
On the Face Lattice of the Metric Polytope

Antoine Deza1, Komei Fukuda2, Tomohiko Mizutani3, and Cong Vo3

1 McMaster University, Department of Computing and Software, Hamilton, Canada
deza@mcmaster.ca

2 McGill University, School of Computer Science, Montréal, Canada
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Abstract. In this paper we study enumeration problems for polytopes
arising from combinatorial optimization problems. While these polytopes
turn out to be quickly intractable for enumeration algorithms designed
for general polytopes, algorithms using their large symmetry groups can
exhibit strong performances. Specifically we consider the metric polytope
mn on n nodes and prove that for n ≥ 9 the faces of codimension 3 of
mn are partitioned into 15 orbits of its symmetry group. For n ≤ 8, we
describe additional upper layers of the face lattice of mn. In particular,
using the list of orbits of high dimensional faces, we prove that the de-
scription of m8 given in [9] is complete with 1 550 825 000 vertices and
that the Laurent-Poljak conjecture [16] holds for n ≤ 8. Computa-
tional issues for the orbitwise face and vertex enumeration algorithms
are also discussed.

1 Introduction

A full d-dimensional convex (bounded) polytope P can be defined either by the
linear inequalities associated to the set F(P ) of its facets or as the convex hull of
its vertex set V(P ). The computation of F(P ) from V(P ) is the facet enumera-
tion problem and the computation of V(P ) from F(P ) is the vertex enumeration
problem. These two problems are equivalent by the vertex/facet duality. More
generally, any proper face f of P can be defined either by the subset F(f) of
facets containing f or as the convex hull of the vertices V(f) belonging to f .
Given the facet set F(P ), the face enumeration problem consists in enumerating
all the faces f of P in terms of facet sets F(f). These computationally difficult
problems have been well studied; see [2,3,14] and references there. In this paper,
we consider combinatorial polytope, i.e. polytopes arising from combinatorial
optimization problems. These polytopes are often trivial for the very first cases
and then the so-called combinatorial explosion occurs even for small instances.
On one hand, combinatorial polytopes are quickly intractable for enumeration
algorithm designed for solving general polytope, but on the other hand, algo-
rithms using their large symmetry groups allow enumerations which were not
possible otherwise. For example, large instances of the traveling salesman poly-
tope, the linear ordering polytope, the cut polytope and the metric polytope
were computed in [4,9] using the same algorithm called adjacency decomposition
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method in [4] and orbitwise vertex enumeration algorithm in [9] which, given a
vertex, find the adjacent ones, see Section 5.3 for more details. In this paper, pur-
suing the same approach, we propose an orbitwise face enumeration algorithm
for combinatorial polytope. Focusing on the face lattice of the metric polytope
mn, we compute its upper layers for n ≤ 9. These results allow us to prove
that the description of m8 given in [9] is complete with 1 550 825 000 vertices
and that the dominating set and no cut-set conjectures, see [9,16], hold for m8.
A description of the faces of codimension 3 for any n is given as well as some
preliminary results on the vertices of m9.

2 Face Enumeration for Combinatorial Polytopes

2.1 Combinatorial Polytopes

Many combinatorial polyhedra are associated to optimization problems arising
from the complete directed graph Dn or the undirected graph Kn on n nodes.
Well studied combinatorial polyhedra include the cut polytope cn and the metric
polytope mn. While cn is the convex hull of the incidence vectors of all the cuts
of Kn, mn can be defined as a relaxation of cn by the triangular inequalities,
see Section 3.1 and see [12] for more details. One important feature of most
combinatorial polytopes is their very large symmetry group. We recall that the
symmetry group Is(P ) of a polytope P is the group of isometries preserving
P . For n ≥ 5, Is(mn) = Is(cn) is induced by the n! permutations on Vn and
the 2n−1 switching reflections, see Section 3.2, and |Is(mn)| = 2n−1n!, see [11].
For n = 4, m4 = c4 and |Is(m4)| = 2(4!)2. Clearly all faces are partitioned
into orbits of faces equivalent under permutations and switchings. An orbitwise
vertex enumeration algorithm was proposed in [4,9] and, in a similar vein, we
propose an orbitwise face enumeration algorithm.

2.2 Orbitwise Face Enumeration Algorithm

The input is a full d-dimensional polytope P defined by its (non-redundant)
facet set F(P ) = {fd−1

1 , . . . , fd−1
m }. The algorithm first computes the list Ld−1 =

{f̃d−1
1 , . . . , f̃d−1

Id−1} of all the canonical representatives of the orbits of facets. Then
the algorithm generates the set Ld−2 = {f̃d−1

s ∩ fd−1
r : s = 1, . . . , Id−1, r =

1, . . . , m}. After computing the dimension of each subface f̃d−1
s ∩fd−1

r and keep-
ing only the (d − 2)-faces, the algorithm reduces Ld−2 to the list of canonical
representatives of orbits of (d − 2)-faces Ld−2 = {f̃d−2

1 , . . . , f̃d−2
Id−2}. In general,

after generating the list Ld−t+1, the algorithm computes Ld−t by:

(i) generating the set Ld−t by intersecting each canonical representative
f̃d−t+1

s with each facet Fr for s = 1, . . . , Id−t+1 and r = 1, . . . , m,
(ii) computing the set F(f̃d−t+1∩fd−1) of all facets containing f̃d−t+1∩fd−1

and then its dimension dim(f̃d−t+1 ∩ fd−1)
(iii) for dim(f̃d−t+1 ∩ fd−1) = d − t, computing the canonical representative

f̃d−t of f̃d−t+1 ∩ fd−1
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The algorithm terminates after the list L0 of canonical representatives of
the orbits of vertices is computed. Clearly the algorithm works faster when the
symmetry group Is(P ) is larger. The main two subroutines are the computation
of the canonical representative f̃ of the orbit Of generated by a face f and the
computation of the dimension dim(f). The determination of F(f̃d−t+1 ∩ fd−1)
amounts to a redundancy check for the remaining facets of F(P )\{F(f̃d−t+1 ∩
fd−1)}. This operation can be done using ccclib (redcheck), see [13], and is poly-
nomially equivalent to linear programming; see [3]. The rank of F(f̃d−t+1∩fd−1)
directly gives dim(f̃d−t+1 ∩ fd−1). The computation of the canonical represen-
tative f̃d−t is done using a brute-force approach; that is, by generating all the
elements belonging to the orbit Of̃d−t+1∩fd−1 .

Remark 1.

1. With Id−t the number of orbits of (d − t)-faces and m the number of facets,
the dimension (resp. canonical representative) computation subroutine is
called exactly (resp. at most) m(1 +

∑
t=1,...,d−1 Id−t) times.

2. The output; that is, for t = 1, . . . , d the list Ld−t of canonical representatives
f̃d−t

s : s = 1, . . . , Id−t, is extremely compact. The full list of (d− t)-faces can
be generated by the action of the symmetry group on each representative
face f̃d−t

s . With |Of̃d−t
s

| the size of the orbit generated by f̃d−t
s , the total

number of faces is
∑

t=1,...,d

∑
s=1,...,Id−t |Of̃d−t

s
|.

Item 1 of Remark 1 indicates that the algorithm runs smoothly as long as the
number Id−t of orbits of (d − t)-faces is relatively small. The number of (d − t)-
faces usually grows extremely large with t getting close to �d

2�; that is: “Face
lattices are very fat”. Therefore the computation of the full face lattice of a
polytope is generally extremely hard. Besides small dimensional polytopes and
specific cases such as the d-cube, we can expect a similar pattern for the values
of Id−t; that is: “Orbitwise face lattices are also fat”. On the other hand, one can
expect the combinatorial explosion to occur at a deeper layer for the orbitwise
face lattice than for the ordinary one. Actually, this algorithm is particularly
suitable for the computation of the upper τ layers of the orbitwise face lattice
for a small given τ . In that case the algorithm stops when Ld−τ is computed. The
computation of the orbitwise upper face lattice can be efficiently combined with
classical vertex enumeration. See Section 5.1 for an application to the complete
description of the vertices of m8.

3 Faces of the Metric Polytope

3.1 Cut and Metric Polytopes

The
(
n
2

)
-dimensional cut polytope cn is usually introduced as the convex hull of

the incidence vectors of all the cuts of Kn. More precisely, given a subset S of
Vn = {1, . . . , n}, the cut determined by S consists of the pairs (i, j) of elements
of Vn such that exactly one of i, j is in S. By δ(S) we denote both the cut and
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its incidence vector in IR(n
2); that is, δ(S)ij = 1 if exactly one of i, j is in S and 0

otherwise for 1 ≤ i < j ≤ n. By abuse of notation, we use the term cut for both
the cut itself and its incidence vector, so δ(S)ij are considered as coordinates of
a point in IR(n

2). The cut polytope cn is the convex hull of all 2n−1 cuts, and
the cut cone Cn is the conic hull of all 2n−1 − 1 nonzero cuts. The cut polytope
and one of its relaxation - the metric polytope - can also be defined in terms of
a finite metric space in the following way. For all 3-sets {i, j, k} ⊂ {1, . . . , n}, we
consider the following inequalities:

xij − xik − xjk ≤ 0, (1)
xij + xik + xjk ≤ 2. (2)

(1) induce the 3
(
n
3

)
facets which define the metric cone Mn. Then, bounding

the latter by the
(
n
3

)
facets induced by (2) we obtain the metric polytope mn.

The facets defined by (1) (resp. by (2)) can be seen as triangle (resp. perimeter)
inequalities for distance xij on {1, . . . , n} and are denoted by ∆i,j,k̄ (resp. by
∆i,j,k). While the cut cone is the conic hull of all, up to a constant multiple,
{0, 1}-valued extreme rays of the metric cone, the cut polytope cn is the convex
hull of all {0, 1}-valued vertices of the metric polytope. For a detailed study of
those polytopes and their applications in combinatorial optimization we refer to
Deza and Laurent [12] and Poljak and Tuza [17].

3.2 Combinatorial and Geometric Properties

The polytope cn is a
(
n
2

)
-dimensional {0, 1}-polyhedron with 2n−1 vertices and

mn is a polytope of the same dimension with 4
(
n
3

)
facets inscribed in the cube

[0, 1](
n
2). We have cn ⊆ mn with equality only for n ≤ 4. Any facet of the metric

polytope contains a face of the cut polytope and the vertices of the cut polytope
are vertices of the metric polytope. In fact, the cuts are precisely the integral
vertices of the metric polytope. The metric polytope mn wraps the cut polytope
cn very tightly. Indeed, in addition to the vertices, all edges and 2-faces of cn

are also faces of mn, for 3-faces it is false for n ≥ 4, see [7]. Any two cuts are
adjacent both on cn and on mn; in other words mn is quasi-integral; that is,
the skeleton of the convex hull of its integral vertices, i.e. the skeleton of cn,
is an induced subgraph of the skeleton of the metric polytope itself. We recall
that the skeleton of a polytope is the graph formed by its vertices and edges.
While the diameters of the cut polytope and the dual metric polytope satisfy
δ(cn) = 1 and δ(m∗

n) = 2, the diameters of their dual are conjectured to be
δ(c∗

n) = 4 and δ(mn) = 3, see [6,16]. One important feature of the metric and
cut polytopes is their very large symmetry group. More precisely, for n ≥ 5,
Is(mn) = Is(cn) is induced by the permutations on Vn = {1, . . . , n} and the
switching reflections by a cut and |Is(mn)| = 2n−1n!, see [11]. Given a cut δ(S),
the switching reflection rδ(S) is defined by y = rδ(S)(x) where yij = 1 − xij

if (i, j) ∈ δ(S) and yij = xij otherwise. For n = 4, c4 = m4 and there are
some additional symmetries: |Is(m4)| = 2(4!)2. For the symmetry group of the
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cones Cn, Mn and some relatives, see [10]. Note that the symmetries preserve
the adjacency relations and the linear independency.

3.3 Faces of the Metric Polytope

We recall some results and conjectures on the faces of the metric polytope.
The cuts are the only integral vertices of mn. Consider the following map φ0 :
IR(n−1

2 ) −→ IR(n
2), defined by: φ0(v)ij = vij for 1 ≤ i < j ≤ n− 1, φ0(v)i,n = v1,i

for 2 ≤ i ≤ n − 1 and φ0(v)1,n = 0. Both φ0(v) and its switching by δ({n}) are
called trivial extensions of v. Note that a trivial extension of a vertex of mn−1
is a vertex of mn. Besides the cuts, all vertices with are not fully fractional are
trivial extensions; that is, the new vertices of mn are the fully fractional ones.
The ( 1

3 , 2
3 )-valued fully fractional vertices are well studied, see [12,15,16], and

include the anticut orbit formed by the 2n−1 anticuts δ̄(S) = 2
3 (1, . . . , 1)- 1

3δ(S).
If G = (Vn, E) is a connected graph, we denote by dG its path metric, where
dG(i, j) is the length of a shortest path from i to j in G for i 
= j ∈ Vn. Then
τ(dG) = max(dG(i, j)+dG(i, k)+dG(j, k) : i, j, k ∈ G) is called the triameter of
G and we set xG = 2

τ(dG)dG. Any vertex of mn of the form xG for some graph
is called a graphic vertex, see [12,15,16] and Fig. 1 for the graphs of 2 graphic
( 1
3 , 2

3 )-valued vertices of m8. Note that for any connected graph G = (Vn, E),
we have τ(dG) ≤ 2(n − 1) and that any (1

3 , 2
3 )-valued vertex v of mn is (up

to switching) graphic; that is, there exist a graph G and a cut δ(S) such that
v = rδ(S)(xG). Since m3 = c3 and m4 = c4, the vertices of m3 and m4 are
made of 4 and 8 cuts forming 1 orbit. The 32 vertices of m5 are 16 cuts and 16
anticuts, i.e., form 2 orbits. The metric polytope m6 has 544 vertices, see [16],
partitioned into 3 orbits: cuts, anticuts and 1 orbit of trivial extensions; and m7
has 275 840 vertices, see [8], partitioned into 13 orbits: cuts, anticuts, 3 orbits of
trivial extensions, 3 (1

3 , 2
3 )-valued orbits and 5 other fully fractional orbits. For

m8, 1 550 825 600 vertices partitioned into 533 orbits (cuts, anticuts, 28 trivial
extensions, 37 ( 1

3 , 2
3 )-valued and 466 other fully fractional) were found assuming

Conjecture 2, see [9]. The description was conjectured to be complete.

Conjecture 1. [16] Any vertex of the metric polytope mn is adjacent to a cut.

Conjecture 2. [9] For n ≥ 6, the restriction of the skeleton of the metric polytope
mn to the non-cut vertices is connected.

Conjecture 2 can be seen as complementary to the Conjecture 1 both graph-
ically and computationally: For any pair of vertices, while Conjecture 1 implies
that there is a path made of cuts joining them, Conjecture 2 means that there
is a path made of non-cuts vertices joining them. In other words, the cut ver-
tices would form a dominating set but not a cut-set in the skeleton of mn. On
the other hand, while Conjecture 1 means that the enumeration of the extreme
rays of the metric cone Mn is enough to obtain the vertices of the metric poly-
tope mn; Conjecture 2 means that we can obtain the vertices of mn without
enumerating the extreme rays of Mn. Note that for arbitrary graphs these are
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clearly independent. Conjecture 1 underlines the extreme connectivity of the
cuts. Recall that the cuts form a clique in both the cut and metric polytopes.
Therefore, if Conjecture 1 holds, the cuts would be a dominant clique in the
skeleton of mn implying that its diameter would satisfy δ(mn) ≤ 3. The orbit-
wise description of the facets and ridges (faces of codimension 2) of mn for any
n was given in [6] as well as the face ∆1,2,3 ∩ ∆1,2,3̄ of codimension n − 1 and
the face ∆1,2,3 ∩ ∆1,3̄,4 of codimension 3. We have Ld−1(mn) = {∆1,2,3} and
Ld−2(mn≥6) = {∆1,2,3 ∩ ∆1,2,4, ∆1,2,3 ∩ ∆1,4,5, ∆1,2,3 ∩ ∆4,5,6}, Ld−2(m5) =
{∆1,2,3 ∩ ∆1,2,4, ∆1,2,3 ∩ ∆1,4,5} and Ld−2(m4) = {∆1,2,3 ∩ ∆1,2,4}. The full
orbitwise face lattices of m4 and m5 were given in [7]. In Section 4.1 we com-
pute additional orbits of faces of small metric polytopes and in Section 4.2 we
characterize Ld−3(mn) for any n.

4 Generating Faces of the Metric Polytope

4.1 Faces of Small Metric Polytopes

As stated earlier, generating the full face lattice is usually extremely hard. We
restricted the computation to the enumeration of the upper τ layers of the or-
bitwise face lattice of mn. We choose to set τ = 4 for the partial orbitwise
enumeration of m6 (resp. m7 and m8). The first 4 entries of the f -vectors of
m6, m7 and m8 are: f(m6) = {1, 3, 10, 34, . . .}, f(m7) = {1, 3, 13, 61, . . .} and
f(m8) = {1, 3, 14, 79, . . .}, Due to space limitation, we refer to [5] for a de-
tailed presentation. The set Ld−3(mn) is easy to check for reasonable values
of n as Id−3(mn) ≤ 15, see Theorem 1. Additional properties of mn can be
used to increase the efficiency of the algorithm. In particular, the set Ld−t can
be generated by considering for each s only the facets which are not equiv-
alent under isometries preserving f̃d−t+1

s . The support of ∆i,j,k (or ∆i,j,k̄) is
σ(∆i,j,k) = σ(∆i,j,k̄) = {i, j, k}. Let assume that, as in Section 5.2, we are in-
terested only in the upper n − 1 layers of the face lattice of mn. In that case,
when generating f̃d−t+1

s ∩ ∆r with t < n, we can disregard ∆r if σ(∆r) = σ(∆)
for any ∆ ∈ F(f̃d−t+1

s ) as for such ∆r we have codim(f̃d−t+1
s ∩ ∆r) ≥ n − 1.

4.2 Faces of Codimension 3 of the Metric Polytope

As recalled earlier the first 2 upper layers of mn are known for any n. We have
Id−1(mn) = 1, Id−2(mn≥6) = 3 and, by Theorem 1, we get Id−3(mn≥9) = 15.

Theorem 1. For n ≥ 9, the faces of codimension 3 of the metric polytope mn

are partitioned into 15 orbits equivalent under permutations and switchings.
The first 15 (resp. 14, 13, 10 and 6) representatives given in Table 1 generate

the 15 (resp. 14, 13, 10 and 6) orbits of faces of codimension 3 of mn≥9 (resp.
m8, m7, m6 and m5). The first 2 representatives and the last one generate the
3 orbits of faces of codimension 3 of m4.

Proof. For n ≤ 9 Theorem 1 can be directly checked using the orbitwise face
enumeration algorithm with τ = 3; that is, the algorithm is set to compute only
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Table 1. The orbits of faces of codimension 3 of mn for n ≥ 4.

Orbit Of3
i

Representative f3
i mn for which f3

i is a (d − 3)-face |Of3
i
|

Of3
1

∆1,2,3 ∩ ∆1,2,4 ∩ ∆1,3,4 mn≥4 32
(

n
4

)

Of3
2

∆1,2,3 ∩ ∆1,2,4 ∩ ∆1,3̄,4 mn≥4 24
(

n
4

)

Of3
3

∆1,2,3 ∩ ∆1,2,4 ∩ ∆1,2,5 mn≥5 160
(

n
5

)

Of3
4

∆1,2,3 ∩ ∆1,2,4 ∩ ∆1,3,5 mn≥5 960
(

n
5

)

Of3
5

∆1,2,3 ∩ ∆1,2,4 ∩ ∆3,4,5 mn≥5 480
(

n
5

)

Of3
6

∆1,2,3 ∩ ∆1,2,4 ∩ ∆3̄,4,5 mn≥5 480
(

n
5

)

Of3
7

∆1,2,3 ∩ ∆1,2,4 ∩ ∆1,5,6 mn≥6 5 760
(

n
6

)

Of3
8

∆1,2,3 ∩ ∆1,2,4 ∩ ∆3,5,6 mn≥6 5 760
(

n
6

)

Of3
9

∆1,2,3 ∩ ∆1,4,5 ∩ ∆2,4,6 mn≥6 3 840
(

n
6

)

Of3
10

∆1,2,3 ∩ ∆1,4,5 ∩ ∆2̄,4,6 mn≥6 3 840
(

n
6

)

Of3
11

∆1,2,3 ∩ ∆1,2,4 ∩ ∆5,6,7 mn≥7 6 720
(

n
7

)

Of3
12

∆1,2,3 ∩ ∆1,4,5 ∩ ∆1,6,7 mn≥7 6 720
(

n
7

)

Of3
13

∆1,2,3 ∩ ∆1,4,5 ∩ ∆2,6,7 mn≥7 40 320
(

n
7

)

Of3
14

∆1,2,3 ∩ ∆1,4,5 ∩ ∆6,7,8 mn≥8 53 760
(

n
8

)

Of3
15

∆1,2,3 ∩ ∆4,5,6 ∩ ∆7,8,9 mn≥9 17 920
(

n
9

)

Of3
16

∆1,2,3 ∩ ∆1,2,4 ∩ ∆1,3,4 m4 2
(

n
2

)

the upper 3 layers of the face lattice of mn. Let assume n ≥ 9, the faces of
codimension 2 of mn are partitioned into 3 orbits generated by ∆1,2,3 ∩ ∆1,2,4,
∆1,2,3∩∆1,4,5 and ∆1,2,3∩∆4,5,6. Any faces of codimension 3 of mn can therefore
be written as the intersection of a facet ∆ of mn with one of these 3 faces ∆′∩∆”
of codimension 2. If the support σ(∆) 
⊂ {1, . . . , 9}, by elementary permutations
preserving ∆′ and ∆” we can generate ∆̃ ∈ O∆ with O∆′∩∆”∩∆̃ = O∆′∩∆”∩∆

and σ(∆̃) ⊂ {1, . . . , 9}. In other words, to generate orbitwise all the subfaces
of the canonical faces of codimension 2 it is enough to consider the case n = 9.
This way one can easily obtain 28 faces fi of codimension at least 3. Then, as for
the orbitwise face enumeration algorithm, we have to compute for i = 1, . . . , 28
and for any n the dimension dim(fi) and - if codim(fi) = 3 - to compute the
canonical representative f̃i. Therefore we have to first determine the set Fn(fi)
of facets of mn containing fi. Clearly, if an inequality (i) defining a facet of mn

is forced to be satisfied with equality by the inequalities defining ∆′, ∆” and ∆̃
being satisfied with equality, then the same inequality (i) - now seen as defining
a facet of mn+1 - will also be forced to be satisfied with equality. In other words
the set Fn(fi) can only increase with n and dim(fi) can only decrease with n.
Therefore, among the 28 faces fi, only the 15 first faces of codimension 3 for m9
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given in Table 1 are candidates for being faces of codimension 3 for mn≥9. A
case by case study of the 15 faces, gives Fn(fi) and proves that indeed these 15
faces generate 15 orbits of faces of codimension 3 for n ≥ 9. The idea is simply
to notice that the pattern of Fn(fi) is essentially given by the value of F12(fi).
Since all the cases are similar, we only present the computation of Fn(f15) where
f15 = ∆1,2,3∩∆4,5,6∩∆7,8,9. Using the orbitwise face enumeration algorithm with
τ = 3, one can easily check that F12(f15) = {∆1,2,3, ∆4,5,6, ∆7,8,9}. Let n ≥ 12
and ∆ be a facet of mn with σ(∆) 
⊂ {1, . . . , 12}. By elementary permutations
preserving F12(f15) we can generate ∆̃ ∈ O∆ with σ(∆̃) ⊂ {1, . . . , 12}. Let now
consider ∆̃ as a facet of m12. Since ∆̃ 
∈ F12(f15) at least one vertex v of m12
satisfies v ∈ f15 and v 
∈ ∆̃. Then, the (n − 12)-times 0-extension vext of v is
a vertex of mn satisfying vext ∈ f15 but vext 
∈ ∆̃ where ∆̃ is now considered as
a facet of mn. Thus, ∆̃ 
∈ Fn(f15) and, by the same elementary permutations,
∆ 
∈ Fn(f15); that is, Fn(f15) = {∆1,2,3, ∆4,5,6, ∆7,8,9} and codim(f15) = 3 for
any n ≥ 9. In the same way, for Fn(f) increasing with n, the pattern of Fn(f) is
essentially given by small values of n. Consider for example Fn(∆1,2,3 ∩∆1,2,3̄):
We have Fn(∆1,2,3 ∩ ∆1,2,3̄) = {∆1,2,i, ∆1,2,̄i : i = 3, . . . , n} and therefore
|Fn(∆1,2,3 ∩ ∆1,2,3̄)| = 2(n − 2) and codim(∆1,2,3 ∩ ∆1,2,3̄) = n − 1. As for
Fn(f15), one can compute F4(∆1,2,3 ∩∆1,2,3̄) and notice that ∆ ∈ Fn≥5(∆1,2,3 ∩
∆1,2,3̄) ⇐⇒ ∆̃ ∈ F4(∆1,2,3 ∩∆1,2,3̄); that is, ∆ = ∆1,2,i or ∆1,2,̄i : i = 4, . . . , n.

�
Remark 2. The proof of Theorem 1 indicates that the number Id−k(mn) of orbits
of faces of codimension k of the metric polytope is probably constant for n ≥ 3k.
Another interesting issue is the determination of an upper bound for Id−k(mn)
for any k and n.

5 Generating Vertices of the Metric Polytope

5.1 Combining Orbitwise Face Enumeration
with Classical Vertex Enumeration

As emphasized earlier, the face lattice is usually much larger than the number of
vertices. Therefore, computing the full face lattice in order to obtain the vertices
is extremely costly. On the other hand, the upper layers of the orbitwise face
lattice might be relatively small. In that case the orbitwise face enumeration
can be efficiently combined with a classical vertex enumeration methods in the
following way. First, for an appropriate small τ , compute the upper orbitwise
face lattice till the list Ld−τ of canonical (d − τ)-faces is obtained. Then for s =
1, . . . , Id−τ , compute by a classical vertex enumeration method the set V(f̃d−τ

s )
of vertices belonging to f̃d−τ

s . Finally, compute the canonical representative ṽ
for each vertex v ∈ V(f̃d−τ

s ). The set of all such vertices ṽ is exactly L0 as each
canonical vertex of L0 belongs, up to an isometry of Is(P ), to at least one of
the (d − τ)-faces f̃d−τ

s . Clearly, the choice of τ is critical. Typically, for the first
values of t, by going down one layer from Ld−t+1 to Ld−t the number of orbits
increases (Id−t ≥ Id−t+1) and the average sizes of faces decreases (V(f̃d−t

average) ≤
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V(f̃d−t+1
average)). Therefore, a good τ should be such that Id−τ and V(f̃d−τ

average) are
relatively small: In particular the largest f̃d−τ

s should within problems currently
solvable by vertex enumeration algorithms. In Section 5.2, assuming that the
computation of mn−1 is just within current vertex enumeration abilities, we
indicate that for mn a good τ should satisfy n−1 ≤ τ and that τ = 7 is actually
enough for the description of m8. Note that n − 1 = 7 = �d

4� for m8.

5.2 Vertices of the Metric Polytope on 8 Nodes

As mentioned earlier, the face f̃d−n+1
µ = ∆1,2,3 ∩ ∆1,2,3̄ generates one orbit

of faces of codimension n − 1 of mn which are combinatorially equivalent to
mn−1. In other words, the orbitwise face lattice of mn contains a copy of mn−1
in Ld−n+1. This implies that some canonical faces of Ld−n+2 are quite larger
than mn−1 and therefore intractable if we assume that mn−1 is just within
current vertex enumeration methods abilities. For m8, it means that we should
compute at least L21 and it turns out to be enough as f̃21

µ (which we do not
need to enumerate since f̃21

µ � m7) and other elements of L21 are tractable. The
whole computation is quite long as L21 is large as well as V(f̃21

average). For the
same reasons, skipping f̃21

µ , the computation of the canonical vertices for each
V(f̃21

s ) is also long. Insertion algorithms usually handle high degeneracy better
than pivoting algorithms, see [2] for a detailed presentation of the main vertex
enumeration methods. The metric polytope mn is quite degenerate as the cut
incidence Icdδ(S) = 3

(
n
3

)
is much larger than the dimension d =

(
n
2

)
. We recall

that the incidence Icdv = |F(v)|. Thus we choose an insertion algorithm for the
enumeration of each f̃21

s : the cddlib implementation of the double description
method [13]. The ordering of the facet is lexicographic with the rule −1 ≺ 1 ≺ 0.
The result shows that L0 is made of the 533 canonical vertices found in [9]. Due
to space limitation, we refer to [5] for a detailed presentation. The conjectured
description of m8 being complete, the following is straightforward.

Proposition 1.

1. The metric polytope m8 has exactly 1 550 825 600 vertices and its diameter
is δ(m8) = 3. The metric cone M8 has exactly 119 269 588 extreme rays.

2. The Laurent-Poljak dominating set Conjecture 1 and the no cut-set Con-
jecture 2 hold for m8.

A vertex of a d-dimensional polytope is simple if |F(v)| = d. While most of the
vertices of m8 are almost simple, the only simple vertices of m8 belong to the
orbits Oṽ532 and Oṽ533 of size |Oṽ532 | =368 640 and |Oṽ533 | =430 080; that is, only
0.05% of the total number of vertices of m8 are simple. Both canonical repre-
sentative ṽ532 and ṽ533 are graphic (1

3 , 2
3 )-valued vertices, see Fig. 1. The largest

denominator among vertices of m8 is 15 and occurs only for vertices of Oṽ451 with
ṽ451 = 1

15 (2, 4, 4, 5, 5, 7, 8, 6, 6, 5, 5, 5, 10, 8, 5, 5, 5, 4, 9, 9, 3, 4, 10, 10, 5, 10, 5, 5) and
|Oṽ451 | =2 580 480. All vertices of m8 are adjacent to at least 2 cuts and the
vertices adjacent to exactly 2 cuts belong to Oṽ531 with |Oṽ531 | =1 290 240 and
ṽ531 = 1

9 (2, 2, 3, 3, 4, 4, 5, 4, 3, 3, 6, 6, 3, 5, 5, 2, 6, 3, 6, 3, 3, 6, 3, 3, 6, 4, 5, 3).
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Fig. 1. Graphic canonical vertices of the only two orbits of simple vertices of m8.

5.3 Vertices of the Metric Polytope on 9 Nodes

The computation of the vertices of m9 is most probably intractable as we expect
this extremely degenerate 36-dimensional polytope to have around 1014 vertices
partitioned among several hundred thousand orbits. In this section, we present
some computational results concerning the vertices of m9. Given a vertex v, af-
ter computing the canonical representative ṽ, the orbitwise vertex enumeration
algorithm computes the set Nṽ of vertices adjacent to ṽ, then identifies all the
orbits of vertices contained in Nṽ and picks up the next representative whose
neighborhood is not yet computed. The algorithm terminates when all the or-
bitwise neighborhoods Nṽ are computed. To compute those neighborhoods, the
algorithm performs one classic vertex enumerations for each orbit Oṽ of ver-
tices. The complexity of computing Nṽ is closely related to the incidence of
ṽ. While the computation is easy for vertices having a small incidence, highly
degenerated vertices can be intractable. For example, the algorithm failed to
computed Nδ(S) the set of vertices adjacent to a cut δ(S) for m8; we recall that
Icdδ(S) = 168 and that dim(m8) = 28. This remark leads to the following skip-
ping high degeneracy heuristic: compute Nṽ only for Icdṽ ≤ Icdmax where Icdmax

is an arbitrarily set in advance upper bound for the considered incidences, see [9].
In particular, assuming Conjecture 2 means that we can enumerate mn by set-
ting Icdmax = Icdδ(S) − 1. Setting Icdmax = 44, we computed 253 210 orbits
of vertices of m9. We wish to set Icdmax = 1

2

(
n+1

3

)
= 60 (i.e. halfway from the

dimension
(
n
2

)
to the anticut incidence Icdδ̄(S) =

(
n
3

)
, see [9]), but significantly

raising the value of Icdmax is currently beyond our computational capacities. The
largest denominator found is 39 and most of the vertices are almost simple but
the lowest incidence is 37, i.e. no simple vertex was found so far. Conjecture 2
has been checked for the 253 210 orbits of vertices of m9 computed so far.

Remark 3. None of the currently known vertices of m9 is simple. Since m6 and
m7 have no simple vertex, the only known simple vertices of mn for n ≥ 6 belong
to the orbits Oṽ532 and Oṽ533 . We believe that, while we can obtain nearly all
the vertices of m9 by setting Icdmax = 44, the algorithm can not reach all of
them unless the value of Icdmax is raised significantly. We also believe that m9
has simple vertices, see [8], which are among the currently unreachable vertices
of m9.
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