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Abstract. The classical game of Peg Solitaire has uncertain origins, but was certainly popular by the time of
LOUIS XIV, and was described by LEIBNIZ in 1710. The modern mathematical study of the game dates to
the 1960s, when the solitaire cone was first described by BOARDMAN and CONWAY. Valid inequalities over
this cone, known as pagoda functions, were used to show the infeasibility of various peg games. In this paper
we study the extremal structure of solitaire cones for a variety of boards, and relate their structure to the well
studied metric cone. In particular we give:

1. an equivalence between the multicommodity flow problem with associated dual metric cone and a gen-
eralized peg game with associated solitaire cone;

2. a related NP-completeness result;
3. a method of generating large classes of facets;
4. a complete characterization of 0-1 facets;
5. exponential upper and lower bounds (in the dimension) on the number of facets;
6. results on the number of facets, incidence and adjacency relationships and diameter for small rectangular,

toric and triangular boards;
7. a complete characterization of the adjacency of extreme rays, diameter, number of 2-faces and edge

connectivity for rectangular toric boards.

1. Introduction and basic properties

1.1. Introduction

Peg solitaire is a peg game for one player which is played on a board containing a number
of holes. The most common modern version uses a cross-shaped board with 33 holes –
see Fig. 1 – although a 37 hole board is common in France. Computer versions of the
game now feature a wide variety of shapes, including rectangles and triangles. Initially
the central hole is empty, the others contain pegs. If in some row (column resp.) two
consecutive pegs are adjacent to an empty hole in the same row (column resp.), we may
make a move by removing the two pegs and placing one peg in the empty hole. The
objective of the game is to make moves until only one peg remains in the central hole.
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Variations of the original game, in addition to being played on different boards, also
consider various alternate starting and finishing configurations.

The game itself has uncertain origins, and different legends attest to its invention
by various cultures. An authoritative account with a long annotated bibliography can be
found in the comprehensive book of BEASLEY [6]. The book mentions an engraving of
BEREY, dated 1697, of a lady with a Solitaire board. The book also contains a quotation
of LEIBNIZ [19] which was written for the Berlin Academy in 1710. Apparently the
first theoretical study of the game that was published was done in 1841 by SUREMAIN

DE MISSERY, and was reported in a paper by VALLOT [26]. The modern mathematical
study of the game dates to the 1960s at Cambridge University. The group was led
by CONWAY who has written a chapter in [8] on various mathematical aspects of the
subject.

One of the problems studied by the Cambridge group is the following basic feasibility
problem of peg solitaire:

For a given board B, starting configuration S and finishing configuration F, deter-
mine if there is a legal sequence of moves from S to F.

Fig. 1. A feasible English solitaire peg game with possible first and last moves

The complexity of the feasibility problem for the n by n game was shown by UEHARA

AND IWATA [25] to be NP-complete, so easily checked necessary and sufficient con-
ditions for feasibility are unlikely to exist. One of the earliest tools used to show the
infeasibility of certain starting and finishing configurations is a polyhedral cone, which
we will call the solitaire cone, SB , corresponding to some given board B. This paper
contains results on the extremal structure of this cone, which we describe in the next
subsection.

1.2. Basic properties

For ease of notation, we will mostly be concerned with rectangular boards which we
represent by 0-1 matrices. A zero represents an empty hole and a one represents a peg.
For example, let S = [ 1 0 1 1 ] and F = [ 0 0 1 0 ] be starting and finishing positions
for the 1 by 4 board. This game is feasible, involving two moves and the intermediate
position [ 1 1 0 0 ] – as shown in Fig. 2.
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FinalStarting 

Fig. 2. A feasible game on the 1 by 4 board

For any move on an m by n board B we can define an m by n move matrix which has
3 non-zero entries: two entries of −1 in the positions from which pegs are removed and
one entry of 1 for the hole receiving the new peg. The two moves involved in Fig. 2 are
represented by m1 = [ 0 1 −1 −1 ] and m2 = [ −1 −1 1 0 ]. Clearly F = S + m1 + m2.
By abuse of language, we use the term move for both the move itself and the move
matrix. In general it is easily seen that if S, F define a feasible game of k moves there
exist move matrices m1, . . . , mk such that

F − S =
k∑

i=1

mi . (1)

Lemma 1. Equation 1 is necessary but not sufficient for the feasibility of a peg game.

Proof. For example, for the following game – see Fig. 3 – S = [ 1 1 1 1 ] and F =
[ 0 0 0 1 ]. We have F − S = [ −1 −1 1 0 ] + [ 0 1 −1 −1 ] + [ 0 −1 −1 1 ], but S, F
do not define a feasible game; in fact there are no legal moves!

��

FinalStarting 

Fig. 3. An integer feasible but 0-1 infeasible game

Let us relax the conditions of the original peg game to allow any integer (positive
or negative) number of pegs to occupy any hole. We call this game the integer game,
and call the original game the 0-1 game. Note that in a 0-1 game we require that in
every position of the game a hole is either empty or contains a single peg. A move in
the integer game is defined to correspond to the process of adding a move matrix to
a given position. By the following lemma, we may identify an integer game S, F with
the difference F − S.

Lemma 2. Equation 1 is necessary and sufficient for the feasibility of the integer game.

In other words, Lemma 2 states that all feasible integer games form the integer cone
ISB defined as the set of all non-negative integral combinations of moves.

Unfortunately deciding if F − S can be expressed as the sum of move matrices
seems to be a hard computational problem. In Sect. 2 we show that a variant of the game
is NP-complete. A further relaxation of the game leads to a more tractable condition.
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In the fractional game we allow any hole to contain a fractional (positive or negative)
number of pegs. A fractional move matrix is obtained by multiplying a move matrix by
any positive scalar. For example, let S = [ 1 1 1 ], F = [ 1 0 1 ]. Then F−S = [ 0 −1 0 ]
= 1

2 [ −1 −1 1 ] + 1
2 [ 1 −1 −1 ] is a feasible fractional game and can be expressed as

the sum of two fractional moves, but is not feasible as a 0-1 or integer game.

FinalStarting 

Fig. 4. A fractional feasible but integer (and therefore 0-1) infeasible game

Let B be a board and nB the total number of possible moves on the board. The
solitaire cone SB is the set of all non-negative combinations of the nB corresponding
move matrices. Thus F − S ∈ SB if:

F − S =
nB∑
i=1

yimi, yi ≥ 0, i = 1, . . . , nB . (2)

In the above definition it is assumed that the h B holes in the board B are ordered in
some way and that F − S and mi are h B-vectors. When B is a rectangular m by n board
Bm,n it is convenient to display F − S and mi as m by n matrices, although of course
all products should be interpreted as dot products of the corresponding mn-vectors.

We define the dual of the solitaire cone SB as the the cone defined by the inequalities
mi ·x ≤ 0, for each move matrix mi defining SB . The facets of the dual cone are therefore
defined by triangle inequalities. These inequalities, combined in a very different way,
also define the well studied metric cone, which we define in the next section. One of the
motivations of our work was to explore the relationship between the solitaire and metric
cones.

Lemma 3. For n ≥ 4 or m ≥ 4, the solitaire cone Sm,n (and its dual S∗
m,n) associated

to the m by n board is a pointed full-dimensional cone.

Proof. Consider S1,n with n ≥ 4. Clearly the following n × n matrix lies in the span of
the moves: 



1 −1 −1 0 . . .
0 −2 0 . . .

. . .

. . . 0 −2 0
. . . 0 −1 −1 1




The first and last rows are simply moves and the other rows are sums of two different
moves with the same triple. This matrix is obviously non-singular with determinant
(−2)n−2. Hence the associated solitaire cone S1,n is full-dimensional. For any m by n
board with m ≥ 4 or n ≥ 4, we can extend the above idea: We get a block diagonal
mn by mn matrix – one block for every row (or column), with each block being non
singular. Hence Sm,n is full-dimensional for m ≥ 4 or n ≥ 4. Since the dual cone clearly
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contains the [1, 2]mn cube, S∗
m,n is full-dimensional. Therefore both cones are pointed

and full-dimensional.
��

Lemma 4. The moves of the solitaire cone are extreme rays.

Proof. All the generators – the moves – of the solitaire cone belong to the hyperplane
H : ∑h B

i=1 xi = −1 and to the sphere � : ∑h B
i=1 x2

i = 3. In other words, the moves
belong to a sphere of codimension 1 centered on the axis through the origin with normal
(1, . . . , 1). This implies that the moves are extreme rays of the (pointed) solitaire cone.

��
The following result obtained in 1961 is credited to BOARDMAN (who apparently has
not published anything on the subject) by BEASLEY [6], p. 87. We identify F − S with
the fractional game defined by S and F.

Proposition 1. Equation 2 (F − S ∈ SB) is necessary and sufficient for the feasibility
of the fractional game; that is, the solitaire cone SB is the cone of all feasible fractional
games.

Lemma 1 and 2 and Proposition 1 are illustrated in Fig. 5

an integer feasible game

S =

F =

S =

a fractional feasible game a  classical 0-1 feasible game

F = F =

S =

a pagoda function a facet

IS

2
m

1m m 1

m
2

m 1

m
2

B

F-S

S

F-S

F-S

B

Fig. 5. Respectively fractional, integer and 0-1 feasible solitaire peg games

The conditionF − S ∈ SB is therefore a necessary condition for the feasibility of the
original peg game and, more usefully, provides a certificate for the infeasibility of certain
games. The certificate of infeasibility is any inequality valid forSB which is violated
by F − S. According to [6], p. 71, these inequalities“were developed by J.H. Conway
and J.M. Boardman in 1961, and were calledpagoda functions by Conway...”. They
are also known asresource counts, and are discussed in some detail in CONWAY [8].
The strongest such inequalities are those that support the facets ofSB. For example, the
facet given in Fig. 14 induces an inequalitya · x ≤ 0 that is violated byF − S with S, F
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given in Fig. 6 ((F − S) · a = 2 > 0). This implies that this game is not feasible even as
a fractional game and, therefore, not feasible as an integer game or classical 0-1 game
either.

    Starting       Final

Fig. 6. An infeasible classical solitaire peg game

Other tools to show the infeasibility of various peg games include the so-called
rule-of-three which simply amounts to color the board by diagonals ofα, β and γ

(in either direction). Then, with #α (#β, #γ resp.) denoting the number of pegs in an
α-colored (β, γ resp.) holes, one can check that the parity of #α − #β, #β − #γ and
#γ − #α is an invariant for the moves. The rule-of-three was apparentlyfirst exposed
in 1841 by SUREMAIN DE MISSERY; see BEASLEY’s book [6] for a detailed historical
background. The rule-of-three can be used, for example, to show that on the classical
cross-shaped English 33-board, starting with the initial configuration given in Fig. 1, the
only reachablefinal configurations withexactly one peg are– besides the configuration
of Fig. 1– the four configurations of Fig. 7.

Fig. 7. Four other feasiblefinal configurations

Another necessary condition generalizing the rule-of-three– the solitaire lattice
criterion – is to check ifF − S belongs to thesolitaire lattice generated by all integer
linear combinations of moves, that is:

F − S =
nB∑
i=1

yimi, yi ∈ Z, i = 1, . . . , nB .

While the lattice criterion is shown to be equivalent to the rule-of-three for the classical
English 33-boardand French 37-boardas well as for anym×n board, the lattice criterion
is stronger than the rule-of-three for games played on more complex boards. In fact,
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for a wide family of boards presented in this paper, the lattice criterion exponentially
outperforms the rule-of-three; see DEZA AND ONN [12].

Remark 1. In later sections we will consider the toric closure of a boardB which is
more symmetric. These boards allow moves that traverse the boundary of the board. For
example, the game given in Fig. 8 is feasible on a toric closure of the 1 by 4 board.

FinalStarting 

Fig. 8. A feasible classical game on the toric closure of the 1 by 4 board

Finding all facets of the coneSB is an example of aconvex hull orvertex enumeration
problem, for which various computer programs are available. The computational results
in this paper were obtained using the double description methodcdd implemented
by FUKUDA [14], and the reverse search methodlrs implemented by AVIS [3]. The
diameters of cones were computed usinggraphy implemented by FUKUDA [14]. We
made use of these codes to completely generate all facets for some small boards as
reported in later sections (such as the 95 444 facets for the toric closure of the 4 by 4
board). For realistically sized boards the corresponding solitaire cones are too large for
these programs. For example the original peg solitaire game gives rise to a cone with 76
extreme rays in 33 dimensions. The reverse search vertex enumeration codelrs applied
to this cone generated over 300,000 facets from about 6 million bases of the cone that
were generated before the program was terminated. An unbiased estimate obtained from
lrs suggests that the solitaire cone has about 9.2 million facets and 12 billion bases. If
correct, this estimate puts the size of the cone just beyond problems currently solvable
by a parallel version oflrs.

The rest of the paper is organized as follows. We give some new results on facets
of SB for various boards in Sect. 3. We present an algorithm for generating a large
class of facets, and which generates all 0-1 facets for some boards. These facets are
considerably more complex than the 0-1 facets of the dual of the metric cone, which are
generated by cuts in the complete graph. In Sect. 4 we give some results and conjectures
on the combinatorial and geometric properties of the solitaire cone. We investigate the
diameter, edge connectivity, adjacency and incidence relationships of the solitaire cone
and its dual. In Sect. 5 we recall some properties of the cone generated by the{0, 1}-
valued facets of the solitaire cone, and some other related polyhedra. Finally in Sect. 6
we conclude by comparing and contrasting the solitaire and metric cones. The Appendix
contains the proofs of Lemma 6 and Theorem 8.

2. Relationship with multicommodity flows and the metric cone

The solitaire cone is generated by a set of extreme rays, each of which is all zero except
for three non-zero components which are 1,−1,−1. In this section we relate the solitaire
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cone to another cone with the same property, theflow cone which is dual to themetric
cone. This cone arises in the study of multicommodityflows (which we abbreviate to
multiflows), and we will show similarities between this problem and the peg game. For
more details on the relationship between the metric cone and multicommodityflows,
see the survey paper of AVIS AND DEZA [5]. We give a brief sketch here.

2.1. Metric cone and multicommodity flows

Let Kn denote the complete graph onn vertices. We write the edge with endpointsi and
j as eitheri j or ji. For each edgei j we define a non-negative integralcapacity ci j and
demand di j . Since the same edge is labeled in two ways, we identifyci j with c ji, and
perform similar identifications for other vectors indexed by edges. Letc andd denote
the respective capacity and demand vectors of length

(n
2

)
. Let 1 ≤ r �= s �= t ≤ n be

three distinct indices. Aflow on the triple(r, s, t) is a vector

f rst
i j =




1 i = r, j = s
−1 i = r, j = t
−1 i = s, j = t

0 otherwise.

Theintegral multiflow problem is to try tofind an integral combination offlows,z, such
that z ≥ d − c. If this is possible we say thatc, d is integer feasible. Such a vectorz
defines a set ofdi j paths between each pair of verticesi and j in Kn. No edgei j in Kn

can appear in more thanci j paths. Ifz = d − c, we say the multiflow is saturated. This
corresponds to the case where each edgei j is contained in exactlyci j paths defined
by z. In the example shown in Fig. 9, we haven = 4, d = [ 3 0 0 0 0 3 ] andc =
[ 0 5 3 4 1 0 ]. Thend −c ≤ 3 f 123+2 f 341+ f 342 = z. The problem is integer feasible
and the multiflow is unsaturated as there is a residual capacity of 1 on arc 1, 3.

EVEN, ITAI AND SHAMIR – see GAREY AND JOHNSON [15] p. 217– proved the
following result showing that integer feasibility is an intractable problem in general.

Theorem 1. It is NP-complete to decide if c, d is integer feasible for the multiflow
problem, even if c is a 0-1 vector and d has only two non-zero components.

Thefractional multiflow problem is to try to expressd−c as a non-negativecombina-
tion of flows. If this is possible we say thatc, d is fractionally feasible. For a fractionally
feasible problem it is always possible tofind a saturated multiflow, since any excess
capacity on edgers can be used by combiningflows f rst and f srt (with possibly frac-
tional multipliers). For example, setn = 5, d = [ 1 1 0 0 1 0 0 0 0 0 ] andc = [ 0 0 1 1
0 1 1 1 1 0 ]. We identify theflow problemc, d with the vectord − c. This problem has
the fractional solution

d − c = 1

2
( f 124+ f 125 + f 134+ f 135 + f 234+ f 235)

but no integral solution. Fractional multiflows lead to the study of theflow cone which
is the set of all non-negative combinations of the 3

(n
3

)
possibleflow vectors:

Fn = {
z : z =

∑
r,s,t

yrst f rst with yrst ≥ 0 and 1≤ r < s < t ≤ n
}
. (3)
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Fig. 9. An integer feasible multicommodityflow problem

F3 is illustrated in Fig. 10. The dual of theflow cone is the much studiedmetric cone;
see for example, AVIS [1], DEZA, DEZA AND FUKUDA [11] and LOMONOSOV[20]):

Mn = {z : zrs ≤ zrt + zst with 1 ≤ r < s < t ≤ n}.
The Japanese theorem of IRI [18] and ONAGA AND KAKUSHO [21] gives a neces-
sary and sufficient condition for the feasibility of the fractional multicommodityflow
problem.

Theorem 2 [18,21]. A multiflow problem c, d is fractionally feasible if and only if
d− c ∈ Fn.

Facets of theflow cone are useful to show the infeasibility of multiflow problems. In
the previous example, if we change the demand vector tod = [ 1 1 0 0 1 0 0 0 0 1 ], the
problem becomes infeasible. This is demonstrated by the faceta = [ 2 2 1 1 2 1 1 1 1 2 ].
For eachflow f i jk, a f i jk ≤ 0, buta(d − c) = 2 > 0 soc, d is infeasible.

The reader should compare this description of multiflows with the development of
the solitaire cone in Sect. 1, and in particular equation 2 with 3, and Theorem 1 with
Theorem 2. There are two obvious differences in the two problems. Thefirst is that in the
flow cone we consider all triples from a set ofn elements, whereas in the solitaire cone
the triples are constrained to be consecutive horizontal or vertical entries in a rectangular
array. The second difference is that in theflow cone for a given tripler, s, t we include all
three orderings of the non-negative entries 1,−1,−1. In the solitaire cone we only allow
the orderings 1,−1,−1 and−1,−1,1. The third ordering,−1,1,−1 , could be considered
as an additional move in the peg game where two pegs surrounding an empty hole are
replaced by a peg in the empty hole. The cone induced by this variation of the Solitaire
game is calledthe complete solitaire cone CSB; see Sect. 5.3. With this additional move,
we can in fact show a strong correspondencebetween the peg game and multicommodity
flows.
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a feasible fractional multiflow problem

a valid inequality a facet

f 231

f 123
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Fig. 10. All fractionally feasible multicommodity flow problems form the flow coneF3

2.2. Multicomomodity flows versus peg game

Given a graphG = (V, E), theline graph of G is a graph whose vertices correspond to
edges inG. Two vertices are adjacent in the line graph if the corresponding edges share
an endpoint inG. Let Ln denote the line graph ofKn . For given vectorsc andd, we will
construct ageneralized peg game on B = Ln . Each vertex ofLn represents a hole ofB.
The moves onB derive from triangles inKn . Let i, j, k be three vertices inG. Then
the verticesi j, ik, jk in Ln form avalid triangle and avalid move on the boardB. We
allow all three possible moves on the triangle: for the integer game this means that the
number of pegs on any two of the holes is decremented by one, and the number of pegs
on the remaining the hole is incremented by one. We assign initiallyci j pegs to vertex
i j of Ln . This is the starting configurationS. It is required to reach a finishing position
with at leastdi j pegs at each vertexi j, using valid (respectively valid fractional) moves.
We illustrate in Fig. 11 the correspondence for the problem presented in Fig. 9.

Theorem 3. A multiflow problem c, d on Kn is integer (respectively fractional) feasible
if and only if the corresponding generalized peg game on Ln is integer (respectively
fractional) feasible. Therefore, the dual metric cone M∗

n equals the complete solitaire
cone CSLn for a game played on the line graph of the complete graph on n nodes.

Proof. First we show that an integer (respectively fractional) multiflow forc, d corres-
ponds to an integral (respectively fractional) solution of the peg game. Supposez is an
integral combination of flows. Each of the flows is in one to one correspondence with
a move on a valid triangle ofLn. Sinced ≤ c + z, in the peg game we end up with
at leastdi j pegs at each vertexi j. Note if the multiflow is saturated, we end up with
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Fig. 11. Correspondence of multicommodity flows and solitaire peg game

exactlydi j pegs at each vertexi j. In the same way a solution to the peg game gives the
required vectorz and its decomposition into flows. The same argument applies to the
fractional game.

��
Together with Theorem 1 we get immediately the following corollary.

Corollary 1. The integer generalized peg game is NP-complete even if in the start-
ing position all holes contain at most one peg and the finishing position has positive
requirements for exactly two holes.
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Remark 2. The integer generalized peg game can be solved in polynomial time if only
one hole has positive finishing requirement. This is because in this case the corresponding
multiflow problem is a single commodity multiflow for which many polynomial time
algorithms exist. It is interesting that the 0-1 game is NP-complete on then by n board,
even if the final position contains exactly one peg; see UEHARA AND IWATA [25].

3. Facets of the solitaire cone

For simplicity we begin with rectangular boards. Most of the results can be applied
to boards which are subsets of the square lattice in the plane, such as the original Peg
solitaire board. We also give some results for their toric closures, which are simpler
since they avoid many special situations caused by the boundary.

3.1. Rectangular boards

Let B be a rectangularm by n board, withm ≥ 4 orn ≥ 4. Using the notation described
following equation 2, we will represent the coefficients of the facet inducing inequality

az ≤ 0 (4)

by them by n arraya = [ai, j ]. Inequality 4 holds for everyz ∈ SB . It is a convenient
abuse of terminology to refer toa as afacet of SB . A corner of a is a coefficientai, j

with i ∈ {1, m} and j ∈ {1, n}.
We will frequently need to refer to three consecutive row or column elements of an

m by n array. For this we use the notationT = (t1, t2, t3) to refer to aconsecutive triple
of row or column indices. For example botht1 = i, j, t2 = i, j + 1, t3 = i, j + 2 and
t1 = i + 2, j, t2 = i + 1, j, t3 = i, j are consecutive triples. Using this notation we
see that a move matrix forB is anm by n matrix that is all zero except for elements of
some consecutive triple which take the values 1,−1,−1. Each consecutive triple defines
a triangle inequality

at1 ≤ at2 + at3 . (5)

A triangle inequality istight if equality holds

at1 = at2 + at3 . (6)

The following theorem summarizes known results on properties of valid inequalities
(pagoda functions) forSB; see BEASLEY [6]. We include a proof for completeness.

Theorem 4. For each valid inequality a = [ai, j ] for SB

1. The triangle inequality 5 must hold for every consecutive triple T = (t1, t2, t3).
2. Negative coefficients of a can only occur in corners.
3. If T = (t1, t2, t3) is a consecutive triple with at2 = 0 then at1 = at3.
4. If two consecutive row (respectively, column) entries of a are zero the entire row

(respectively, column) is zero.
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Proof. 1. Every move matrix is trivially inSB and so inequality 4 withz equal to the
move matrix corresponding toT gives the triangle inequality 5.

2. Letat2 be a coefficient ofa that is not a corner. It must lie in two consecutive triples
(t1, t2, t3) and(t3, t2, t1). The two triangle inequalities for these triples imply that
at2 ≥ 0.

3. Again this follows from the two triangle inequalities induced by the triples(t1, t2, t3)
and(t3, t2, t1).

4. Follows by repeatedly applying part 3 of the theorem.
��

As mentioned in the introduction, it is not feasible to generate all facets for reasonably
sized boards, and in general no characterization of facets is known. A large class of
facets can, however, be generated by the following procedure.

GENFACET(B) /*procedure to generate a facet matrixa of SB */

1. Choose a proper subset of coefficients ofa satisfying:
(a) If a corner is chosen, all coefficients in the row and/or column of length at least
4 containing the corner must also be chosen; and
(b) If two consecutive coefficients are chosen, their entire row and column must also
be chosen.
Set these chosen coefficients to zero.

2. Choose any undefined coefficient that is not a corner and set it to one.
3. Choose a consecutive tripleT = (t1, t2, t3) for which precisely two of the corres-

ponding coefficients ofa are defined. Define the remaining coefficient by equation 6
providing this does not violate any triangle inequality fora.

4. Repeat Step 3 until no further coefficient ofa can be defined.

Theorem 5. Given an m by n board B, with m ≥ 4 or n ≥ 4, if GENFACET(B)
terminates with all elements of a defined, then a is a facet of SB.

Proof. By Lemma 3, under the conditions of the theorem,SB is full dimensional. Leta
be a matrix generated by GENFACET and letb be any otherm by n matrix that is valid
for SB such that for every consecutive tripleT = (t1, t2, t3),

at1 = at2 + at3 ⇔ bt1 = bt2 + bt3. (7)

We will show thatb is a positive scalar multiple ofa, proving thata is facet inducing,
sinceSB is full-dimensional. By construction,a satisfies all triangle inequalities and so
is valid for SB, so we may apply results from Theorem 4.

First we show that for eachai, j = 0 that is set in Step 1 of GENFACET we must
also havebi, j = 0. Initially assume thati, j is not a corner index, so there is some
consecutive tripleT = (t1, t2, t3) with t2 = i, j. Supposeat2 = 0. It follows from
Theorem 4 (3) thatat1 = at3. Applying relation 7 twice we obtain the equations

bt1 = bt2 + bt3 bt3 = bt1 + bt2

and conclude thatbt2 = 0. An identical argument shows thatbi, j = 0 implies that
ai, j = 0. If i, j is a corner withai, j = 0, by construction ofa there must be a consecutive
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triple T = (t1, t2, t3) with t1 = i, j, at2 = at3 = 0, and such thatat3 is not a corner
coefficient. As we showed, this impliesbt2 = bt3 = 0 and so applying Theorem 4 (4) to
b we havebt1 = 0.

The argument in the previous paragraph implies that all of the entries set to zero in
Step 1 of GENFACET must be also zero inb. Supposeai, j is the coefficient set to one
in Step 2. Since it is not a corner element, Theorem 4 (2) implies thatbi, j ≥ 0, and in
fact it must be strictly positive sinceai, j is non-zero. We may now scaleb so that in fact
bi, j = 1.

We complete the proof with a simple inductive argument to show that at the end
of each execution of Step 3 of GENFACET, ifai, j has been assigned thenbi, j = ai, j .
Indeed suppose this statement is true when Step 3 is about to be executed, and suppose
someai, j is defined by the equation

at1 = at2 + at3.

One of the coefficients in this equation isai, j and the other two coefficients have already
been assigned. By induction, these two coefficients are equal to the corresponding
coefficients ofb. Now by condition 7 the equation

bt1 = bt2 + bt3

holds forb and sobi, j = ai, j . This completes the induction. At termination of GEN-
FACET, all coefficients ofa were assigned, so we have shown thatb is equal toa up to
multiplication by a positive scalar.

��
Remark 3. If condition (a) in Step 1 is dropped, GENFACET could generate matrices
that are not facets. For example, the matrices

a =

 0 1 1 0

0 0 0 0
0 1 1 0


 b =


 −1 2 1 1

0 0 0 0
−1 2 1 1




have the same tight triangle inequalities. Since one is not a scalar multiple of the other,
they are not facets. Howevera would be generated by GENFACET if condition (a) in
Step 1 is dropped.

Remark 4.

1. Not all facets of rectangular boards are generated by GENFACET. For example
the following facet (found by computer) of the 3 by 4 rectangular board cannot be
generated by GENFACET. 

 −1 2 1 1
2 1 1 0
1 1 0 1




2. GENFACET can easily be adapted to non-rectangular boards that are connected
subsets of the square grid, such as the original peg solitaire game. The notion of
corner generalizes in the obvious way to all holes that have exactly one horizontal
and vertical neighbour. For example, the original English game has 8 corners and
by GENFACET we can generate the two facets given in Fig. 12:
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Fig. 12. Two facets of the English solitaire cone

3. CONWAY [8] gives 14 valid inequalities (pagoda functions) for the English solitaire
game. Of these, 11 described in his Figs. 21(d), 22(a)–(d) are facets ofSB and can
be generated by GENFACET. The two pagoda functions in Figs. 22(h) and 22(v)
– see [8] – are not facets since (h) is one half the sum of the inequality from (a)
(interchanging the 0 and 1 in (a) as shown) and the same inequality with−1 replaced
by +1; similarly, (v) is half the sum of 2 inequalities derived from (b) again with the
indicated interchanges. The pagoda function in Fig. 21(c) – see Fig. 13 – is a facet
of SB , and is not generated by GENFACET.

Fig. 21 (c)
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Fig. 13. Two pagoda functions from CONWAY’s book [8]

4. The facet of Fig. 14 given by BEASLEY [7] proves the infeasibility of the game of
Fig. 6

To avoid the special effects created by the boundary of the rectangular board, we were
motivated to study their toric closures. Some results on these are given in the Sect. 3.2
where we simply call them toric boards.
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Fig. 14. A facet of the English board

3.2. Toric boards

From now on, the toric closure of a board is simply called a toric board. In other
words, the toric m by n board for m ≥ 3 or n ≥ 3 is an m by n rectangular board
with additional jumps which traverse the boundary. The associated toric solitaire cone is
pointed and full-dimensional for m ≥ 3 or n ≥ 3. This can be proved along the lines of
Lemma 3, by noting that the mn by mn matrix with −2 on the diagonal and 0 elsewhere
is spanned by the move matrices expressed as mn-vectors (write each matrix row by
row as a vector). Formally, we extend the definition of consecutive triple given in the
last subsection by allowing row indices to be taken modulo m and column indices to be
taken modulo n. For example, for a 4 by 4 toric board both t1 = 2, 3, t2 = 2, 4, t3 = 2, 1
and t1 = 1, 3, t2 = 4, 3, t3 = 3, 3 are consecutive triples. Similarly we extend the
definition of a consecutive string of entries to include strings that traverse the boundary.
All holes on a toric board are equivalent from the point of view of allowable jumps,
so we say that the toric board has no corners.

The results of Sect. 3.1 can easily be adapted to toric boards. Theorem 4 applies,
except that we get the stronger condition that all coefficients are non-negative since
there are no corner coefficients. In GENFACET the condition on corner coefficients
in Step 1 is not applied, since toric boards have no corners. Similarly, in Step 2 any
undefined coefficient can be chosen. Theorem 5 is easily adapted to apply to toric boards
B with m ≥ 3 and n ≥ 3, under which condition SB is full-dimensional. Given any
facet matrix, we may cyclically permute its rows and/or columns to obtain a possibly
different matrix, which again defines a facet. We call such facets isomorphic. Observe
that the 3 by 3 identity matrix and the matrix

a =

 0 0 0

0 1 1
0 1 1




would be generated by GENFACET for the 3 by 3 toric board, and are facets. There are
6 facets isomorphic to the identity matrix and 9 facets isomorphic to a. These are all the
facets for the solitaire cone of the 3 by 3 toric board.

We can use Theorems 4 and 5 to obtain a complete characterization of 0-1 facets of
SB when B is a toric board. Let a be an m by n 0-1 matrix. We define the 1-graph Ga
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on a as follows: vertices of Ga correspond to non-zero coefficients, and two vertices
are adjacent if the corresponding coefficients are in some consecutive triple where the
remaining coefficient is zero. Note that in fact there must be at least two such triples
since if (t1, t2, t3) is such a triple then so is (t3, t2, t1).

Theorem 6 (characterization of 0-1 valued facets).
Let B be the m by n toric board. A m by n 0-1 matrix b is a facet of SB if and only if

1. No non-zero row or column contains two consecutive zeroes, and
2. Gb is connected.

0 00 0

0 00 0

1 1 10

1 1 10 1 10

00

1 10

00

1 1

11

0

0

Fig. 15. Two pagoda functions of S4×4, only the first one being a facet

Proof. To prove sufficiency we show that a matrix a = b can be constructed by GEN-
FACET and then apply Theorem 5 to show it is a facet. We begin by setting ai j to zero
if bi j = 0. Since b is valid for SB , Theorem 4 (4) implies the zeroes of a are a valid
choice in Step 1 of GENFACET. We will show all other coefficients of a are set to one
in GENFACET, so that a = b.

In Step 2, some non-zero coefficient ai, j of a is set to one, as required. Consider
the first execution of Step 3. Let v be the vertex in Gb corresponding to ai, j . Since Gb

is connected, v is adjacent to some vertex w. By construction of Gb, the coefficients
corresponding to v and w lie in some consecutive triple T = (t1, t2, t3) where the
remaining coefficient is zero. We may choose such a triple so that the zero coefficient is
at2 or at3 . Then in the equation

at1 = at2 + at3

one of the variables has value one and one of the right hand side variables has value zero,
so the remaining variable must also have value one. Therefore in Step 3, the undefined
coefficient, corresponding to vertex w, gets set to one.

In general, every time we execute Step 3 we can select an undefined coefficient
whose corresponding vertex in Gb is adjacent to some already defined coefficient. Since
Gb is connected, this is always possible. In this way all of the coefficients that were not
set to zero receive the value one. The conditions on the zeroes are sufficient to ensure
that all triangle inequalities are satisfied by b. Therefore GENFACET has constructed a
which is identical to b. It follows from Theorem 5 that b is a facet, concluding the proof
of sufficiency.

For necessity, suppose (1) is violated, then b violates a triangle inequality and does
not generate a valid inequality for SB . Now suppose (2) is violated. Gb consists of two
or more components. We form a new matrix a that is identical to b except that in one
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of the connected components of Gb we replace all coefficients that have value one with
the value 3

2 . Clearly a is not a scalar multiple of b. We show a is valid for SB and every
tight triangle inequality satisfied by b is satisfied by a. This is a contradiction since it
shows b is not a facet of SB . To show validity of a, the only triangle inequalities that
could fail for a are of the form

at1 > at2 + at3

where at1 = 3
2 . Now the right hand side variables cannot both be zero or the triangle

inequality would fail for b, so {at2, at3} = {0, 1}. But this is impossible because it
would imply an edge in Gb between the vertices corresponding to non-zero coefficients,
contradicting the fact that they lie in separate components. To show a and b have the
same tight triangle inequalities, consider a consecutive triple for which the equation

at1 = at2 + at3

holds. Since the coefficient values are chosen from {0, 1, 3
2 } there is no way both 1 and

3
2 can appear in the equation. Therefore non-zero coefficients lie in the same connected
component, and the same equation holds for b. Similarly, a tight triangle inequality
holding for b must have any non-zero coefficients in the same connected component, so
the corresponding equation holds for a.

��

Theorem 6 is useful for proving large classes of 0-1 matrices are facets. Let x =
(x1, . . . , xm) and y = (y1, . . . , yn) be two vectors. We say the m by n matrix a is the
product of x and y if for all 1 ≤ i ≤ m and 1 ≤ j ≤ n ai, j = xi y j . A simple application
of Theorem 6 gives the following:

Corollary 2.

1. A 0-1 n-vector is a facet of the 1 by n toric board if and only if it has no pair of
consecutive zeroes, no string of five or more ones, and at most one string of four
ones.

2. The product of two 0-1 facets of the 1 by m and 1 by n toric boards gives a 0-1 facet
of the m by n toric board.

We end this section by remarking that a 0-1 vector a is valid over SB if and only if the
position F = a is not reachable from any other position in the 0-1 peg game. To see this
note that if F = a is reachable, then the last jump must result in the configuration 0 0 1
in some row or column, violating the triangle inequality, so a is not valid. Conversely if
a is not valid, it must contain the string 0 0 1 in some row or column. Replacing this by
the string 1 1 0 gives a position leading to F = a. A similar statement is not true for the
integer game: for example the valid a = [ 0 1 1 ] for the 1 by 3 game can be reached
from [ 1 2 0 ]. It would be interesting to see if the 0-1 facets of the 0-1 peg game have
some natural interpretation in terms of the game itself.
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3.3. Bounds on number of facets

As mentioned in the introduction, experimental evidence and the fact that the n by
n game is NP-complete indicates that solitaire cones are likely to have a very large
number of facets. In this section we give some additional theoretical evidence for this
observation. We begin by a simple exponential upper bound applicable to a large number
of different boards. For simplicity we restrict ourselves to boards which are a connected
subset of the square lattice.

Lemma 5 (upper bound).
Let nB be the number of moves on a board B with h B holes. SB has at most

( nB
h B−1

)
< 2nB

facets. In particular the m by n toric board generates at most
( 4mn

mn−1

)
< ( 44

33 )mn facets.

Proof. This follows from the fact that SB is a cone in h B dimensions defined by nB
extreme rays. Each facet is defined by a set of h B − 1 of these rays.

��
Theorem 7 (lower bound).

1. There are at least 6
m+n

9 0-1 facets of the m by n toric board generated by products
of facets of the 1 by m and 1 by n toric boards, for m and n both divisible by 9.

2. There are at least 2
mn
4 0-1 facets generated by the m by n toric board, for even

values of m ≥ 4, and n divisible by 4.

Proof. 1. First consider the case m = 1 and set n = 9k for any positive integer k.
Consider vectors of length 9k with the following properties:
(a) the first component is zero;
(b) there are a total of 3k zeroes, no two of which are consecutive;
(c) there are 6k ones arranged in 3k blocks, with precisely k blocks each of length
one, two and three, in any order.
Each such vector satisfies the conditions of Corollary 2 (1) and so generates a facet
of the 1 by n toric board. There are(

3k

k

)(
2k

k

)
> 6k = 6

n
9

such facets. For any m which is a multiple of nine, we get the stated bound by
combining the result above with Corollary 2 (2).

2. Consider an m by n matrix defined by

ai j =




1 i + j ≡ 0 (mod 2)

0 i + j ≡ 1 (mod 2), and j ≡ 0, 1 (mod 4)

x i = 1, j = 2
1 − x i = 3, j = 2
∗ otherwise.

In the above, x and ∗ denote elements than can be arbitrarily set to either zero or
one. A generic form of the matrix for m=4, n=8 is:
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a =



1 x 1 0 1 ∗ 1 0
0 1 ∗ 1 0 1 ∗ 1
1 1 − x 1 0 1 ∗ 1 0
0 1 ∗ 1 0 1 ∗ 1




For x = 0 or x = 1, the remaining mn
4 − 2 entries of a may be chosen freely.

Therefore there are 2
mn
4 −1 matrices with this generic form. We use Theorem 6 to

show that they generate facets for the m by n toric board. Indeed, by construction,
there can be no two consecutive zeroes. The vertices in Ga corresponding to any
given row are connected, since no row has 4 consecutive ones. Column one connects
all the odd numbered rows together, and column 4 connects all the even rows. Finally
the consecutive triple (x, 1, 1 − x) in column two connects rows one and two, so
Ga is connected. To complete the proof, we note that we can obtain an additional
distinct set of 2

mn
4 −1 matrices as follows. For each matrix generated previously,

delete column one and append it after the last column. These matrices are all new
because the bottom right entry changes from one to zero.

��

4. Skeletons and diameters of solitaire cones

In this section, after presenting in detail more than 50 small dimensional cases, we
give some results and conjectures on the combinatorial and geometric properties of the
solitaire cone. In particular, we investigate the diameter, edge connectivity, adjacency
and incidence relationships of the solitaire cone and its dual. Two extreme rays (resp.
facets) of a polyhedral cone are adjacent if they belong to a face of dimension (resp.
codimension) two. The number of rays (resp. facets) adjacent to the ray r (resp. facet F)
is denoted Ar (resp. AF). A ray and a facet are incident if the ray belongs to the facet.
We denote by Ir (resp. IF) the number of facets (resp. rays) incident to the ray r (resp.
facet F). The diameter of SB (resp. its dual S∗

B), that is, the smallest number δ such that
any two vertices can be connected by a path with at most δ edges, is δ(SB) (resp. δ(S∗

B)).
We recall that for n ≥ 4 or m ≥ 4 Sm,n is pointed and full-dimensional and that the
moves are extreme rays (for the toric case this holds for n ≥ 3 or m ≥ 3).

As in previous sections, for a solitaire game played on a board B a black (respectively
white) hole represents a peg (respectively an empty hole) as in Fig. 16 and 18. The
coordinates of a ray or a facet of SB are naturally indexed by B as in Fig. 17 and 20.

4.1. Small dimensional solitaire cones

We first consider a solitaire game played on a rectangular or triangular board as in
Fig. 16. In Table 1 we give for each board B, the number of extreme rays and facets,
the minimal and maximal adjacency and incidence of the extreme rays Ar , Ir and of the
facets AF, IF of the solitaire cone SB , its diameter δ(SB) and the diameter of its dual
δ(S∗

B).
For example, the last row in Table 1 means that each of the 36 extreme rays of the

cone S�15 belong to at least 6 920 and at most 10 905 of its 21 744 facets. These facets
are of size at least 14, that is, simplices, and at most 30 (we recall that the size of a facet
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Fig. 16. Moves on the 15 triangular board B = �15

Table 1. Small rectangular and triangular boards

Board #rays Ir Ar # facets IF AF δ(SB) δ(S∗
B)

3 × 3 12 11∼17 10∼11 18 8∼11 8∼17 2 2

4 × 4 32 1 584∼2 109 29∼31 3 531 15∼26 15∼695 2 ≤ 3

3 × 4 20 50∼82 17∼19 107 11∼28 11∼79 2 3

3 × 5 28 421∼856 25∼27 1 277 14∼24 14∼429 2 3

�10 18 87∼105 16∼17 182 9∼14 9∼79 2 3

�15 36 6 920∼10 905 33∼35 21 744 14∼30 14∼4 750 2 ≤ 3

is the number of extreme rays contained in the facet). The unique facet F0 of maximal
incidence IF0 = 30 and maximal adjacency AF0 = 4 750 is induced by the inequality:
c· x ≤ 0, where c = [ 1 0 0 1 0 1 0 0 0 0 1 0 1 0 1 ]; see Fig. 17. More than half of the
facets of S�15 are simplices and its diameter δ(S�15) = 2.

0

1 0 1 0 1

0

1

0 0

1

00

10

Fig. 17. The unique facet F0 of maximal size and adjacency of S�15

Then, we consider a solitaire game played on a toric rectangular or triangular board
as in Fig. 18. The adjacency and incidence relationships and the diameters are given in
Table 2. For example, the 16-dimensional cone generated by the 64 moves of the 4 by
4 toric board has 95 444 facets of which almost half are simplices.

4.2. Skeletons and diameters

The following results and conjectures are stated in terms of rectangular toric board but
require only minor modifications for solitaire games played on toric or non-toric boards
of any shapes; see Remark 6. We consider the solitaire cone Sm×n induced by a game
played on an m by n rectangular toric board with n ≥ m ≥ 1 and n ≥ 3. The number of
extreme rays of Sm×n , that is, the moves of the solitaire game is:
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Fig. 18. Moves on the 4 by 4 and 1 by 5 toric boards

Table 2. Small rectangular toric boards

Board #rays Ir Ar # facets IF AF δ(SB) δ(S∗
B)

1 × 3 3 2 2 3 2 2 1 1

1 × 4 8 3 3 6 4 4 3 2

1 × 5 10 7 6 15 4∼6 4∼6 2 3

1 × 6 12 9 9 17 6∼8 6∼12 2 2

1 × 7 14 32 12 70 6∼8 6∼13 2 5

1 × 8 16 42 14 86 7∼10 7∼21 2 4

1 × 9 18 119 16 255 8∼12 8∼36 2 5

1 × 10 20 214 18 447 9∼12 9∼34 2 5

1 × 11 22 508 20 1 078 10∼14 10∼51 2 6

1 × 12 24 964 22 2 013 11∼16 11∼84 2 6

3 × 3 18 11 15 15 12∼14 12∼14 2 2

4 × 4 64 25 348 58 95 444 15∼48 15∼8 195 2 ?

3 × 4 36 190∼233 30∼33 498 13∼26 14∼166 2 3

3 × 5 45 12 963∼13 438 40∼42 39 060 14∼34 14∼3 404 2 ?

fo(Sm×3) = 3, 6, 18 for m = 1, 2, 3.
fo(Sm×n) = 2mn for n ≥ 4 and m ≤ 2.
fo(S3×n) = 3mn for n ≥ 4.
fo(Sm×n) = 4mn for n ≥ m ≥ 4.

The coordinates and coefficients of the extreme rays and facets of Sm×n are naturally
indexed by the m × n board. For example, the extreme ray r = [ 0 −1 −1 1 0 ] of S1×5
and the corresponding start and finish positions are represented in Fig. 19. The support
of r is the set σr = {2, 3, 4} of nonzero coordinates of r.

In the next lemma we give a characterization of the adjacency of the extreme rays of
the solitaire cone induced by an 1 by n board. As a corollary, we obtain the adjacency,
edge-connectivity, diameter and the number of 2-faces of this cone.

Lemma 6. Any pair of extreme rays of S1×3 are adjacent and, for n ≥ 4, two distinct
extreme rays u and v of S1×n are non-adjacent if and only if:
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0

S F

r

1-1-10

Fig. 19. The extreme ray r of S1×5 corresponding to the move from S to F

1. u · v ∈ {0,−2} for n = 4;
2. u · v = −2 or u · v = −1 and |σu ∩ σv| = 1 for n = 5;
3. u · v = −2 or ui+3mod6 = vi i : 1, . . . , 6 for n = 6;
4. u · v = −2 for n ≥ 7.

Proof. Given in the Appendix.
��

Corollary 3. The skeleton of S1×n satisfies

1. the adjacency of an extreme ray is k1×n = 2, 3, 6, 9, 2(n−1) for n = 3, 4, 5, 6,≥ 7;

2. the diameter δ(S1×n) = 1, 3, 2 for n = 3, 4,≥ 5;

3. S1×n has exactly 3, 12, 30, 54, 2n(n − 1) 2-faces for n = 3, 4, 5, 6,≥ 7;

4. the edge connectivity ce(S1×n) = 2, 3, 6, 9, 2(n − 1) for n = 3, 4, 5, 6,≥ 7.

Proof. (1), (2) The adjacency and the diameter are straightforward. (3) The number of 2-
faces of a cone is half the total adjacency of its skeleton. (4) We recall the following result
of PLESNÍK [23]: the edge connectivity of a graph of diameter 2 equals its minimum
degree. Then, since for n ≥ 5 the cone S1×n has diameter 2 and since ce(S1×n) = 2, 3
for n = 3, 4, we have ce(S1×n) = k1×n for n ≥ 3.

��

Clearly, for the solitaire cone induced by a 2 by n board, two rays with supports
lying in the same row have the same adjacency relationships as in S1×n and two rays
with supports lying in different rows are always adjacent. In Theorem 8 we generalize
the adjacency relationships of S1×n and S2×n to Sm×n for n ≥ 4 or m ≥ 4.

Theorem 8 (characterization of extreme rays adjacency).
Any pair of extreme rays of Sm×n with distinct support are adjacent and, for m ≥ 3, the
adjacency relationship of any pair u, v of extreme rays of Sm×n is given by:

1. either σu and σv do not belong to the same row or column, then u and v are adjacent;
2. or σu and σv belong to the same row or column of length n, then u and v have

the same adjacency relationship as in S1×n , except that u and v are not adjacent if
σu = σv.

Proof. Given in the Appendix.
��
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Corollary 4. For n ≥ 7 and m ≥ 7, the skeleton of a Sm×n satisfies

1. the adjacency of an extreme ray is km×n = 4mn − 3;

2. the diameter δ(Sm×n) = 2;

3. Sm×n has exactly 2mn(4mn − 3) 2-faces;

4. the edge connectivity ce(Sm×n) = 4mn − 3.

Proof. Same as for Corollary 3.
��

Two rays are called strongly conflicting (respectively conflicting) if there exist 2 pairs
i, j and k, l (respectively a pair i, j) such that the two rays have nonzero coordinates
of distinct signs at positions i, j and k, l (respectively i, j). For example, the two
adjacent rays of S4×4 given in Fig. 20 are conflicting at the position 2, 2 but not strongly
conflicting.

Fig. 20. Two rays conflicting as the position 2, 2

Remark 5. While for n ≥ 7 and m ≥ 7 a pair of extreme rays of the solitaire cone Sm×n

are adjacent if and only if they are not strongly conflicting, for n ≥ 4 two extreme rays
of the dual metric cone M∗

n are adjacent if and only if they are not conflicting; see [9].

The following conjectures are based on Remark 5 and other similarities between the
solitaire cone and the dual metric cone investigated in Sect. 2.

Conjecture 1.

1. For n ≥ 3 and m ≥ 3, the {0, 1}-valued facets of the solitaire cone form a dominating
set in the skeleton of its dual, that is, each facet of Sm×n is adjacent to a {0, 1}-valued
facet.

2. For m, n large enough, at least one facet of Sn×m is a simplex (that is, the number
of rays contained in the facet equals the dimension of the cone minus one).

Item (1) of Conjecture 1 holds for S3×4 but is false for m ≤ 2. The smallest 1 by n
toric board for which the conjecture fails is the 1 by 7 board. If true, item (2) would
imply that the edge connectivity, the minimal incidence and the minimal adjacency of
the skeleton of S∗

m×n are equal to mn − 1. This holds for the cones presented in Table 2
except for S3×i : i = 3, 4 and S1×i : i = 4, 6.

Remark 6. For the non-toric boards given in Table 1, a pair of extreme rays of the
solitaire cone SB are adjacent if and only if they are not strongly conflicting and their
supports do not lie entirely on the boundary of the board.
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5. The binary solitaire cone and other relatives

The link with the dual metric cone – see Theorem 3 – and the similarities between their
combinatorial structures – see Remark 5 – leads to the study of a dual cut cone analogue;
that is, the cone generated by the {0, 1}-valued facets of the solitaire cone, when this
cone is full dimensional.

5.1. The binary solitaire cone

The dual cut cone is generated by the {0, 1}-valued facets of the dual metric cone.
Similarly, we consider the cone generated by the {0, 1}-valued facets of the solitaire
cone. This cone is called the binary solitaire cone, denoted BSB, and is studied in [4].
The following two results are contained there.

Theorem 9 [4]. The extreme rays of the solitaire cone, that is, the moves, are extreme
rays of the binary solitaire cone.

Conjecture 2 [4]. The incidence of the moves is maximal in the skeleton of BSm×n .

This strengthens the analogy with the dual metric cone, for which the extreme rays are
also extreme rays of the dual cut cone.

5.2. The trellis solitaire cone

The {0, 1}-valued facets of the solitaire cone have much less structure than the set of
cut metrics. In fact, the cut metrics are related to products of vectors of length n. This
motivates the next definition. Let f and g be {0, 1}-valued vectors of length m and n
respectively, and let ci j = fi · g j for i = 1, . . . m, j = 1, . . . n. If c · x ≤ 0 defines
a facet of BSm×n , we call it a trellis facet. The trellis solitaire cone T SB is generated
by all of the trellis facets of the binary solitaire cone BSB. See item 2 of Corollary 2 for
an easy construction of trellis facets. For example, among the two following facets of
BS3×5, only the right one is a trellis facet.

1

0 0

100

1

000

1 100

1

1 1

1 0

0

0

0

1 01

1

1

1 1 1

Fig. 21. A facet and a trellis facet of BS3×5

5.3. The complete solitaire cone

The complete solitaire cone CSB is induced by a variation of the Solitaire game. To the
classical moves we add the moves which consist of removing two pegs surrounding an
empty hole and placing one peg in this empty hole as shown in Fig. 22.
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F

r

S

-1 -11 00

Fig. 22. The extreme ray r of CS1×5 corresponding to the move from S to F

6. Conclusions

The solitaire cone shares many similar combinatorial properties with the dual metric
cone M∗

n . In particular:

1. their extreme rays have similar adjacency relationships; see Remark 5;
2. both cones have diameter 2; see DEZA AND DEZA [9] and Corollary 4;
3. their numbers of facets are bounded above and below by an exponential in the

dimension; see Lemma 5 and Theorem 7 and, for the metric cone, AVIS [2] (lower
bound) and GRAHAM, YAO AND YAO [16] (upper bound);

4. their extreme rays are also extreme rays of the cones generated by their {0, 1}-valued
facets; see Theorem 9.

5. while the extreme rays of the solitaire cone are conjectured to be of maximum
incidence in the cone generated by its {0, 1}-valued facets, the corresponding result
is proved for the dual metric cone; see Conjecture 2 and DEZA AND DEZA [10];

6. we have M∗
n = CSLn where Ln is the line graph of the complete graph on n nodes;

see Theorem 3;
7. the {0, 1}-valued facets of the flow cone are the incidence vectors of cuts in the

complete graph. The cone generated by these facets is the dual of the well studied
cut cone; see DEZA AND LAURENT [13]. PAPERNOV [22] gave a complete charac-
terization of multiflow problems for which the flow cone Fn = M∗

n in Theorem 2
can be replaced by the dual of the cut cone. For example, single commodity flow
problems are in this class, and the corresponding theorem is the celebrated max
flow/min cut theorem. It would be interesting to see if any analogous relaxation of
Theorem 1 can be found;

8. so far we have not yet found an analogue of the hypermetric facets of the metric cone
Mn , that is, a “nice” family of {0,−1, 1}-valued extreme rays of the binary solitaire
cone BSB. Another open question is the determination of a tighter relaxation of the
solitaire cone SB by some cuts analogue. The trellis solitaire coneT SB is a candidate
as well as the cone generated by the {0, 1}-valued facets with the minimal number
of ones. For S4×4 and S3×i : i = 3, 4, 5, these facets have maximal incidence and
adjacency in the skeleton of S∗

m×n .

Appendix

In this section, the dual problem being easier to state, we always consider the dual
solitaire cone S∗

B whose extreme rays (respectively facets) are the ri (respectively induced
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by c j · x ≤ 0) where ri · x ≤ 0 induces a facet of SB (respectively c j is an extreme
ray of SB). Clearly, a pair of extreme rays r ′, r ′′ are adjacent in SB if and only if their
corresponding facets Fr′ , Fr′′ are adjacent in S∗

B , that is, if the codimension of Fr′ ∩ Fr′′
is two.

Proof of Lemma 6 and Theorem 8

Proof of Lemma 6. In the following we identify the extreme ray r of S1×n with the facet
Fr of S∗

1×n . All facets of S∗
1×n being equivalent up to a scrolling and a reversing of the

board, it is enough to find all the neighbours of the facet Fu : [ −1 −1 1 0 . . . 0 ]. The
adjacency relationships were checked by computer up to n = 8, so we can assume that
n ≥ 9. We first prove that the facet Fv : [ 0 1 −1 −1 0 . . . 0 ] is not adjacent to Fu and
then that all other facets are adjacent to Fu . Any extreme ray r belonging to Fu ∩ Fv

satisfies:{
r1 + r2 − r3 = 0
r2 − r3 − r4 = 0

⇒
{

r1 = r4 = 0
r2 = r3

(since 0 ≤ ri for 1 ≤ i ≤ n)

⇒
{

r3 = r5
r4 = 0

(since r3 − r4 − r5 ≤ 0 and −r3 − r4 + r5 ≤ 0)

which implies that Fu ∩ Fv ⊂ F′
v where v′ = [ 0 0 1 −1 −1 0 . . . 0 ] and therefore

Fu ∩ Fv, being an intersection of more than 3 facets, is of codimension at least 3, that
is, Fu and Fv are not adjacent.

Then, to prove that all other facets are adjacent to Fu , we consider any facet Fa �= Fv

and show that for any third facet Fb we can find an extreme ray r of S∗
1×m satisfying both

r ∈ Fu ∩ Fa and r /∈ Fb, that is, codim(Fu ∩ Fa) = 2. First, let assume that the supports
of Fu , Fa and Fb do not overlap and that the gaps between σb and σu and between σb

and σa are not equal to 0 or 2, as in the following example:

σu︷ ︸︸ ︷
−1,−1, 1, 0, . . . , 0,

σa︷ ︸︸ ︷
1,−1,−1, 0, . . . , 0,

σb︷ ︸︸ ︷
1,−1,−1, 0, . . . , 0︸ ︷︷ ︸

n

Consider the following {0, 1}-valued ray:

r =
σu︷ ︸︸ ︷

1, 0, 1, 0, 1, 0 . . . , 0, 1, 0

σa︷ ︸︸ ︷
1, 0, 1, 0, 1, 0 . . . , 1, 0,

σb︷ ︸︸ ︷
1, 1, 1, 0, 1 . . . , 1, 0︸ ︷︷ ︸

n

.
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This ray r is an extreme ray of S∗
1×n if and only if its 1-graph Gr is connected; see

Theorem 6. According to the parity of the gaps between the supports σu and σa, σa and
σb and σb and σu , we can fill these gaps by 0, 1-valued strings: 0 1 0 1 . . . 0 1 0 or
0 1 1 0 1 0 1 . . . 0 1 0 such that the graph Gr obtained is connected. Therefore r is
an extreme ray of S∗

1×n satisfying both r ∈ Fu ∩ Fa and r /∈ Fb, that is, Fu and Fa are
adjacent.

If Fu, Fa and Fb do not overlap but the gaps between σb and σu or between σb and
σa equal 0 or 2, then we can use the same technique considering one of the following
{0, 1}-valued rays:

r1 =
σu︷ ︸︸ ︷

1, 0, 1, 0, 1, 0 . . . , 0, 1, 0

σa︷ ︸︸ ︷
1, 0, 1,

σb︷ ︸︸ ︷
0, 1, 0︸ ︷︷ ︸

n

r2 =
σu︷ ︸︸ ︷

1, 0, 1, 0, 1, 0 . . . , 0, 1, 0

σa︷ ︸︸ ︷
1, 0, 1, 0, 1,

σb︷ ︸︸ ︷
0, 1, 1, 0, 1 . . . , 1, 0︸ ︷︷ ︸

n

.

When the supports of Fu , Fa and Fb overlap, we can, by essentially projecting on the
joint support σu ∪ σa ∪ σb, use the same technique and generalize what happens for
n ≤ 8). For example, take n = 11 and Fu , Fa and Fb given by:

σu︷ ︸︸ ︷
−1,−1, 1, 0, 0, 0, 0, 0, 0, 0, 0

σa︷ ︸︸ ︷
1,−1,−1, 0, 0, 0, 0, 0, 0, 0, 0

0, 0,

σb︷ ︸︸ ︷
1,−1,−1, 0, 0, 0, 0, 0, 0

the desired extreme ray of S∗
1×11 satisfying both r ∈ Fu ∩ Fa and r /∈ Fb is:

r =
σu∪σa∪σb︷ ︸︸ ︷

1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1

which means that Fu and Fa are adjacent. Note that for some cases, the desired extreme
ray is not {0, 1}-valued. For example, take n = 11 and Fu , Fa and Fb given by:

σu︷ ︸︸ ︷
−1,−1, 1, 0, 0, 0, 0, 0, 0, 0, 0 0,

σa︷ ︸︸ ︷
−1,−1, 1, 0, 0, 0, 0, 0, 0, 0

σb︷ ︸︸ ︷
1,−1,−1, 0, 0, 0, 0, 0, 0, 0, 0 .

Projecting on B1×5, we get the extreme ray r1×5 = 1, 1, 2, 3, 2 satisfying both r ∈
Fu1×5 ∩ Fa1×5 and r /∈ Fb1×5 and the desired extreme ray of S∗

1×11 satisfying both
r ∈ Fu ∩ Fa and r /∈ Fb is derived from r1×5 using GENFACET; see Theorem 5:
r = 1, 1, 2, 3, 2, 1, 1, 0, 1, 0, 1.
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Proof of Theorem 8. We first consider a pair of facets Fu and Fv such that σu and σv

belong to the same row or column of length d. For d = 3, we have σu = σv and one can
easily check that Fu and Fv are never adjacent. For d ≥ 4 and σu �= σv, we can in the
same way as for the proof of Lemma 6, find a third facet F′

v containing Fu ∩ Fv if Fu

and Fv, seen as facets of S1×n , are non-adjacent. For example, with:

Fu :




−1 −1 1 0 0 0 . . .
0 0 0 0 0 0 . . .

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
. · · ·

0 0 0 0 0 0 . . .


 Fv :




0 1 −1 −1 0 0 . . .
0 0 0 0 0 0 . . .

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
. · · ·

0 0 0 0 0 0 . . .




the following facet:

Fv′ :




0 0 1 −1 −1 0 . . .

0 0 0 0 0 0 . . .

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
. · · ·

0 0 0 0 0 0 . . .




satisfies Fu ∩ Fv ⊂ Fv′ , that is, Fu and Fv are non-adjacent. The only difference between
Sm×n and S1×n is that Fu and the facet Fw with σu = σw are not adjacent. We have:

Fu :




−1 −1 1 0 0 0 . . .
0 0 0 0 0 0 . . .

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
. · · ·

0 0 0 0 0 0 . . .


 Fw :




1 −1 −1 0 0 0 . . .
0 0 0 0 0 0 . . .

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
. · · ·

0 0 0 0 0 0 . . .




and the following facet:

Fw′ :




0 −1 0 0 0 0 . . .

0 −1 0 0 0 0 . . .
0 0 0 0 0 0 . . .

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
. · · ·

0 0 0 0 0 0 . . .

0 1 0 0 0 0 . . .




satisfies Fu ∩ Fw ⊂ Fw′ , that is, Fu and Fw are non-adjacent. Then, to prove that all
other facets which support belongs to the same row or column as σu are adjacent to Fu ,
we can apply the same technique as for the proof of Lemma 6.

We then consider Fu and Fa with σu and σa not in the same row or column. As for
Lemma 6, we show that for any third facet Fb, we can find an extreme ray r of S∗

m×n
satisfying both r ∈ Fu ∩ Fa and r /∈ Fb, that is, codim(Fu ∩ Fa) = 2. First let assume
that the supports of Fu, Fa and Fb do not overlap as in the following example:

Fa :




0 . . . 0 0 0 0 0 . . .

0 . . . 0 0 0 0 0 . . .

0 . . . 0 −1 −1 1 0 . . .

0 . . . 0 0 0 0 0 . . .

.

.

. · · ·
.
.
.

.

.

.
.
.
.

.

.

.
.
.
. · · ·

0 . . . 0 0 0 0 0 . . .




Fb :




0 0 0 0 0 0 . . .

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
. · · ·

0 0 0 0 0 0 . . .

−1 0 0 0 0 0 . . .

−1 0 0 0 0 0 . . .

1 0 0 0 0 0 . . .




.
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Consider the following {0, 1}-valued ray

r :




1 0 1 0 · · · 0 1 0 1 0 . . .

0 0 0 0 · · · 0 0 0 0 0 . . .
1 0 1 0 · · · 0 1 0 1 0 . . .

0 0 0 0 · · · 0 0 0 0 0 . . .

.

.

.
.
.
.

.

.

.
.
.
. · · ·

.

.

.
.
.
.

.

.

.
.
.
.

.

.

. · · ·
0 0 0 0 · · · 0 0 0 0 0 . . .

1 0 1 0 · · · 0 1 0 1 0 . . .

1 0 1 0 · · · 0 1 0 1 0 . . .
0 0 0 0 · · · 0 0 0 0 0 . . .




.

This ray r is an extreme ray of S∗
m×n if and only if its 1-graph Gr is connected; see

Theorem 6. According to the parity of the gaps between the supports σu and σa, σa and
σb and σb and σu , we can fill these gaps by the following 0, 1-valued matrices (or their
transposes) such that the graph Gr obtained is connected.




0 0 0 0 0 0 . . .

1 0 1 0 1 0 . . .

0 0 0 0 0 0 . . .

1 0 1 0 1 0 . . .

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
. · · ·







1 0 1 0 1 0 . . .

1 0 1 0 1 0 . . .

0 0 0 0 0 0 . . .

1 0 1 0 1 0 . . .

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
. · · ·







1 0 1 0 1 0 . . .

1 0 1 0 1 0 . . .

1 0 1 0 1 0 . . .

0 0 0 0 0 0 . . .

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
. · · ·




Therefore r is an extreme ray of S∗
m×n satisfying both r ∈ Fu ∩ Fa and r /∈ Fb, that is,

Fu and Fa are adjacent.

When the supports of Fu , Fa and Fb overlap, once again, we use the same technique
which amounts to a tedious but easy case by case study and completes the proof. For
example, take the following facets of S∗

4×4:

Fu :



−1 −1 1 0
0 0 0 0
0 0 0 0
0 0 0 0


 Fa :




0 0 0 0
−1 1 0 −1

0 0 0 0
0 0 0 0


 Fb :




1 0 0 0
−1 0 0 0
−1 0 0 0

0 0 0 0




the desired extreme ray of S∗
4×4 satisfying both r ∈ Fu ∩ Fa and r /∈ Fb is:

r :



0 0 0 0
1 1 1 0
0 0 0 0
1 1 1 0




which means that Fu and Fa are adjacent.
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