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Abstract. Theclassical game of Peg Solitaire has uncertain origins, but was certainly popular by the time of
Louls X1V, and was described by LEIBNIZ in 1710. The modern mathematical study of the game dates to
the 1960s, when the solitaire cone was first described by BOARDMAN and CONWAY. Valid inequalities over
this cone, known as pagoda functions, were used to show the infeasibility of various peg games. In this paper
we study the extremal structure of solitaire cones for avariety of boards, and relate their structure to the well
studied metric cone. In particular we give:

1. an equivalence between the multicommodity flow problem with associated dual metric cone and a gen-
eralized peg game with associated solitaire cone;

arelated NP-completeness result;

amethod of generating large classes of facets;

acomplete characterization of 0-1 facets;

exponential upper and lower bounds (in the dimension) on the number of facets;

results on the number of facets, incidence and adjacency relationships and diameter for small rectangular,
toric and triangular boards;

a complete characterization of the adjacency of extreme rays, diameter, number of 2-faces and edge
connectivity for rectangular toric boards.
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1. Introduction and basic properties
1.1. Introduction

Peg solitaireisapeg gamefor one player whichisplayed on aboard contai ning anumber
of holes. The most common modern version uses a cross-shaped board with 33 holes—
see Fig. 1 — although a 37 hole board is common in France. Computer versions of the
game now feature awide variety of shapes, including rectangles and triangles. Initially
the central hole is empty, the others contain pegs. If in some row (column resp.) two
consecutive pegs are adjacent to an empty holein the same row (column resp.), we may
make a move by removing the two pegs and placing one peg in the empty hole. The
objective of the game is to make moves until only one peg remains in the central hole.
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Variations of the original game, in addition to being played on different boards, also
consider various alternate starting and finishing configurations.

The game itself has uncertain origins, and different legends attest to its invention
by various cultures. An authoritative account with along annotated bibliography can be
found in the comprehensive book of BEASLEY [6]. The book mentions an engraving of
BEREY, dated 1697, of alady with a Solitaire board. The book also contains a quotation
of LEIBNIZ [19] which was written for the Berlin Academy in 1710. Apparently the
first theoretical study of the game that was published was donein 1841 by SUREMAIN
DE MISSERY, and was reported in a paper by VALLOT [26]. The modern mathematical
study of the game dates to the 1960s at Cambridge University. The group was led
by CoNwAY who has written a chapter in [8] on various mathematical aspects of the
subject.

Oneof the problems studied by the Cambridge groupisthefollowing basic feasibility
problem of peg solitaire:

For a given board B, starting configuration S and finishing configuration F, deter-
mineif thereis alegal sequence of movesfrom Sto F.

Starting Final
configuration configuration

Fig. 1. A feasible English solitaire peg game with possible first and last moves

The complexity of the feasibility problem for the n by n game was shown by UEHARA
AND IWATA [25] to be NP-complete, so easily checked necessary and sufficient con-
ditions for feasibility are unlikely to exist. One of the earliest tools used to show the
infeasibility of certain starting and finishing configurationsis a polyhedral cone, which
we will call the solitaire cone, Sg, corresponding to some given board B. This paper
contains results on the extremal structure of this cone, which we describe in the next
subsection.

1.2. Basic properties

For ease of notation, we will mostly be concerned with rectangular boards which we
represent by 0-1 matrices. A zero represents an empty hole and a one represents a peg.
For example,let S=[1011]and F =[ 001 0] be starting and finishing positions
for the 1 by 4 board. This game is feasible, involving two moves and the intermediate
position[ 1100] —asshowninFig. 2.
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Fig. 2. A feasible game on the 1 by 4 board

For any move on an m by n board B we can define an m by n move matrix which has
3 non-zero entries: two entries of —1 in the positions from which pegs are removed and
one entry of 1 for the hole receiving the new peg. The two movesinvolvedin Fig. 2 are
representedbym; =[01—-1—-1]andmy; =[ —-1-110]. Clearly F = S+ mjy + ma.
By abuse of language, we use the term move for both the move itself and the move
matrix. In general it is easily seen that if S F define afeasible game of k moves there
exist move matricesmg, . .. , Mk such that

F—S:Zmi. (1)

i=1
Lemma 1. Equation 1 isnecessary but not sufficient for the feasibility of a peg game.

Proof. For example, for the following game—seeFig. 3—S=[1111l]and F =
[0001].WehaveF —S=[-1-110]+[01-1-1]+[0-1-11],butS F
do not define afeasible game; in fact there are no legal moves!

i

[oo.oo] (0 o.o °

Fig. 3. Aninteger feasible but 0-1 infeasible game

Let us relax the conditions of the original peg game to alow any integer (positive
or negative) number of pegs to occupy any hole. We call this game the integer game,
and call the original game the 0-1 game. Note that in a 0-1 game we require that in
every position of the game a hole is either empty or contains a single peg. A move in
the integer game is defined to correspond to the process of adding a move matrix to
a given position. By the following lemma, we may identify an integer game S, F with
thedifference F — S

Lemma 2. Equation 1isnecessary and sufficient for the feasibility of theinteger game.

In other words, Lemma 2 states that all feasible integer games form the integer cone
| Sg defined as the set of all non-negativeintegral combinations of moves.
Unfortunately deciding if F — S can be expressed as the sum of move matrices
seemsto be ahard computational problem. In Sect. 2 we show that avariant of the game
is NP-complete. A further relaxation of the game leads to a more tractable condition.
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In the fractional game we allow any hole to contain a fractional (positive or negative)
number of pegs. A fractional move matrix is obtained by multiplying amove matrix by
any positivescalar. For example, let S=[111],F =[101].ThenF—-S=[0-10]
=5[-1-11]+ % [1-1-1]isafeasiblefractiona game and can be expressed as
the sum of two fractional moves, but is not feasible as a 0-1 or integer game.

o0y [opo]

Fig. 4. A fractional feasible but integer (and therefore 0-1) infeasible game

Let B be a board and ng the total number of possible moves on the board. The
solitaire cone Sg is the set of all non-negative combinations of the ng corresponding
move matrices. ThusF — Se Sgif:

ng

F—S:Zyimi, Vi>0, i=1,...,ng. 2
i=1

In the above definition it is assumed that the hg holes in the board B are ordered in
someway and that F — Sand m; are hg-vectors. When B isarectangular m by n board
Bm,n it is convenient to display F — Sand m; as m by n matrices, although of course
all products should be interpreted as dot products of the corresponding mn-vectors.

We define the dual of the solitaire cone Sg asthe the cone defined by theinequalities
m; -x < 0, for each movematrix m; defining Sg. Thefacetsof the dual conearetherefore
defined by triangle inequalities. These inequalities, combined in a very different way,
also define the well studied metric cone, which we definein the next section. One of the
motivations of our work wasto explore the rel ationship between the solitaire and metric
cones.

Lemma3. For n > 4 or m > 4, the solitaire cone Sy n (and itsdual §;, ) associated
to the m by n board is a pointed full-dimensional cone.

Proof. Consider S;,, withn > 4. Clearly thefollowing n x n matrix liesin the span of
the moves:

1 -1 -1 0

0 -2 0
... 0 =2 0
0 -1 -1 1

The first and last rows are simply moves and the other rows are sums of two different
moves with the same triple. This matrix is obviously non-singular with determinant
(—2)"~2. Hence the associated solitaire cone Si.n isfull-dimensional. For any m by n
board with m > 4 or n > 4, we can extend the above idea: We get a block diagonal
mn by mn matrix — one block for every row (or column), with each block being non
singular. Hence Sy n isfull-dimensional form > 4 or n > 4. Sincethe dual coneclearly
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contains the [1, 2]™" cube, Sh.n is full-dimensional. Therefore both cones are pointed
and full-dimensional.
O

Lemma 4. The moves of the solitaire cone are extreme rays.

Proof. All the generators — the moves — of the solitaire cone belong to the hyperplane
H: Zihjl Xi = —1 and to the sphere Q2 : Zihfl xi2 = 3. In other words, the moves
belong to a sphere of codimension 1 centered on the axis through the origin with normal
(1, ...,1). Thisimpliesthat the movesare extremeraysof the (pointed) solitairecone.

i

The following result obtained in 1961 is credited to BOARDMAN (who apparently has
not published anything on the subject) by BEASLEY [6], p. 87. We identify F — Swith
the fractional game defined by Sand F.

Proposition 1. Equation 2 (F — S € Sg) is necessary and sufficient for the feasibility
of the fractional game; that is, the solitaire cone Sg isthe cone of all feasible fractional
games.

Lemmal and 2 and Proposition 1 areillustrated in Fig. 5

a pagoda function a facet

afractional feasible game an integer feasible game a classical 0-1 feasible game
S=(e e e S=(e %9 S=(e e 9
F=eo e F=(ec o F=(co e

Fig. 5. Respectively fractional, integer and 0-1 feasible solitaire peg games

The conditionF — S € Sy is therefore a necessary condition for the feasibility of the

original peg game and, more usefully, provides a fiedtie for the infeasibility of certain
games. The ceficate of infeasibility is any inequality valid fogs which is violated
by F — S. According to [6], p. 71, these inequalititéere developed by J.H. Conway
and J.M. Boardman in 1961, and were calf@gdjoda functions by Conway.”.. They
are also known asesource counts, and are discussed in some detail iDNWAY [8].
The strongest such inequalities are those that support the facgisiedr example, the
facet given in Fig. 14 induces an inequalityx < O that is violated byF — Swith S, F
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giveninFig. 6 (F — 9 -a= 2 > 0). This implies that this game is not feasible even as
a fractional game and, therefore, not feasible as an integer game or classical 0-1 game
either.

Starting Final

Fig. 6. An infeasible classical solitaire peg game

Other tools to show the infeasibility of various peg games include the so-called
rule-of-three which simply amounts to color the board by diagonalsxpf8 and y
(in either direction). Then, withd# (#8, #y resp.) denoting the number of pegs in an
a-colored @B, y resp.) holes, one can check that the parity @f-##8, #8 — #y and
#y — #a is an invariant for the moves. The rule-of-three was appardimtliyexposed
in 1841 by IREMAIN DE MISSERY, see BEASLEY's book [6] for a detailed historical
background. The rule-of-three can be used, for example, to show that on the classical
cross-shaped English 33-board, starting with the initiaficamation given in Fig. 1, the
only reachabldéinal corfigurations withexactly one peg are- besides the cdiguration
of Fig. 1—the four coffigurations of Fig. 7.

Fig. 7. Four other feasiblénal corfigurations

Another necessary condition generalizing the rule-of-thréke solitaire lattice
criterion —is to check ifF — Sbelongs to thesolitaire lattice generated by all integer
linear combinations of moves, that is:

ng

F_S:Zyimi, VieZ, i=1,...,ng.
i=1
While the lattice criterion is shown to be equivalent to the rule-of-three for the classical

English 33-board and French 37-board as well as fonary board, the lattice criterion
is stronger than the rule-of-three for games played on more complex boards. In fact,
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for a wide family of boards presented in this paper, the lattice criterion exponentially
outperforms the rule-of-three; seeePA AND ONN [12].

Remark 1. In later sections we will consider the toric closure of a boBrd/hich is
more symmetric. These boards allow moves that traverse the boundary of the board. For
example, the game given in Fig. 8 is feasible on a toric closure of the 1 by 4 board.

@O0 ee—~(@e@00]—~(00O0 @

Starting Final

Fig. 8. A feasible classical game on the toric closure of the 1 by 4 board

Finding all facets of the cors is an example of eonvexhull orvertex enumeration
problem, for which various computer programs are available. The computational results
in this paper were obtained using the double description metdddmplemented
by FUKUDA [14], and the reverse search metHoslimplemented by &is [3]. The
diameters of cones were computed usingphy implemented by BKUDA [14]. We
made use of these codes to completely generate all facets for some small boards as
reported in later sections (such as the 95 444 facets for the toric closure of the 4 by 4
board). For realistically sized boards the corresponding solitaire cones are too large for
these programs. For example the original peg solitaire game gives rise to a cone with 76
extreme rays in 33 dimensions. The reverse search vertex enumeratidnscapieied
to this cone generated over 300,000 facets from about 6 million bases of the cone that
were generated before the program was terminated. An unbiased estimate obtained from
Irs suggests that the solitaire cone has about 9.2 million facets and 12 hillion bases. If
correct, this estimate puts the size of the cone just beyond problems currently solvable
by a parallel version dfs.

The rest of the paper is organized as follows. We give some new results on facets
of Sg for various boards in Sect. 3. We present an algorithm for generating a large
class of facets, and which generates all 0-1 facets for some boards. These facets are
considerably more complex than the 0-1 facets of the dual of the metric cone, which are
generated by cuts in the complete graph. In Sect. 4 we give some results and conjectures
on the combinatorial and geometric properties of the solitaire cone. We investigate the
diameter, edge connectivity, adjacency and incidence relationships of the solitaire cone
and its dual. In Sect. 5 we recall some properties of the cone generated {fy e
valued facets of the solitaire cone, and some other related polyhedra. Finally in Sect. 6
we conclude by comparing and contrasting the solitaire and metric cones. The Appendix
contains the proofs of Lemma 6 and Theorem 8.

2. Relationship with multicommodity flows and the metric cone

The solitaire cone is generated by a set of extreme rays, each of which is all zero except
for three non-zero components which are 1,—1. In this section we relate the solitaire
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cone to another cone with the same propertyfline cone which is dual to themetric

cone. This cone arises in the study of multicommoditgws (which we abbreviate to
multiflows), and we will show similarities between this problem and the peg game. For
more details on the relationship between the metric cone and multicomnflmity,

see the survey paper of/fs AND DEzA [5]. We give a brief sketch here.

2.1. Metric cone and multicommodity flows

Let Kn denote the complete graph nwvertices. We write the edge with endpointnd
j as eitheii j or ji. For each edgej we ddine a non-negative integreapacity ¢j; and
demand dj;. Since the same edge is labeled in two ways, we identjfyith cj;, and
perform similar idenfications for other vectors indexed by edges. ¢ ahdd denote
the respective capacity and demand vectors of Ie@th_et 1<r#s#t<nbe
three distinct indices. Mlow on the triple(r, s, t) is a vector

1 i=rj=s
1 e e
1 -1 i=sj=t

0 otherwise.

Theintegral multiflow problemis to try tofind an integral combination dfows, z, such
thatz > d — c. If this is possible we say that d is integer feasible. Such a vector
defines a set offi; paths between each pair of verti¢eand j in K,. No edgd j in Ky
can appear in more thawyy paths. Ifz= d — c, we say the mulfiow is saturated. This
corresponds to the case where each égge contained in exactlg;j paths déned
by z. In the example shown in Fig. 9, we hawe= 4,d =[30000 3] andc =
[053410]. Therd—c < 311234 2§3411 342_ 7 The problem s integer feasible
and the mulfiow is unsaturated as there is a residual capacity of 1 on,&c 1

EVEN, ITAI AND SHAMIR —see G\REY AND JOHNSON[15] p. 217- proved the
following result showing that integer feasibility is an intractable problem in general.

Theorem 1. It is NP-complete to decide if ¢, d is integer feasible for the multiflow
problem, even if cisa 0-1 vector and d has only two non-zero components.

Thefractional multiflow problemis to try to expresd — cas a non-negative combina-
tion of flows. If this is possible we say thatd is fractionally feasible. For a fractionally
feasible problem it is always possible find a saturated muftow, since any excess
capacity on edges can be used by combinirftpws ™ and St (with possibly frac-
tional multipliers). For example, sat=5,d=[1100100000]and=[0011
011110]. We identify thélow problemc, d with the vectord — c. This problem has
the fractional solution

1

d—c= E(f124_’_ f125 §134 135 (234 235,

but no integral solution. Fractional multws lead to the study of thitow cone which
is the set of all non-negative combinations of ti{g)ossibleflow vectors:

Fnz{z:z=Z:yrS[ert with yr¢ >0and1<r <s<t<n}. 3)
r,st
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3f 123 2f 341

Fig. 9. An integer feasible multicommoditfjow problem

Fs is illustrated in Fig. 10. The dual of tHfeow cone is the much studiedetric cone;
see for example, Ws [1], DEzA, DEZA AND FUKUDA [11] and LoMmONOSOV[20]):

Mh=1{z:zs<zt+2g With 1<r <s<t<nj}.

The Japanese theorem of IRI [18] and ONAGA AND KAKUSHO [21] gives a neces-
sary and sufcient condition for the feasibility of the fractional multicommoditgw
problem.

Theorem 2 [18,21]. A multiflow problem c, d is fractionally feasible if and only if
d—c e Fq.

Facets of thdlow cone are useful to show the infeasibility of militiw problems. In
the previous example, if we change the demand vectord 110010000 1], the
problembecomesinfeasible. Thisis demonstrated by thedaeg2 211211112].
For eacHlow filk afilk <0, buta(d — ¢) = 2 > 0 soc, d is infeasible.

The reader should compare this description of rfioitis with the development of
the solitaire cone in Sect. 1, and in particular equation 2 with 3, and Theorem 1 with
Theorem 2. There are two obvious differences in the two problemdirBhis thatin the
flow cone we consider all triples from a setroélements, whereas in the solitaire cone
the triples are constrained to be consecutive horizontal or vertical entries in a rectangular
array. The second difference is that in fleev cone for a given triple, s, t we include all
three orderings of the non-negative entriesL—1. In the solitaire cone we only allow
the orderings :1,—1and—1,—1,1. The third ordering;-1,1—1, could be considered
as an additional move in the peg game where two pegs surrounding an empty hole are
replaced by a peg in the empty hole. The cone induced by this variation of the Solitaire
game is calledhe complete solitaire coneC Sg; see Sect. 5.3. With this additional move,
we can in fact show a strong correspondence between the peg game and multicommodity
flows.
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avalid inequality . afacet

f 13
f 123

a feasible fractional multiflow problem

QLQ .....
2\ /2
O
demand capacity

Fig. 10. All fractionally feasible multicommodity flow problems form the flow coRg

2.2. Multicomomodity flows versus peg game

Given a graptG = (V, E), thelinegraph of G is a graph whose vertices correspond to
edges inG. Two vertices are adjacent in the line graph if the corresponding edges share
an endpointirG. Let L, denote the line graph d&,,. For given vectors andd, we will
construct ageneralized peg gameon B = L. Each vertex of, represents a hole @.

The moves orB derive from triangles irkK,. Leti, |, k be three vertices iG. Then

the vertices j, ik, jkin L, form avalid triangle and avalid move on the boardB. We

allow all three possible moves on the triangle: for the integer game this means that the
number of pegs on any two of the holes is decremented by one, and the number of pegs
on the remaining the hole is incremented by one. We assign initigllyegs to vertex

i j of L. This is the starting configuratida It is required to reach a finishing position
with at leastd;; pegs at each vertex, using valid (respectively valid fractional) moves.

We illustrate in Fig. 11 the correspondence for the problem presented in Fig. 9.

Theorem 3. Amultiflow problemc, d on K, isinteger (respectively fractional) feasible
if and only if the corresponding generalized peg game on L, is integer (respectively
fractional) feasible. Therefore, the dual metric cone M;; eguals the complete solitaire
coneCS_, for a game played on the line graph of the complete graph on n nodes.

Proof. First we show that an integer (respectively fractional) multiflowdat corres-
ponds to an integral (respectively fractional) solution of the peg game. Supjmaa
integral combination of flows. Each of the flows is in one to one correspondence with
a move on a valid triangle df,. Sinced < ¢+ z, in the peg game we end up with

at leastd;j pegs at each vertay. Note if the multiflow is saturated, we end up with
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multiflow on K4 solitaire game on the line graph of K

O
c+2f123+2f'43+3f12’4:d

S+2m+2m+3m,=F

demand d
final F

Fig. 11. Correspondence of multicommodity flows and solitaire peg game

exactlyd;j pegs at each vertéx. In the same way a solution to the peg game gives the
required vector and its decomposition into flows. The same argument applies to the
fractional game.

o

Together with Theorem 1 we get immediately the following corollary.
Corollary 1. The integer generalized peg game is NP-complete even if in the start-

ing position all holes contain at most one peg and the finishing position has positive
reguirements for exactly two holes.
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Remark 2. The integer generalized peg game can be solved in polynomial time if only
one hole has positive finishing requirement. This is because in this case the corresponding
multiflow problem is a single commodity multiflow for which many polynomial time
algorithms exist. It is interesting that the 0-1 game is NP-complete amlblyer board,

even if the final position contains exactly one peg; s&ehARA AND IWATA [25].

3. Facetsof the solitaire cone

For simplicity we begin with rectangular boards. Most of the results can be applied
to boards which are subsets of the square lattice in the plane, such as the original Peg
solitaire board. We also give some results for their toric closures, which are simpler
since they avoid many special situations caused by the boundary.

3.1. Rectangular boards

Let B be a rectangulan by n board, withm > 4 orn > 4. Using the notation described
following equation 2, we will represent the coefficients of the facet inducing inequality

az<0 (4)

by them by n arraya = [a j]. Inequality 4 holds for every € Sg. Itis a convenient
abuse of terminology to refer mas afacet of Sg. A corner of ais a coefficient; j
withi € {1, m}andj € {1, n}.

We will frequently need to refer to three consecutive row or column elements of an
m by n array. For this we use the notati@n= (t1, to, t3) to refer to aconsecutivetriple
of row or column indices. For example bath=i, j,t, =i, j +1,t3 =i, j + 2 and
t1=1+2j,to=i+1,j,t3 =i, j are consecutive triples. Using this notation we
see that a move matrix f@ is anm by n matrix that is all zero except for elements of
some consecutive triple which take the values1l,;-1. Each consecutive triple defines
atriangleinequality

ay < a, +ag - ®)
A triangle inequality idight if equality holds
atl = atz + atg . (6)

The following theorem summarizes known results on properties of valid inequalities
(pagoda functions) fog; see BEASLEY [6]. We include a proof for completeness.

Theorem 4. For each valid inequality a = [a; j] for Sg

1. Thetriangleinequality 5 must hold for every consecutivetriple 7 = (t1, t2, t3).

2. Negative coefficients of a can only occur in corners.

3. If T = (t1, to, t3) isa consecutive triple with a;, = O then ay, = a,.

4. If two consecutive row (respectively, column) entries of a are zero the entire row
(respectively, column) is zero.
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Proof. 1. Every move matrix is trivially inSg and so inequality 4 witlz equal to the
move matrix corresponding th gives the triangle inequality 5.

2. Letay, be a coefficient oé that is not a corner. It must lie in two consecutive triples
(t1, t2, t3) and (ts, t2, t1). The two triangle inequalities for these triples imply that
ag, > 0.

3. Againthis follows from the two triangle inequalities induced by the trigigs,, t3)
and(ts, t, t1).

4. Follows by repeatedly applying part 3 of the theorem.

O

As mentioned in the introduction, it is not feasible to generate all facets for reasonably
sized boards, and in general no characterization of facets is known. A large class of
facets can, however, be generated by the following procedure.

GENFACET(B) /*procedure to generate a facet matinf Sg */

1. Choose a proper subset of coefficienta shtisfying:

(a) If a corner is chosen, all coefficients in the row and/or column of length at least
4 containing the corner must also be chosen; and

(b) If two consecutive coefficients are chosen, their entire row and column must also
be chosen.

Set these chosen coefficients to zero.

2. Choose any undefined coefficient that is not a corner and set it to one.

3. Choose a consecutive tripfe = (t1, t2, t3) for which precisely two of the corres-
ponding coefficients od are defined. Define the remaining coefficient by equation 6
providing this does not violate any triangle inequality &or

4. Repeat Step 3 until no further coefficienteoan be defined.

Theorem 5. Given an m by n board B, with m > 4 or n > 4, if GENFACET(B)
terminates with all elements of a defined, then ais a facet of Sg.

Proof. By Lemma 3, under the conditions of the theor&mjs full dimensional. Lea
be a matrix generated by GENFACET andiddie any othem by n matrix that is valid
for Sg such that for every consecutive triplfe= (t1, to, t3),

a{]_:at2+at3<:>b[1=b[2+b[3. (7)

We will show thatb is a positive scalar multiple &, proving thata is facet inducing,
sinceSg is full-dimensional. By constructiom, satisfies all triangle inequalities and so
is valid for Sg, so we may apply results from Theorem 4.

First we show that for each j = O that is set in Step 1 of GENFACET we must

also havebj j = 0. Initially assume that, j is not a corner index, so there is some

consecutive triple]” = (ty, to, t3) with to = i, j. Supposes, = 0. It follows from

Theorem 4 (3) thad;, = a,. Applying relation 7 twice we obtain the equations
b[]_:b[2+b[3 b[3=b[l+b[2

and conclude thalty, = 0. An identical argument shows thbtj = 0 implies that
aj = 0.1fi, jisacornerwittg ; = 0, by construction athere must be a consecutive
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triple 7 = (1, to, t3) with t; =i, j, &, = a,, = 0, and such thad, is not a corner
coefficient. As we showed, this implibg, = by, = 0 and so applying Theorem 4 (4) to
b we haveb, = 0.
The argument in the previous paragraph implies that all of the entries set to zero in
Step 1 of GENFACET must be also zerodnSuppose ; is the coefficient set to one
in Step 2. Since it is not a corner element, Theorem 4 (2) impliesthat- 0, and in
fact it must be strictly positive sinag, j is non-zero. We may now scabeso that in fact
b =1.

]We complete the proof with a simple inductive argument to show that at the end
of each execution of Step 3 of GENFACETZfj has been assigned thbn; = & ;.
Indeed suppose this statement is true when Step 3 is about to be executed, and suppose
somea; j is defined by the equation

atl :atz+a13-

One of the coefficients in this equatiorsis; and the other two coefficients have already
been assigned. By induction, these two coefficients are equal to the corresponding
coefficients ob. Now by condition 7 the equation

btlsz2+bI3

holds forb and sobj j = & j. This completes the induction. At termination of GEN-
FACET, all coefficients o& were assigned, so we have shown that equal toa up to
multiplication by a positive scalar.

i

Remark 3. If condition (a) in Step 1 is dropped, GENFACET could generate matrices
that are not facets. For example, the matrices

0 0 -1 2
a=|0 0 b= 0
0 0 -1 2

have the same tight triangle inequalities. Since one is not a scalar multiple of the other,
they are not facets. Howevarwould be generated by GENFACET if condition (a) in
Step 1 is dropped.

Remark 4.

1. Not all facets of rectangular boards are generated by GENFACET. For example
the following facet (found by computer) of the 3 by 4 rectangular board cannot be
generated by GENFACET.

mOoR
= OoOR
= OoOR
—OoOR

2. GENFACET can easily be adapted to non-rectangular boards that are connected
subsets of the square grid, such as the original peg solitaire game. The notion of
corner generalizes in the obvious way to all holes that have exactly one horizontal
and vertical neighbour. For example, the original English game has 8 corners and
by GENFACET we can generate the two facets given in Fig. 12:
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(M (i)

Fig. 12. Two facets of the English solitaire cone

3. CoNwaAY [8] gives 14 valid inequalities (pagoda functions) for the English solitaire
game. Of these, 11 described in his Figs. 21(d), 22(a)—(d) are fac8tsarfd can
be generated by GENFACET. The two pagoda functions in Figs. 22(h) and 22(v)
— see [8] — are not facets since (h) is one half the sum of the inequality from (a)
(interchanging the 0 and 1 in (a) as shown) and the same inequality-&itbplaced
by +1; similarly, (v) is half the sum of 2 inequalities derived from (b) again with the
indicated interchanges. The pagoda function in Fig. 21(c) — see Fig. 13 —is a facet
of Sg, and is not generated by GENFACET.

Fig. 21 (c) Fig. 21 (d)

Fig. 13. Two pagoda functions from CONWAY’s book [8]

4. Thefacet of Fig. 14 given by BEASLEY [7] provesthe infeasibility of the game of
Fig. 6

To avoid the specia effects created by the boundary of the rectangular board, we were
motivated to study their toric closures. Some results on these are given in the Sect. 3.2
where we simply call them toric boards.
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Fig. 14. A facet of the English board

3.2. Toric boards

From now on, the toric closure of a board is simply called a toric board. In other
words, the toric m by n board for m > 3 or n > 3 isan m by n rectangular board
with additional jJumpswhich traverse the boundary. The associated toric solitaire coneis
pointed and full-dimensional for m > 3 or n > 3. This can be proved along the lines of
Lemma 3, by noting that the mn by mn matrix with —2 on the diagonal and 0 el sewhere
is spanned by the move matrices expressed as mn-vectors (write each matrix row by
row as a vector). Formally, we extend the definition of consecutive triple given in the
last subsection by allowing row indices to be taken modulo m and column indicesto be
taken modulo n. For example, for a4 by 4toricboard botht; = 2, 3,t, = 2,4,t3 =2,1
andt; = 1,3, tp = 4,3, t3 = 3, 3 are consecutive triples. Similarly we extend the
definition of a consecutive string of entriesto include strings that traverse the boundary.
All holes on a toric board are equivalent from the point of view of allowable jumps,
so we say that the toric board has no corners.

The results of Sect. 3.1 can easily be adapted to toric boards. Theorem 4 applies,
except that we get the stronger condition that all coefficients are non-negative since
there are no corner coefficients. In GENFACET the condition on corner coefficients
in Step 1 is not applied, since toric boards have no corners. Similarly, in Step 2 any
undefined coefficient can be chosen. Theorem 5iseasily adapted to apply to toric boards
B with m > 3 and n > 3, under which condition Sg is full-dimensional. Given any
facet matrix, we may cyclically permute its rows and/or columns to obtain a possibly
different matrix, which again defines a facet. We call such facets isomorphic. Observe
that the 3 by 3 identity matrix and the matrix

000
a=|011
011

would be generated by GENFACET for the 3 by 3 toric board, and are facets. Thereare
6 facetsisomorphic to the identity matrix and 9 facetsisomorphicto a. These are all the
facets for the solitaire cone of the 3 by 3 toric board.

We can use Theorems 4 and 5 to obtain a complete characterization of 0-1 facets of
Sg when B isatoric board. Let a be an m by n 0-1 matrix. We define the 1-graph G4
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on a as follows: vertices of G, correspond to non-zero coefficients, and two vertices
are adjacent if the corresponding coefficients are in some consecutive triple where the
remaining coefficient is zero. Note that in fact there must be at least two such triples
sinceif (i, tp, t3) issuch atriplethen sois (t3, to, t1).

Theorem 6 (characterization of 0-1 valued facets).
Let B bethem by n toric board. Am by n 0-1 matrix b isa facet of Sg if and only if

1. No non-zero row or column contains two consecutive zeroes, and
2. Gp isconnected.

Fig. 15. Two pagoda functions of $4, only the first one being a facet

Proof. To prove sufficiency we show that a matrix a = b can be constructed by GEN-
FACET and then apply Theorem 5 to show it is afacet. We begin by setting a;; to zero
if bij = 0. Since b is valid for Sg, Theorem 4 (4) implies the zeroes of a are a valid
choicein Step 1 of GENFACET. We will show all other coefficients of a are set to one
in GENFACET, so that a = b.

In Step 2, some non-zero coefficient a; j of a is set to one, as required. Consider
the first execution of Step 3. Let v be the vertex in Gy, corresponding to g; j. Since Gp
is connected, v is adjacent to some vertex w. By construction of Gp, the coefficients
corresponding to v and w lie in some consecutive triple 7 = (11, t2, t3) where the
remaining coefficient is zero. We may choose such atriple so that the zero coefficient is
at, Or ag;. Thenin the equation

at1=a{2+a{3

one of the variableshasvalue one and one of theright hand side variableshasvalue zero,
so the remaining variable must also have value one. Thereforein Step 3, the undefined
coefficient, corresponding to vertex w, gets set to one.

In general, every time we execute Step 3 we can select an undefined coefficient
whose corresponding vertex in Gy, is adjacent to some already defined coefficient. Since
Gyp isconnected, thisis always possible. In thisway all of the coefficients that were not
set to zero receive the value one. The conditions on the zeroes are sufficient to ensure
that all triangle inequalities are satisfied by b. Therefore GENFACET has constructed a
whichisidentical to b. It followsfrom Theorem 5 that b isafacet, concluding the proof
of sufficiency.

For necessity, suppose (1) is violated, then b violates atriangle inequality and does
not generate avalid inequality for Sg. Now suppose (2) is violated. Gy consists of two
or more components. We form a new matrix a that is identical to b except that in one
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of the connected components of Gy, we replace all coefficientsthat have value one with
the value % Clearly ais not ascalar multiple of b. We show aisvalid for Sg and every
tight triangle inequality satisfied by b is satisfied by a. Thisis a contradiction since it
shows b is not a facet of Sg. To show validity of a, the only triangle inequalities that
could fail for a are of the form

Ay > a, + ag

where a;, = 3. Now the right hand side variables cannot both be zero or the triangle
inequality would fail for b, so {a,, a;;} = {0, 1}. But this is impossible because it
would imply an edgein G between the vertices corresponding to non-zero coefficients,
contradicting the fact that they lie in separate components. To show a and b have the
same tight triangle inequalities, consider a consecutive triple for which the equation

atlzatz+a13

holds. Since the coefficient values are chosen from {0, 1, %} thereis no way both 1 and
% can appear in the equation. Therefore non-zero coefficientslie in the same connected
component, and the same equation holds for b. Similarly, a tight triangle inequality
holding for b must have any non-zero coefficientsin the same connected component, so
the corresponding equation holdsfor a.

i

Theorem 6 is useful for proving large classes of 0-1 matrices are facets. Let x =
(X1, ..., Xm) andy = (y1, ..., Yn) betwo vectors. We say the m by n matrix a isthe
productof xand yifforall <i <mandl < j <na j = xyj. A smpleapplication
of Theorem 6 givesthe following:

Corollary 2.

1. A0-1 n-vector is a facet of the 1 by n toric board if and only if it has no pair of
consecutive zeroes, no string of five or more ones, and at most one string of four
ones.

2. The product of two 0-1 facets of the 1 by m and 1 by n toric boards gives a 0-1 facet
of the m by n toric board.

We end this section by remarking that a0-1 vector aisvalid over Sg if and only if the
position F = aisnot reachable from any other position in the 0-1 peg game. To seethis
notethat if F = aisreachable, then the last jump must result in the configuration 0 0 1
in some row or column, violating the triangleinequality, so ais not valid. Conversely if
aisnot valid, it must contain the string 0 0 1 in some row or column. Replacing this by
the string 1 1 0 givesa position leading to F = a. A similar statement is not true for the
integer game: for examplethevalida =[ 01 1] for the 1 by 3 game can be reached
from[ 120]. It would be interesting to seeif the 0-1 facets of the 0-1 peg game have
some natural interpretation in terms of the gameitself.
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3.3. Bounds on number of facets

As mentioned in the introduction, experimental evidence and the fact that the n by
n game is NP-complete indicates that solitaire cones are likely to have a very large
number of facets. In this section we give some additional theoretical evidence for this
observation. We begin by asimple exponential upper bound applicableto alarge number
of different boards. For simplicity we restrict ourselvesto boards which are a connected
subset of the square | attice.

Lemma5 (upper bound).
Let ng bethenumber of movesonaboard B with hg holes. Sg hasat most (;, 12 ) < 2"®

facets. In particular the m by n toric board generates at most (nfrTfl) < (g—i)mn facets.

Proof. This follows from the fact that Sg is a cone in hg dimensions defined by ng
extremerays. Each facet is defined by aset of hg — 1 of theserays.
O

Theorem 7 (lower bound).

1. Thereareat least 6"9° 0-1 facets of the m by n toric board generated by products
of facets of the 1 by m and 1 by n toric boards, for m and n both divisible by 9.

2. There are at least 2% 0-1 facets generated by the m by n toric board, for even
valuesof m > 4, and n divisible by 4.

Proof. 1. First consider the case m = 1 and set n = 9k for any positive integer k.
Consider vectors of length 9k with the following properties:
(@) the first component is zero;
(b) there are atotal of 3k zeroes, no two of which are consecutive;
(c) there are 6k ones arranged in 3k blocks, with precisely k blocks each of length
one, two and three, in any order.
Each such vector satisfies the conditions of Corollary 2 (1) and so generates afacet
of the 1 by n toric board. There are

(k)(k>>6 =6

such facets. For any m which is a multiple of nine, we get the stated bound by
combining the result above with Corollary 2 (2).
2. Consider an m by n matrix defined by

1 i+j=0 (mod?2)

0 i+j=1 (mod2),andj=0,1 (mod4)
aj =1 X i=1j=2

1-x i=3j=2

* otherwise.

In the above, x and * denote elements than can be arbitrarily set to either zero or
one. A generic form of the matrix for m=4, n=8is:.
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1 X 101 %« 1 0
a_(O 1 * 1 0 1 =% 1)
-1l 1 1-x 1 01 x 1 O

0 1 * 1 0 1 % 1

For x = 0 or x = 1, the remaining % — 2 entries of a may be chosen freely.

Therefore there are 27 ~1 matrices with this generic form. We use Theorem 6 to
show that they generate facets for the m by n toric board. Indeed, by construction,
there can be no two consecutive zeroes. The vertices in G, corresponding to any
givenrow are connected, since no row has4 consecutive ones. Column one connects
all theodd numbered rowstogether, and column 4 connectsall the evenrows. Finally
the consecutive triple (x, 1, 1 — X) in column two connects rows one and two, so
G, is connected. To complete the proof, we note that we can obtain an additional
distinct set of 2’2 ~1 matrices as follows. For each matrix generated previously,
delete column one and append it after the last column. These matrices are all new
because the bottom right entry changes from oneto zero.

]

4. Skeletonsand diameter s of solitaire cones

In this section, after presenting in detail more than 50 small dimensional cases, we
give some results and conjectures on the combinatorial and geometric properties of the
solitaire cone. In particular, we investigate the diameter, edge connectivity, adjacency
and incidence relationships of the solitaire cone and its dual. Two extreme rays (resp.
facets) of a polyhedral cone are adjacent if they belong to a face of dimension (resp.
codimension) two. The number of rays (resp. facets) adjacent to theray r (resp. facet F)
isdenoted A; (resp. Ar). A ray and afacet areincident if the ray belongs to the facet.
We denote by I, (resp. | ¢) the number of facets (resp. rays) incident to theray r (resp.
facet F). The diameter of Sg (resp. itsdual Sj), that is, the smallest number § such that
any two vertices can be connected by apath with at most § edges, is§(Sg) (resp. §(Sp)).
We recall that for n > 4 or m > 4 Sy is pointed and full-dimensional and that the
moves are extreme rays (for the toric case thisholdsfor n > 3or m > 3).

Asin previoussections, for asolitaire gameplayed onaboard B ablack (respectively
white) hole represents a peg (respectively an empty hole) as in Fig. 16 and 18. The
coordinates of aray or afacet of Sg are naturally indexed by B asin Fig. 17 and 20.

4.1. Small dimensional solitaire cones

We first consider a solitaire game played on a rectangular or triangular board as in
Fig. 16. In Table 1 we give for each board B, the number of extreme rays and facets,
the minimal and maximal adjacency and incidence of the extremerays A;, I, and of the
facets Ar, | of the solitaire cone Sg, its diameter §(Sg) and the diameter of its dual
5(S5).

Sk?:or example, the last row in Table 1 means that each of the 36 extreme rays of the
cone Sy ¢ belong to at least 6 920 and at most 10 905 of its 21 744 facets. These facets
areof sizeat least 14, that is, simplices, and at most 30 (werecall that the size of afacet
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Fig. 16. Moves on the 15 triangular board B = A5

Table 1. Small rectangular and triangular boards

‘ Board H #rays ‘ Ir ‘ A H #facets ‘ I ‘ Ar H 5(Sg) ‘ 5(Shy) ‘
3x3 || 12 11~17 10~11 18 8~11 | 8~17 2 2
4x4 || 32 | 1584~2100 | 20~31 || 3531 | 15~26 | 15695 2 <3
3x4 || 20 50~82 17~19 || 107 | 11~28 | 11~79 2 3
3x5 || 28 421~856 | 25~27 || 1277 | 14~24 | 14~429 2 3
A1o 18 87~105 | 16~17 || 182 | 9~14 | 9~79 2 3
Ars 36 | 6920~10905 | 33~35 || 21744 | 14~30 | 14~4750 || 2 <3

is the number of extreme rays contained in the facet). The unique facet Fo of maximal
incidence I, = 30 and maximal adjacency Ar, = 4 750 isinduced by the inequality:
C-X<0,wherec=[100101000010101]; seeFig. 17. More than half of the
facets of Sy, are simplicesand its diameter §(Sa ) = 2.

Fig. 17. The unique facet Fo of maximal size and adjacency of S,

Then, we consider a solitaire game played on atoric rectangular or triangular board
asin Fig. 18. The adjacency and incidence relationships and the diameters are given in
Table 2. For example, the 16-dimensional cone generated by the 64 moves of the 4 by
4 toric board has 95 444 facets of which aimost half are simplices.

4.2. Skeletons and diameters

The following results and conjectures are stated in terms of rectangular toric board but
require only minor modificationsfor solitaire games played on toric or non-toric boards
of any shapes; see Remark 6. We consider the solitaire cone Sy«n induced by a game
played on an m by n rectangular toric board withn > m > 1and n > 3. The number of
extremerays of Snxn, that is, the moves of the solitaire gameis:
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@CeCe — COCee0 —

Fig. 18. Moves on the 4 by 4 and 1 by 5 toric boards

Table 2. Small rectangular toric boards

‘ Board H #rays ‘ Ir ‘ A H #facets ‘ e ‘ Ar H 5(Sg) ‘ 5(Sh) ‘
1x3 3 2 2 3 2 2 1 1
1x4 8 3 3 6 4 4 3 2
1x5 || 10 7 6 15 4~6 4~6 2 3
1x6 | 12 9 9 17 6~8 6~12 2 2
1x7 || 14 32 12 70 6~8 6~13 2 5
1x8 | 16 42 14 86 7~10 | 7~21 2 4
1x9 || 18 119 16 255 | 8~12 | 836 2 5
1x10 | 20 214 18 447 | o~12 | 934 2 5
1x11 || 22 508 20 1078 | 10~14 | 10~51 2 6
1x12 || 24 964 22 2013 | 11~16 | 11~84 2 6
3x3 || 18 1 15 15 | 12~14 | 12~14 2 2
4x4 || 64 25348 58 95444 | 1548 | 158195 2 2
3x4 || 36 190~233 | 30~33 || 498 | 13~26 | 14~166 2 3
3x5 || 45 | 1296313433 | 40~42 || 39060 | 14~34 | 14~3404 2 2

fo(Snx3) =3,6,18 form=1,2 3.
fo(Smxn) = 2mMn forn>4andm < 2.
fo(S8Bxn) = 3mn forn > 4.

fo(Snxn) = 4mn forn>m=> 4.

The coordinates and coefficients of the extreme rays and facets of Spxn are naturaly
indexed by the m x n board. For example, the extremerayr =[0—-1—-110] of S;«5
and the corresponding start and finish positions are represented in Fig. 19. The support
of r istheset oy = {2, 3, 4} of nonzero coordinatesof r.

In the next lemmawe give a characterization of the adjacency of the extremerays of
the solitaire cone induced by an 1 by n board. As a corollary, we obtain the adjacency,
edge-connectivity, diameter and the number of 2-faces of this cone.

Lemma 6. Any pair of extreme rays of ;.3 are adjacent and, for n > 4, two distinct
extremerays u and v of S are non-adjacentif and only if:
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Fig. 19. Theextremeray r of S; 5 corresponding to the move from Sto F

1 u-vel0, -2} for n=4

2 Uu-v=-20r u-v=-1and |oyNoy|=1 for n=5;
3 U-v=—20r Us3modge =V 1:1,...,6 for n=6;
4 u-v=-2for n>7.

Proof. Given in the Appendix.

Corollary 3. The skeleton of Sy satisfies

1. theadjacencyof anextremerayiskixn =2, 3,6,9,2(h—21)forn=3,4,5,6,> 7;
2. thediameter §(Si«n) =1,3,2forn= 3,4, > 5;

3. Sixn hasexactly 3, 12, 30, 54, 2n(n — 1) 2-facesfor n = 3,4, 5,6, > 7;

4. the edge connectivity Ce(Sixn) = 2,3,6,9,2(n— 1) forn=3,4,5,6, > 7.

Proof. (1), (2) Theadjacency and thediameter arestraightforward. (3) Thenumber of 2-
facesof aconeishalf thetotal adjacency of itsskeleton. (4) Werecall thefollowing result
of PLESNIK [23]: the edge connectivity of a graph of diameter 2 equals its minimum
degree. Then, since for n > 5 the cone S« has diameter 2 and since Ce(Sixn) = 2, 3

forn = 3, 4, we have Ce(Sixn) = kixn forn > 3.
O

Clearly, for the solitaire cone induced by a 2 by n board, two rays with supports
lying in the same row have the same adjacency relationships asin S« and two rays
with supports lying in different rows are always adjacent. In Theorem 8 we generalize
the adjacency relationships of Sjxn and S«n t0 Snxn forn > 4orm > 4.

Theorem 8 (characterization of extremerays adjacency).
Any pair of extreme rays of Snxn With distinct support are adjacent and, for m > 3, the
adjacency relationship of any pair u, v of extreme rays of Sy«n iSgiven by:

1. either o and o, do not belong to the samerow or column, then u and v are adjacent;
2. or oy and o, belong to the same row or column of length n, then u and v have

the same adjacency relationship asin S, except that u and v are not adjacent if
oy = Oy.

Proof. Given in the Appendix.
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Corollary 4. For n > 7and m > 7, the skeleton of a Sy« satisfies

1. the adjacency of an extremeray is kmxn = 4mn — 3;
2. thediameter §(Snxn) = 2;

3. Snxn hasexactly 2mn(4mn — 3) 2-faces;

4. the edge connectivity Ce(Snxn) = 4mn — 3.

Proof. Same asfor Corollary 3.
i

Two raysarecalled strongly conflicting (respectively conflicting) if thereexist 2 pairs
i, j and k, | (respectively a pair i, j) such that the two rays have nonzero coordinates
of distinct signs at positions i, j and k,| (respectively i, j). For example, the two
adjacent raysof S14 givenin Fig. 20 are conflicting at the position 2, 2 but not strongly
conflicting.

Fig. 20. Two rays conflicting as the position 2, 2

Remark 5. Whileforn > 7and m > 7 apair of extremeraysof the solitaire cone Snxn
are adjacent if and only if they are not strongly conflicting, for n > 4 two extreme rays
of the dual metric cone My, are adjacent if and only if they are not conflicting; see[9].

The following conjectures are based on Remark 5 and other similarities between the
solitaire cone and the dual metric cone investigated in Sect. 2.

Conjecture 1.

1. Forn > 3andm > 3,the{0, 1}-valuedfacetsof the solitaire coneform adominating
setinthe skeleton of itsdual, that is, each facet of Sy« isadjacenttoa{0, 1}-valued
facet.

2. For m, n large enough, at least one facet of S,xm isasimplex (that is, the number
of rays contained in the facet equal s the dimension of the cone minus one).

Item (1) of Conjecture 1 holds for Szx4 but is false for m < 2. The smallest 1 by n
toric board for which the conjecture fails is the 1 by 7 board. If true, item (2) would
imply that the edge connectivity, the minimal incidence and the minimal adjacency of
the skeleton of S, are equal to mn — 1. Thisholdsfor the cones presented in Table 2
exceptfor i : i =3,4and S : 1 = 4, 6.

Remark 6. For the non-toric boards given in Table 1, a pair of extreme rays of the
solitaire cone Sg are adjacent if and only if they are not strongly conflicting and their
supports do not lie entirely on the boundary of the board.
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5. Thebinary solitaire cone and other relatives

The link with the dual metric cone — see Theorem 3 — and the similarities between their
combinatorial structures—see Remark 5—leadsto the study of adual cut cone anal ogue;
that is, the cone generated by the {0, 1}-valued facets of the solitaire cone, when this
coneisfull dimensional.

5.1. Thebinary solitaire cone

The dual cut cone is generated by the {0, 1}-valued facets of the dual metric cone.
Similarly, we consider the cone generated by the {0, 1}-valued facets of the solitaire
cone. This coneis called the binary solitaire cone, denoted BSg, and is studied in [4].
The following two results are contained there.

Theorem 9 [4]. The extreme rays of the solitaire cone, that is, the moves, are extreme
rays of the binary solitaire cone.

Conjecture 2 [4]. Theincidence of the movesis maximal in the skeleton of BSyx«n.

This strengthens the analogy with the dual metric cone, for which the extreme rays are
also extremerays of the dual cut cone.

5.2. Thetrellis solitaire cone

The {0, 1}-valued facets of the solitaire cone have much less structure than the set of
cut metrics. In fact, the cut metrics are related to products of vectors of length n. This
motivates the next definition. Let f and g be {0, 1}-valued vectors of length m and n
respectively, and let ¢ij = fj - gj fori =1,...m, j = 1,...n. If c- x < O defines
afacet of BSn«n, we call it atrellis facet. The trellis solitaire cone 7 Sg is generated
by al of thetrellis facets of the binary solitaire cone BSg. Seeitem 2 of Corollary 2 for
an easy construction of trellis facets. For example, among the two following facets of
BSs«s, only theright oneisatrellis facet.

Fig. 21. A facet and atrellis facet of BS345

5.3. The complete solitaire cone

The complete solitaire cone C Sg isinduced by avariation of the Solitaire game. To the
classical moveswe add the moves which consist of removing two pegs surrounding an
empty hole and placing one peg in this empty hole as shown in Fig. 22.
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Fig. 22. The extremeray r of CS; 5 corresponding to the move from Sto F

6. Conclusions

The solitaire cone shares many similar combinatorial properties with the dual metric
cone Mj;. In particular:

1. their extremerays have similar adjacency relationships; see Remark 5;

2. both cones have diameter 2; see DEzA AND DEzA [9] and Corollary 4;

3. their numbers of facets are bounded above and below by an exponentia in the
dimension; see Lemma 5 and Theorem 7 and, for the metric cone, Avis [2] (lower
bound) and GRAHAM, YAO AND YAO [16] (upper bound);

4. their extremeraysarealso extremeraysof the conesgenerated by their {0, 1}-valued
facets, see Theorem 9.

5. while the extreme rays of the solitaire cone are conjectured to be of maximum
incidence in the cone generated by its {0, 1}-valued facets, the corresponding result
is proved for the dual metric cone; see Conjecture 2 and DEzA AND DEZA [10];

6. wehave M = CS_, where L istheline graph of the complete graph on n nodes;
see Theorem 3;

7. the {0, 1}-valued facets of the flow cone are the incidence vectors of cuts in the
complete graph. The cone generated by these facets is the dual of the well studied
cut cone; see DEzZA AND LAURENT [13]. PAPERNOV [22] gave a complete charac-
terization of multiflow problems for which the flow cone F, = M/} in Theorem 2
can be replaced by the dua of the cut cone. For example, single commaodity flow
problems are in this class, and the corresponding theorem is the celebrated max
flow/min cut theorem. It would be interesting to see if any anal ogous relaxation of
Theorem 1 can be found,;

8. sofar wehavenot yet found an anal ogue of the hypermetric facets of the metric cone
Mp, that is, a“nice” family of {0, —1, 1}-valued extremerays of the binary solitaire
cone BSg. Another open question is the determination of atighter relaxation of the
solitaire cone Sg by some cutsanalogue. Thetrellissolitairecone 7 Sg isacandidate
as well as the cone generated by the {0, 1}-valued facets with the minimal number
of ones. For S144 and Sz« : 1 = 3, 4, 5, these facets have maximal incidence and
adjacency in the skeleton of S, ..

Appendix

In this section, the dual problem being easier to state, we aways consider the dual
solitaire cone S5 whose extremerays (respectively facets) arether; (respectively induced
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by cj- x < 0) whererj- x < O induces a facet of Sg (respectively c; is an extreme
ray of Sg). Clearly, apair of extremeraysr’, r” are adjacent in Sg if and only if their
corresponding facets F/, F areadjacent in S, that is, if the codimension of F» N Fy»
istwo.

Proof of Lemma 6 and Theorem 8

Proof of Lemma 6. In the following we identify the extremeray r of S;.n with the facet
Fr of S, . All facetsof Sj, | being equivalent up to ascrolling and areversing of the
board, it is enough to find all the neighboursof thefacet F, : [ -1 —-110... 0]. The
adjacency relationships were checked by computer up to n = 8, so we can assume that
n > 9. Wefirst provethat thefacet F, : [01—-1—-10... 0] isnot adjacent to F, and
then that all other facets are adjacent to Fy. Any extremeray r belongingto Fy, N F,
satisfies:

ri+ra2—rz3=0
ro—r3—rz=0

ri=rz=0
o =13

(since0<riforl<i<n)

I3 =1Ig
:>{I’4=0

(sincerz—rg—rs <0and —rz—rg+r5 <0)

which impliesthat Fy N F, C F, wherev’ =[ 001 -1 —-10... 0] and therefore
Fu N F,, being an intersection of more than 3 facets, is of codimension at least 3, that
is, Fy and F, are not adjacent.

Then, to provethat all other facetsare adjacent to Fy, we consider any facet F5 # F,
and show that for any third facet F, we can find anextremeray r of Sj, | satisfying both
re FyNFaandr ¢ Fp, thatis, codim(Fy N F) = 2. Firgt, let assume that the supports
of Fy, Fa and Fp do not overlap and that the gaps between oy and oy and between oy,
and o, are not equal to 0 or 2, asin the following example:

oy oa op
-1,-1,10,...,0,1,-1,-10,...,0,1,-1,-1,0,...,0

n
Consider thefollowing {0, 1}-valued ray:

oy oa op
r=1012010...,0,1,010,2,0,1,0...,1,0,1,1,1,0,1...,1,0 .

n
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Thisray r is an extremeray of S, if and only if its 1-graph G, is connected; see
Theorem 6. According to the parity of the gaps between the supports oy, and oa, 02 and
op and o and oy, we can fill these gaps by 0, 1-valued strings: 0101 ... 010 or
01102101... 010 such that the graph G, obtained is connected. Thereforer is
an extremeray of Sf, | satisfying bothr € Fy N Faandr ¢ Fy, that is, Fy and F are
adjacent.

If Fy, Fq and F, do not overlap but the gaps between o and o or between oy, and
oa equal 0 or 2, then we can use the same technique considering one of the following
{0, 1}-valued rays:

oy Oa Ob

1 —— o
r-=101010...,0,1,01,0,1,0,1,0

n
Ou Oa Ob

2 — — —
r-=1010,1,0...,0,1,01,0,1,0,1,0,1,1,0,1...,1,0 .

n

When the supports of F, F5 and Fy overlap, we can, by essentialy projecting on the
joint support oy U 03 U oy, Use the same technique and generalize what happens for
n < 8). For example, taken = 11 and F, F5 and Fy given by:

Ou Oa

—_——~— —_———
-1,-1,1,0,0,0,0,0,0,0,0 1,-1,-1,000,00,0,0,0

Ob

e e
0,0,1,-1,-1,0,0,0,0,0,0

the desired extremeray of S;, ;; satisfyingbothr € Fy N Faandr ¢ Fpis:

oyUoaUop

e e
r=10111010,10,1

which meansthat F, and F, are adjacent. Note that for some cases, the desired extreme
ray isnot {0, 1}-valued. For example, taken = 11 and Fy, F4 and Fp given by:

Ou Oa

e e e e
-1,-1100000000 0-1,-1,1,0,0,0,0,0,0,0

Ob

—_———
1,-1,-1,0,0,0,0,0,0,0,0.

Projecting on Bi,s, we get the extreme ray ri5 = 1,1, 2, 3, 2 satisfying bothr <
Fuis N Fa,s andr ¢ Fy, o and the desired extreme ray of S;, ;; satisfying both
re FupNFgandr ¢ Fyis derived from rq,5 using GENFACET; see Theorem 5:
r=1,123211010,1
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Proof of Theorem 8. We first consider a pair of facets F, and F, such that o and o,
belong to the same row or column of length d. For d = 3, we have oy = o, and one can
easily check that F, and F, are never adjacent. For d > 4 and oy, # o, we can in the
same way as for the proof of Lemma 6, find athird facet F, containing Fy N F, if Fy
and F,, seen asfacets of S, are non-adjacent. For example, with:

1-11000 01-1-100
0 00000 .. 00 0 000

Fu: . Fy: .
0 00000 00 0 000

the following facet:
001 -1-10.
000 0 0O .
F,

satisfies FyNF, C Fy,thatis, Fy, and F, are non-adjacent. Theonly differencebbetween
Snxn and Sy« isthat Fy and the facet F,, with oy = o, are not adjacent. We have:

1 -11000 1-1-1000
0 00000 .. 0 0 0000
Fu: S Fu :
0 00000 . 0 0 0000
and the following facet:
0-10000
0-10000
0 00000
Fooil . .
0 00000 .
0 10000 .

satisfies Fy, N F, C Fyy, thatis, Fy and F,, are non-adjacent. Then, to prove that all
other facets which support belongsto the same row or column as o, are adjacent to Fy,
we can apply the same technique as for the proof of Lemma6.

We then consider F, and F5 with oy and o5 not in the same row or column. Asfor
Lemma 6, we show that for any third facet Fy, we can find an extremeray r of S;,.,
satisfying bothr € Fy N Faandr ¢ Fy, that is, codim(Fy N Fy) = 2. First let assume
that the supports of Fy, F5 and F, do not overlap asin the following example:

0... 0 0 00O. 0000O0O ...
0..0 O OO0O.
0...0-1-110. Lol
Fa:1 0O ... 0 0 0O0O. Fp : 000O0O0OO
. . L -100000
: -1 00000O0
0 0 0 00O 100000
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Consider the following {0, 1}-valued ray

rro010 - 01010 ...7
00O0O0 - 000O0O.
1010 - 01010.
00O0O - 000O0O.
r: oLl oo
00O0O- 000O0O.
1010 - 01010.
1010 - 01010.
LOO0OO0O 000O0O i

Thisray r is an extremeray of S, if and only if its 1-graph G, is connected; see
Theorem 6. According to the parity of the gaps between the supports oy, and oa, 02 and
op and op and oy, we can fill these gaps by the following 0, 1-valued matrices (or their
transposes) such that the graph G, obtained is connected.

000O0O0O. 101010. 101010.
101010. 101010. 101010.
000O0O0O. 000O0O0OO. 101010.
101010. 101010. 000O0OO.

Thereforer isan extremeray of S, ,, satisfying bothr € Fy N Faandr ¢ Fy, that is,
Fy and F5 are adjacent.

When the supportsof Fy, Fa and F, overlap, once again, we use the same technique
which amounts to a tedious but easy case by case study and completes the proof. For
example, take the following facets of S, ,:

-1-110 000 O 1000
F .| 0 000 F|-110-1 F.|-1000
u:l 0 000 a1 000 0 b1 _1000

0 000 000 O 0000

the desired extremeray of S, satisfyingbothr € Fy N Faandr ¢ Fyis:

0000
1110
“loooo
1110

which meansthat Fy and F5 are adjacent.
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