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ON LOWER BOUND FOR GENERAL CONVEX POLYTOPES
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ABSTRACT. One of the fundamental questions in the combinatorial theory of convex
polytopes is to determine the largest and the smallest number of vertices, edges etc. of
a d-dimensional polytope with a given number m of facets. McMullen'’s upper bound
theorem fully answers the first part of the question; and Barnette’s lower bound theorem
answers the second part for simple polytopes. In this paper we present a lower bound
for the number of vertices of a general d-dimensional polytope with a given number

m of facets. The tightness of this bound is proved using McMullen’s conditions and
bipyramids. ’

1. Main theorem. Convex polytopes are the d-dimensional analogues of 2-dimensional
convex polygones and 3-dimensional convex Polyhedra. A polytope is a bounded convex
set in R that is the intersection of a finite number of closed halfspaces. The faces of
a polytope are its intersections with supporting hyperplanes. The i-dimensiona) faces are
called the i-faces and f;(P) denotes the number of t-faces of a polytope P; . the d-tuple
(fo(P), f1(P),.. -y fa—1(P)) is called the f-vector of P. In particular, O-faces, 1-faces and
(d — 1)-faces are respectively called vertices, edges and facets of a d-dimensional polytope.
One of the most important question in the combinatorial theory of convex polytopes is the
determination of the largest and the smallest number of i-faces of a d-dimensional polytope
with a given number of m of facets. Moreover, it is also interesting to find out which class
of polytopes attains those bounds. Genera) references to the topics discussed in this paper
are [5, 6, 9]. In this section we first recall McMullen’s upper bound theorem and Barnette’s
lower bound theorem for simple polytopes. Then we present a lower bound for general
convex polytopes; the tightness of this bound is proved using McMullen’s conditions and
some particular types of polytopes. .

The upper bound theorem was conjectured by Motzkin [10] in 1957 and proved by Mec-
Mullen (7] in 1970. In order to state this theorem, we define for ¢ > 0:

& "

W s D () (40 o),

=0

where d' = | §] and d” = |451]. Note that d = &' + d" + 1.
We also recall that, with k a nonnegative integer, a polytope P is k-neighbourly if every
k-subset of the set of the vertices of P is the vertex set of a proper face of P. A I_g -

neighbourly polytope is simply called a neighbourly polytope. With those notations the
upper bound theorem can be stated as follows:

Theorem 1.1. (7] For any d-dimensional polytope P with m facets we have:
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fi(P)Sud(m)  fori=0,...,d-1.
Furthermore, zf P is the dual of a nezghbourly simplicial polytope, then

fi(P) —u‘i(m) fori=0,...,d-1.
Remark 1.2. Some calculation shows that:
ud(m) = (m d‘;: - 1) + (m'g/” - 1).

The lower bound theorem was proved by Barnette [1, 2] in 1971-73. As for the upper
bound theorem, we first need to define:

(d=1)m—(@d+1)(d=2), i=0;
wf(m) = (,H)m (‘fi%)(d—l—z’) i=1,..., d-1.
With this notation the lower bound theorem can be stated as follows:

Theorem 1.3. [1, 2] For any simple d-dimensional polytope P with m facets we have:

F(P) 2 ¢im)  fori=0,...,d—1.
Furthermore there are simple polytopes P with m facets such that
fi(P) = p(m) fori=0,...,d-1.

While the upper bound theorem is valid for general convex polytopes, the lower bound
theorem holds only for simple polytopes. In the next theorem we present a lower bound
valid for general polytopes. First we define the following step function 1&(m) by the relation:

IB(m) =i ifand only if  wd(i — 1) <m < ug(i).
This function is a sort of inverse function of ug(m). Moreover, we see in Section 4 that one
can easily prove that {¢(m) is a lower bound for the number of vertices of a polytope with m

facets. The following theorem actually establishes the tightness of I¢(m) and characterizes
the class of polytopes which attain this lower bound.

Theorem 1.4.

(¢) In even dimension, for any d-dimensional polytope P with m facets, we have: .
fo(P) > I1§(m).

Furthermore there are simplicial (I_%J —1)-neighbourly polytopes P with m facets such that
fo(P) = lg(m) for m > ug(2d - 1).

(i) In odd dimension, for any d-dimensional polytope P with m facets, we have:
fo(P) > (m).

Furthermore there are simplicial (L%J —1)-neighbourly polytopes P with m facets such that
fo(P) = lg(m) for m even and m > u§(d + |£]),

and there are polytopes P with m facets such that
fo(P) <1§(m)+1  for m odd and m > ud(2d — 1).

Figures 3.1, 3.2 and 3.3 illustrate cases d = 4,5 and 6. In particular we get a tight lower

lower bound for any m in dimension 3, 4 and 6. In dimension 5, we have a tight lower
bound except for m = (r — 3)(r —4) — 1, r > 8 for those values, I3(m) + 1 is attained.

Remark 1.5. One can easily check that for d fized, I3¢(m) is O( $4/m).

Before giving a complete proof of Theorem 1.4 in Section 3, we first recall in Section 2
the characterization of f-vector for simplicial polytopes. This characterization is used to
prove the tightness of this lower bound for general polytopes.




ON LOWER BOUND FOR GENERAL CONVEX POLYTOPES ' 373

2. Characterization of the f-vector of a simplicial polytope. In this section we
present a characterization of the J-vector of a simplicial polytope. This characterization
called McMullen’s conditions was conjectured by McMullen [8] in 1971. The sufficiency
of the conditions was proved by Billera and Lee (3, 4] in 1980-1981; the necessity was
established by Stanley [11] in 1980.

For a d-tuple f = (fo, fi,... , fa—1) of positive integers, we define the associated g-vector as:
gi=> (—1)i‘j(g:g'>fj  fori=-1,...,d,
j==1

with the conventions f_; =1and fa=0.

Some calculation [9] shows that

(2) fi= Z (‘(ii:{)gj fori=0,...,d—1.

j=—1
For positive integers h and 1, there exist uniquely determined positive integers ro,7y,.. ., Tq
with ¢ < ¢ such that A = ™)+ g\ir_ll) +- 4 (~"3q). This representation is called the

1
i-canonical representation of . The i-canonical representation of 0 is 0. Then, for j > i,
h<Jl> is defined by:

R<Jli> — (ro +Jj — z) + (1-1];(-_]1—— z') R (rqji-_]q— i).
We also recall that @’ = |¢] and d” = [45L].
Theorem 2.1. [3, 4, 11] A d-tuple f = (fo, fiy--., fa-1) of positive integers is the f-vector

of a simplicial polytope if and only if the associated g-vector satisfies the following three
conditions:

(c1) 9i = —gd—i—1 - fori=-1,0,...,d",
(c2) 9i20 fori=0,...,d -1,
(c3)  gi< g™ fori=1,....d —1.

Remark 2.2. For a simplicial neighbourly polytope P, the dimension d and the number
of vertices fo(P) are sufficient to determine the complete f-vector of P, moreover fori =
0,...,d —1 we have: fi(P) = (lf_;fl) Restating this in term of gi, we can say that for a
simplicial neighbourly polytope, the complete g-vector is fully determined by the dimension
d and go. Moreover some calculation shows that gi(P) = (91-0_’_'*'1’.) fori=o0,...,d —1.

3. Lower bound for the number of vertices of a convex polytope with m facets.
This section is devoted to the proof of Theorem 1.4. First we explain why we chose 1¢(m)
as a candidate to be the lower bound for the number of vertices for a convex polytope with
m facets. Then we introduce a family of ( I_%J —1)-neighbourly simplicial polytopes. Finally,
using this family and bipyramids, we prove the tightness of I¢(m).

First using Theorem 1.1, for i = 0 we get the upper bound for fo(P), the number of
vertices of a d-dimensional polytope P with m facets:

(3) fo(P) < ud(m), we recall that ud(m) = (m —d'-f,' - 1) + (m —g{” - 1)

A dual version is, with 7 denoting the number of facets of a d-dimensional polytope P with
fo vertices:

4)  m<uf(fo).
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This last inequality led us to define I§(m) as the step function presented in Section 2.
Indeed, the inequality (4) implies that a polytope, with m facets such as m > ud(fo), has
necessarily at least f; + 1 vertices. Therefore, with fo(P) denoting the number of vertices
of a d-dimensional polytope P with m facets, we have:
fo(P) 2 i§(m),

which means that I§(m) is a lower bound for the number of vertices of a polytope with m
facets. Now, we have to prove that this lowet bound js attained. First, we recall that (3) is
satisfied with equality if P is a dual neighbourly polytope. Therefore (4) is satisfied with
equality if P is a neighbourly polytope with f, vertices, i.e. for m = wd(fo), fo > d+1.
Therefore the lower bound I&(m) is attained for m = ug(fo) by neighbourly polytopes with
fo vertices since obviously I¢(ug(fy)) = fo. In other words I§(m) is a tight lower bound for
m = ug(fo), fo > d+1. Our ob jective is to prove the tightness of this lower bound for other
values of m, i.e. for ud(fo—1) < m < ug(fo) with fo > d+2. In order to do so we introduce
a family of polytopes with suitable properties. We consider a d—tuple f=(f, f1,-.., fa-1)

such that the associated g-vector 9=1(9-1,90,..., ga) satisfies the following conditions:
(a1) 9i = —gd—i-1 fori=-1,0,...,d", »
(a2) gi = (gio_,_"'li) fori=-1,...,d" - 2, with go >0,

(as) gar—1 = (9° +d4, - 1) -6 with § € {0,1,..., (90 +é§' - 1)}

We recall that the associated g-vector is given by:

gi = i(—l)i—j(z:-g)fj, fori=—1,...,d,

j=—1
with the conventions f_; = 1 and fa=0.

Lemma 3.1. A d-tuple f such that the associated g-vector satisfies the conditions (a;), (ay)
and (a3) is the f-vector of a simplicial polytope.

Proof.  To prove it we just need to check that McMullen’s conditions presented in Section
3 are satisfied. (c;), respectively (c2), obviously holds using (a1), respectively (ay) and
(a3z). To check (c3), we first have to calculate the i-canonical representation of g;_; for
t=1,...,d" — 1. Using (a3) we have:

9i-1=(g°+ii_1) fori=1,...,d -1,
then the i — canonical representation of g;_; is obviously:
(9°+ii_1 =(9°+ii—1) fori=1,...,d -1,
ie. gf_ifllb = (%0++1i) fori=1,...,d -1,
thus
(5) gff”b:gi fore=1,...,d - 2.

(5) implies that (cs3) holds for i = 1,...,d" = 2. To complete the prbof we have to check
that (c3) holds for : = d' — 1. Using (5) we notice that (a3) can be read as:

gdr—1 < g(;d_'zd _1>a
which is the desired inequality and completes the proof. |

The next lemma give us more details about the f-vector of a simplicial polytope such that
the associated g-vector satisfies the conditions (a1), (a2) and (as).

Lemma 3.2. Let P; be a polytope of the class of simplicial polytopes such that the associated
g-vector satisfies the conditions (a,), (a) and (a3); we have:
(1) Psisa (1¢] - 1)-neighbourly polytope with 9o +d + 1 vertices.

, . . j
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(19) Ps has ul(go + d + 1) =8 facets in even dimension and,
(453) Ps has ul(go +d + 1) =26  facets in odd dimension.
Proof.  Since g; fori = —1,0....,d are given by (a1), (az) and (a3); we are able to calculate
the f-vector of P; using (2). If we set j = —1 and J =01in (2), we have
fo(Ps) =d+1+ g,
thus Ps. has go +d + 1 vertices.

B T

Then, to determine the degree of neighbourliness of Ps, using Remark 2.2, we notice that
(a2) means that P has the same g; as a simplicial neighbourly polytope for J=-1,...,d~
i 2. Now, using (2), we remark that for i = 0,... 4" — 2, fi depends only on g; for j =
; —1,...,4. This implies that the f;(Ps) are the same as for a neighbourly polytope with
90 +d + 1 vertices for ; = 0,...,d" — 2, which means that Ps is a (d' - 1)-neighbourly

d—1

far(Ps) = 3" (d-j)g;

i=—1

d’ ©d-1
=2 d=dg+ 3 (d-j)g
j=—1 Jj=d'+1
d’ d"—1
= > (d-j)g - > (i +1)g;. (using(ay))
J=-1 =0
s Since that (a;) implies 9a =0 in odd dimension, we have:
, o1 .

. |' : _ Z (d-25 - 1)9j + ga—1  in even dimension
.y far(Pp) = { 7571

{ Z (d—25 - 1)g; +2g4—1 in odd dimension
-l =

' d'—1

) Z (d—25 - 1)g; + (90 +ﬁ' - 1) =6  in even dimension

. ? . (6) =9 Yo

; Z (d-25 - g, + 2(90 +d41 - 1) =26 in odd dimension
P Jj=-1

’ Since By is a neighbourly polytope with gy + d + 1 vertices, we have:
N fa—1(Ps) = ud go+d+1 for § =0, in even and odd dimension.

! 0

This together with (6) implies:

| Fao1(Ps) = ug(go +d+1)—6 ineven dimension
R Ao B ug(go +d+1)-26 inodd dimension

which completes the proof of Lemma 3.2. [ |
i Remark 3.3. It is not surprising to find q different result for fa-1 in even and in odd

dimension since simplicial polytopes satisfy the relation: d fa-1 =2 fs_o which implies that
a simplicial polytope has o even number of facets in odd dimension.

!

]

} Proof of Theorem 1.4 At the beginning of this section we noticed that Ig(m) was a lower
! T bound for the number of vertices of a polytope with m facets. Then we added that lg(m) was
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attained for m = ug(fo) by neighbourly polytopes with fo vertices, fo > d + 1. Therefore,
to complete the proof of Theorem 1.4 we need to fill the gap between ud(fo) and ud(fo —1)
with polytopes having fo vertices, fo > d + 1. The candidates are of course the P; with
go = fo — d — 1. We separately consider the even and odd dimensional case.

In even dimension, Lemma 3.2 implies that, for a given go = fo —d—1, as é increases by 1
from O to (f" _ﬁ’ - 23 , fi—1(Ps), the number of facets of Ps, decreases by 1 from ug(fo) to

ud(fo) — g U ﬁ' - 22. As Pj has fo vertices, these numbers completely fill the gap between
two neighbourly po
(fo_ 4 2) > ud(fo) — ug(fo— 1)
i —A — — A — — A —
= fod,d)+_(fod,d_1 1) - (fo 9 1) - (fod,til 2)
= fo(?d_l—l) + f°5d_{2)
==t (Pt
hence U 0_23, )(%"__zid =1 >1,
thus  fo > 4d',
thus  m > ud(2d - 1),
which completes the proof of part (i) of Theorem 1:4.

In odd dimension, Lemma 3.2 implies that, for a given go = fo —d—1, as § increases by
1 from O to (f° ‘j’ - 2), fi—1(Ps), the number of facets of Ps, decreases by 2 from ug(fo)

ytopes with fo — 1 and fo vertices if the following inequality holds:

bl

to ud(fo) — 2 fo— ﬁ’ —2Y). As Ps has fo vertices, these numbers fill the gap between two

neighbourly polytopes with fo — 1 and fo vertices for even m if the following inequality
holds:

2 (o= =2) 2 ui(fo) ~ ug(fo — 1)
=2 (fo—;;'—l) —2 (fo—éi,’—2>,
hence (0= %) 2 (954 72).
thus  fo >3d +1,
thus  m > ud(d+ [£)),

which completes the proof of part (i¢) of Theorem 1.4 for m even. To complete the proof,
we have to consider the case of an odd number m of facets in odd dimension. We have to
find polytopes with fo or fo+1 vertices for m odd and ud(fo—1) < m < ui(fo). In order to

do so, we first recall the definition of a bipyramid. Let Q be a (d—1)-dimensional polytope, |

and let I be a closed line segment, such that the intersection of the relative interior of Q and
the relative interior of I is a single point. Then the d-dimensional polytope P = conv(QUI)
is called a d-dimensional bipyramid with basis Q. Moreover, one can easily check that we

have:
{ fo(P) = fo(Q) +2,

fa—1(P) = 2 fa-1(Q)-
Then we define a degenerate bipyramid. Let Q be a (d — 1)-dimensional polytope, let
F be a facet of Q, and let I be a closed line segment, such that the intersection of Q
and the relative interior of I is a single point; and such that the intersection of the relative
interior of F and the relative interior of I is a single point. Then the d-dimensional polytope
P = conv(Q U I) is called a d-dimensional degenerate bipyramid with basis Q. Moreover,
one can easily check that we have:

fa-1(P) =2 fa-1(Q) — 1.
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Then we remark that‘, for d odd

2437 2(fo—1 -
= gy > 1,
= @) 297 (fo - 1) 2 ud(fo).
and also that, for d odd
2ud=2(fo—2 —2d' — -
o g o e oy
= (9 2457 (fo - 2) < ud(fo).
Now, we are able to construct polytopes in odd dimension d with Jo or fo + 1 vertices
and an odd number m of facets such as w(fo—1) <m < ud(fo). First, we consider a
d-dimensional degenerate bipyramid P with basis a (d — 1)-dimensional polytope Q with
fo — 2 vertices such as u§~*(fo — 3) < f4_2(Q) < u§™2(fo —2). As dis odd, d — 1 is even
and we can use part (i) of Theorem 1.4, which means there are such polytopes Q if fo > 2d.
Therefore, using (7), with f, > 2d , there are degenerate bipyramids P such as:
{ P has fy vertices,
fa-1(P) =2 f41(Q) - 1.
P has fy vertices,
{ 2ug™*(fo—3)+1< fa_i(P) < 2u372(fo—2) - 1.
Thus, using (8) and (9), there are degenerate bipyramids P such as:
P has fy vertices,
{ ug(fo—1) +1< far(P) < 2ud2(fo — 2) -1,
which means that for fo > 2d, there are degenerate bipyramids P with m facets such that
(10)  fa—1(P) = Ig¢(m) for m odd and wd(fo—1)<m<?2 ud™%(fo — 2).
Then, we consider a d-dimensional degenerate bipyramid P with basis a (d—1)-dimensional
polytope @ with fo — 1 vertices such as ud=2(fy - 2) < fa-2(Q) < ud%(fo — 1). Asdis
odd, d — 1 is even and we can use part (4) of Theorem 1.4, which means there are such
polytopes Q if fo > 2d — 1. Therefore, using (7), with fo > 2d — 1, there are degenerate
bipyramids P such as:
{ P has fo + 1 vertices,

=

fa1(P) =2 f41(Q) - 1.
N { P has fo + 1 vertices,

205 (fo = 2) +1 < fama(P) S 208 (fo - 1) - 1.
Thus, using (8) and (9), there are degenerate bipyramids P such as:

P has fo + 1 vertices,

{ 24572 (fo = 2) + 1 < fa1(P) < ud(fo) - 1,

which means that for f, > 2d — 1, there are degenerate bipyramids P with m facets such
that

i

(11)  f4—1(P) =1¢(m) + 1 for m odd and 24 (fo-2) <m < ud(fo).
Finally, (10) and (11) complete the proof of part (44), and therefore the proof of Theorem 1.4.
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FIGURE 3.1. lower bound for the number of vertices of a, 4-dimensional polytope
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FIGURE 3.2. lower bound for the number of vertices of a 5-dimensional polytope
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FIGURE 3.3. lower bound for the number of vertices of a 6-dimensional polytope




