2.5). Note that
since A′ has full row rank, A′A′⊤ is positive definite and thus (A′A′⊤)−1 is well defined.

2.2. Auxiliary problem

The auxiliary problem is obtained from (2.6) by rounding up the right hand side vector
where ⌈a⌉ denotes the vector whose i-th coordinate is the smallest integer not less than the
i-th coordinate of a:

minimize c′⊤x′

subject to x′
L + (A′

L)
−1A′

L̄
x′
L̄
= ⌈(A′

L)
−1b′/κ⌉,

x′ ≥ 0,
(2.7)
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Note that a feasible basis of (2.6) is feasible for (2.7) as (2.7) is a relaxation of (2.6). The
key feature of (2.7) is that the coordinates of the right hand side vectors are scaled integers,
see Lemma 6. Thus, (2.7) can be solved efficiently by the simplex method, yielding the
strong polynomiality analysis.

3. Main Procedure

The main procedure of the algorithm is frequently called to solve (2.1) and involves, as
subroutine, a two-phase simplex method to solve (2.7), see Section 3.1. While ∆ ≥ ∆A

guarantees that (2.1) is solved by the main procedure, (2.1) may be solved even if ∆ < ∆A.
The enhanced primal-simplex based Tardos’ algorithm is presented in Section 4.

3.1. Two-phase simplex method TwoS((2.1); F, K̄∗)

Input: Problem (2.1).
Output: F which is either infeasible or unbounded or feasible and finite, and an

optimal basis K̄∗ of (2.1) if F = feasible and finite.
Phase I: Solve the following auxiliary problem via the simplex method with Dantzig’s rule:

a non-negative slack variable is added for each constraint and the sum of the slacks is
minimized. The optimal value σ of this auxiliary problem is zero if and only if (2.1) is
feasible. Output infeasible or unbounded for F if σ > 0. If σ = 0, the associated
optimal basis yields a feasible basis K̄0 for (2.1) used to initialize Phase II.

Phase II: Starting from K̄0, solve (2.1) via the simplex method with Dantzig’s rule. Out-
put infeasible or unbounded for F if (2.1) is unbounded; otherwise output feasible
and finite and an optimal basis K̄∗ for (2.1) is obtained.

3.2. Main procedure Proc((2.1), ∆; F, K̄∗)

Input: Problem (2.1) and ∆ > 0.
Output: F which is either infeasible or unbounded, feasible and finite, Degen-

erate, or unidentified, and an optimal basis K̄∗ for (2.1) if F=feasible and finite.
Initialization K̄ := ∅.
Step 1: If K̄ ̸= ∅, remove the variables xi in (2.1) for all i ∈ K̄ to obtain the reduced

problem (2.4). If K̄ = ∅, set A′ = A, b′ = b, c′ = c, and x′ = x. Go to Step 2.
Step 2: Consider the simplex tableau (2.5) associated to a basis L of the reduced prob-

lem (2.3). If (A′
L)

−1b′ = 0, output F=Degenerate. Otherwise, determine κ =
∥A′⊤(A′A′⊤)−1b′∥2/(m′nn′Amax∆+m′) and obtain the auxiliary problem (2.7). Go to
Step 3.

Step 3: Perform TwoS((2.7); F, L∗). Output F if F=infeasible or unbounded. Oth-
erwise, let x′′ be the optimal solution of (2.7) associated to the optimal basis L∗. Output
F=feasible and finite and set K̄∗ = K̄ ∪ L∗ if K̄ ∪ L∗ is an optimal basis for (2.1).
Otherwise, go to Step 4.

Step 4: Update K̄ := K̄ ∪ J with J = { i ∈ L∗ | x′′
i ≥ m′nAmax∆}. If |K̄| = m, output

F=unidentified. Otherwise, go to Step 1.

We show in Section 4 that Proc((2.1), ∆; F, K̄∗) can be used to solve (2.1) if ∆ ≥ ∆A,
and thus to extend the Mizuno et al. [16] primal-simplex based Tardos’ algorithm.

3.2.1. Annotations for Proc((2.1), ∆; F, K̄∗)

We outline the stopping criteria before providing additional details about the main proce-
dure.

(i) If (A′
L)

−1b′ = 0, the original problem (2.1) is degenerate, and (2.3) is either unbounded
or admits zero as an optimal solution.
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(ii) If (2.7) is infeasible then (2.1) is infeasible, and if (2.7) is unbounded then (2.1) is un-
bounded or infeasible. Indeed, (2.7) being a relaxation of (2.6) for any ∆, the infeasibility
of (2.7) implies the infeasibility of (2.6) and of (2.3), and thus of (2.1). If (2.7) is un-
bounded, then (2.6) is unbounded or infeasible, and thus (2.1) is unbounded or infeasible.

The set J defined in Step 4 satisfies J ̸= ∅ (see Lemma 1), and thus the main procedure
is finite as at most m auxiliary problems are solved. As shown in Corollary 1, if ∆ ≥ ∆A,
then x∗

i > 0 for i ∈ J with x∗ the optimal solution of (2.1). Thus, Corollary 1 shows that
J ⊂ K∗ and validates Step 4, and hence, the correctness of the main procedure for ∆ ≥ ∆A.
As the main procedure is guaranteed to solve (2.1) only if ∆ ≥ ∆A, F is set unidentified
if ∆ < ∆A. However, the correct solution may be obtained even if ∆ < ∆A. For example,
if K̄ = ∅; i.e. no reduction is performed in Step 4, and an optimal basis for (2.7) turns out
to be feasible for (2.1) in Step 3, then this basis is optimal for (2.1) as (2.7) is a relaxation
of (2.1).

3.2.2. Warm start for Proc((2.1), ∆; F, K̄∗)

Although the main procedure builds the simplex tableau (2.5) and the reduced problem
(2.3) from scratch at each iteration, it is only to clarify the exposition. Indeed, in practice,
we observe that L∗ \ J can serve as the basis L for (3) at the next iteration, thus enabling
a warm start – as already noticed in the Mizuno et al. algorithm [16].

4. An Enhanced Primal-simplex Based Tardos’ Algorithm

The proposed algorithm circumvents the determination of ∆A via a simple search procedure
in the following algorithm Alg((2.1), ∆0, λ; F, K̄∗) where, typically, one can use ∆0 = 1
and λ = mAmax. Assuming non-degeneracy and ∆A being polynomially bounded in m and
n, the proposed algorithm is strongly polynomial – as shown in Theorem 2.

Input: Problem (2.1), ∆0 > 0, and λ > 1.
Output: F which is either infeasible or unbounded, degenerate, or feasible and

finite and an optimal basis K̄∗ for (2.1) if F=feasible and finite.
Initialization ∆ := ∆0.
Step 1: Perform Proc((2.1), ∆; F, K̄∗). Output F if F=infeasible or unbounded or

F=degenerate. Output F and K̄∗ if F=feasible and finite. Otherwise, go to Step
2.

Step 2: Update ∆ := λ∆. Go to Step 1.

Theorem 1. The enhanced primal-simplex based Tardos’ algorithm Alg((2.1), ∆0, λ; F,
K̄∗) solves (2.1).

Theorem 1 is a consequence of (i) ∆ eventually satisfies ∆ ≥ m!Am
max ≥ ∆A, and (ii) J ⊂ K∗

for ∆ ≥ ∆A as shown in Corollary 1; that is, Step 4 is valid.

Theorem 2. Alg((2.1), ∆0 = 1, λ = mAmax; F, K̄
∗) performs Proc((2.1), ∆; F, K̄∗) at

most m+1 times. Proc((2.1), ∆; F, K̄∗) performs TwoS((2.7); F, K̄∗) at most m times.
If all the auxiliary problems are non-degenerate, the number of arithmetic operations used
by Alg((2.1), ∆0 = 1, λ = mAmax; F, K̄

∗) to solve (2.1) is polynomial in m, n, and ∆A.

The first statement of Theorem 2 is implied by the stopping criterion ∆ ≥ m!Am
max and the

setting ∆0 = 1 and λ = mAmax. As mentioned in Section 3.2.1, the second statement of
Theorem 2 is implied by Lemma 1. Thus, to complete the proof of Theorem 2 one has to
show that TwoS((2.7); F, K̄∗) is polynomial in m, n, and ∆A – as proved in Section 6.

Instances of coefficient matrices with ∆A polynomial in m and n include the one associ-
ated to capacitated network flow problems with additional linear constraints considered by
Chen and Saigal [4]. The coefficient matrix they consider consists in the incidence matrix
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of a directed network, and thus totally unimodular, to which a fixed number of arbitrary
linear constraints on arc flow are added – assuming the entries are polynomial in m and n.

5. Proof of Theorem 1

Lemma 1 implies that, for any ∆, Proc((2.1), ∆; F, K̄∗) performs TwoS((2.7); F, K̄∗) at
most m times.

Lemma 1. For any ∆ > 0, a basic solution x′′ of the auxiliary problem (2.7) satisfies
∥x′′∥∞ ≥ m′nAmax∆. Hence, the set J defined in Step 4 satisfies J ̸= ∅.

Proof. Let x′′ be a solution of (2.7). We have A′x′′ = A′
L⌈(A′

L)
−1b′/k⌉, A′A′⊤ is positive

definite, and, for any g, A′T (A′A′T )−1g is the minimal l2-norm point satisfying A′x′ = g.
Thus,

∥x′′∥2 ≥ ∥A′⊤(A′A′⊤)−1A′
L⌈(A′

L)
−1b′/κ⌉∥2

≥ ∥A′⊤(A′A′⊤)−1b′/κ∥2 − ∥A′⊤(A′A′⊤)−1A′
Ld∥2

= (m′nn′Amax∆+m′)−
∥∥∥∥A′⊤(A′A′⊤)−1A′

(
d
0L̄

)∥∥∥∥
2

≥ m′nn′Amax∆+m′ −
∥∥∥∥( d

0L̄

)∥∥∥∥
2

= m′nn′Amax∆+m′ − ∥d∥2

where κ = ∥A′⊤(A′A′⊤)−1b′∥2/(m′nn′Amax∆+m′) and d = ⌈(A′
L)

−1b′/κ⌉ − (A′
L)

−1b′/κ.
Since ∥d∥∞ < 1 and ∥d∥2 ≤ m′∥d∥∞, we obtain: ∥x′′∥∞ ≥ ∥x′′∥2/n′ > (m′nn′Amax∆ +
m′ −m′)/n′ = m′nAmax∆.

Applying a key result of Schrijver, recalled in Lemma 2, to (2.6) and (2.7) yields Lemma 3,
whose direct consequence, Corollary 1, guarantees J ⊂ K∗, i.e. Step 4 is valid, for ∆ ≥ ∆A.

Lemma 2 ([21], Theorem 10.5). Let A be an m×n-matrix, and let ∆∗ be such that for each
nonsingular submatrix B of A all entries of B−1 are at most ∆∗ in absolute value. Let c be a
column n-vector, and let b′′ and b∗ be column m-vectors such that P ′′ : max{ c⊤x |Ax ≤ b′′ }
and P ∗ : max{ c⊤x |Ax ≤ b∗ } are finite. Then, for each optimal solution x′′ of P ′′, there
exists an optimal solution x∗ of P ∗ with ∥x′′ − x∗∥∞ ≤ n∆∗∥b′′ − b∗∥∞.

Lemma 3. Assume that the scaled problem (2.6) and the auxiliary problem (2.7) are both
feasible and finite. Then, for an optimal solution x′′ of (2.7), there exists an optimal solution
x∗ of (2.6) such that ∥x′′ − x∗∥∞ ≤ n∆A∥ALd∥∞ with d = ⌈(A′

L)
−1b′/κ⌉ − (A′

L)
−1b′/κ.

Proof. Let x′′ be an optimal solution of (2.7). Then, x̃′′ = (x̃′′
K̄ , x̃

′′
K), with x̃′′

K = x′′ and
x̃′′
K̄ = H1(b/κ+ ALd)−H1AKx

′′, is an optimal solution of:

minimize c′⊤xK

subject to xK̄ +H1AKxK = H1(b/κ+ ALd),
H2AKxK = H2(b/κ+ ALd),
xK ≥ 0.

Multiplying both sides of the equations from the left by G = H−1, and recalling the defini-
tions of H1 and H2 given in Section 2.1, yields:

minimize c′⊤xK

subject to AK̄xK̄ + AKxK = b/κ+ ALd,
xK ≥ 0.
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By Lemma 2, there exists an optimal solution x̃∗ = (x̃∗
K̄ , x̃

∗
K) of:

minimize c′⊤xK

subject to AK̄xK̄ + AKxK = b/κ,
xK ≥ 0

such that ∥x̃′′− x̃∗∥∞ ≤ n∆A∥(b/κ+ALd)−b/κ∥∞, and thus ∥x̃′′− x̃∗∥∞ ≤ n∆A∥ALd∥∞.
In addition, ∥x′′ − x̃∗

K∥∞ ≤ ∥x̃′′ − x̃∗∥∞ since x′′ and x̃∗
K are sub-vectors of, respectively,

x̃′′ and x̃∗. Note that x̃∗
K is an optimal solution of the scaled problem (2.6), and equal to

x∗.

Note that in Lemma 3, ∥x′′−x∗
K∥∞ ≤ n∆A∥ALd∥∞ < m′nAmax∆A. Hence, if i ∈ J and

∆ ≥ ∆A, then xi is an optimal basic variable of both (2.6) and (2.1). Recalling that (2.1)
has a unique optimal solution yields Corollary 1.
Corollary 1. For i ∈ J and ∆ ≥ ∆A, x

∗
i > 0 with x∗ the optimal solution of (2.1).

6. Proof of Theorem 2

As mentioned in Section 4, we need to show that TwoS((2.7); F, K̄∗) is polynomial in m,
n, and ∆A which is achieved via the following result of Kitahara and Mizuno and Lemma 5.
Lemma 4 ([12], Corollary 3). If the problem is nondegenerate, the simplex method with
the most negative pivoting rule, i.e. Dantzig’s rule, or the best improvement pivoting rule
finds an optimal solution in at most n⌈mγ

δ
log(mγ

δ
)⌉ iterations where m is the number of

constraints, n is the number of variables, and δ and γ are, respectively, the minimum and
the maximum values of all the positive elements of the primal basic feasible solutions.
Lemma 5. Let L be a basis of A. Then, each coordinate of A−1

L (A, I) is a rational number
whose denominator is detAL and the absolute value of the numerator is bounded above by
∆A.

Proof. For j = 1, 2, . . . ,m+n, let yj be j-th column vector of A−1
L (A, I). Then, ALyj = aj

where aj is j-th column vector of (A, I). By Cramer’s rule, the i-th coordinate of yj is
yji = detAL(i, j)/ detAL with AL(i, j) being the matrix where the i-th column vector of AL

is replaced by aj.

In order to apply Lemma 4, the quantities γ and δ associated the auxiliary problem (2.7)
are estimated in Lemma 6 and yields γ/δ ≤ m2(m′nn′Amax∆+m′)∆3

A +m∆2
A. This bound

for γ/δ combined with Lemma 4 completes the proof of Theorem 2.
Lemma 6. Each positive element of a basic feasible solution x′′ of (2.7) is bounded above
by m2(m′nn′Amax∆+m′)∆2

A +m∆A and below by 1/∆A.

Proof. Let x′′ be a basic feasible solution of (2.7). Then, x̃ = (x̃K̄ , x̃K), with x̃K = x′′ and
x̃K̄ = H1ALf −H1AKx

′′, is a basic solution of:

xK̄ +H1AKxK = H1ALf ,
H2AKxK = H2ALf

where f = ⌈(A′
L)

−1b′/κ⌉. Multiplying both sides of the equations by G = H−1 from the left
yields Ax = ALf . Since x̃ is a basic feasible solution of Ax = ALf , any positive coordinate
x̃i of x̃ is a rational number whose denominator is equal to the determinant of the basis
matrix (see Lemma 5) and numerator is bounded below by 1 by the integrality of ALf .
Hence the denominator of the coordinate of x′′ is bounded by ∆A.
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Similarly, x̂ := (x̂K̄ , x̂K), with x̂K := x′′ and x̂K̄ := H1ALd − H1AKx
′′, is a basic

solution of:
xK̄ +H1AKxK = H1ALd,
H2AKxK = b′/κ+H2ALd.

Multiplying both sides of the equations by G = H−1 from the left yields:

Ax = G

(
0K̄

b′/κ

)
+ ALd.

Since G and AL are submatrices of (A, I) and x̂ is a basic solution of this system, from
Lemma 5 and the integrality of A, we have

∥x̂∥∞ ≤ m∆A∥b′/κ∥∞ +m∆A∥d∥∞.

Let v = A′⊤(A′A′⊤)−1b′; that is, A′v = b′. Since the absolute value of any entry of A′ is
bounded by ∆A by Cramer’s rule, we have

∥b′∥∞ ≤ m∆A∥v∥∞ = m(m′nn′Amax∆+m′)∆Aκ

and thus ∥x′′∥∞ ≤ ∥x̂∥∞ ≤ m2(m′nn′Amax∆+m′)∆2
A +m∆A.
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