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Abstract. The'metric polytope is a (;)-dimensional convex polytope defined by its 4(3‘) facets.
The vertices of the metric polytope are known only up to n = 6, for n = 7 they number more than
60 000. The study of the metric polytope and its relatives (the metric cone, the cut polytope and
the cut cone) is mainly motivated by their application to the maximum cut and multicommodity
flow feasibility problems. We characterize the ridge graph of the metric polytope, i.e. the edge
graph of its dual, and, as corollary, obtain that the diameter of the dual metric polytope is 2. For
n > 5, the edge graph of the metric polytope restricted to its integral vertices called cuts, and to
some { 3 3} -valued vertices called anticuts, is, besides the clique on the cuts, the bipartite double
of the complement of the folded n-cube. We also give similar results for the metric cone, the cut
polytope and the cut cone.
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1. Introduction

We first recall the definitions of the metric polytope MetP, and its relatives, the
metric cone Met,, the cut polytope Cut P, and the cut cone Cut,,. Then we present
some applications to well known optimization problems and some combinatorial and
geometric properties of those four polyhedra.

For all 3-sets {7,4,k} C {1,...,n}, we consider the following inequalities:

i —Tir—Tjp <0 (1)
Tij + Tik + zjx < 2. (2)

‘The inequalities (1) define the metric cone Met, and the metric polytope MetP,
/i obtained by bounding Met,, by the inequalities (2). The 3(}) facets defined by
the inequalities (1), which can be seen as triangle inequalities for distance z;; on
A{1,2,...,n}, are called homogeneous triangle facets and are denoted by Tr;; . The
) fa.cets defined by the inequalities (2) are called non-homogeneous triangle facets
and are denoted by Tr;;i.

;. Given a subset S of V,, = {1,2,...,n}, the cut determined by S consists of the
pairs (%, j) of elements of V,, such that exactly one of 7, j is in S. 6(S) denotes both

the cut and its incidence vector in R(3), i.. 6(S)ij = 1 if exactly one of 4, j isin S
and 0 otherwise for 1 < i < j < n. By abuse of language, we use the term cut for
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both the cut itself and its incidence vector, so §(S);; are considered as coordinates

of a point in R(G). The cut polytope Cut P, is the convex hull of all 2"~! cuts, and
the cut cone Cut, is the conic hull of all 2"~ — 1 nonzero cuts. :

We have CutP, C MetP, and Cut, C Met, with equality only for n < 4. Any
facet of the metric polytope contains a facet of the cut polytope and the vertices of -
the cut polytope are vertices of the metric polytope, in fact the cuts are precisely
the integral vertices of the metric polytope. Actually the metric polytope MetP,
wraps the cut polytope Cut P, very tightly since, in addition to the vertices, all edges
and 2-faces of CutP, are also faces of MetP, [12]. There is a 1 — 1 correspondence
between the elements of the metric cone Met, and all the semi-metrics on n points,
and the elements of the cut cone Cut, correspond precisely to the semi-metrics on
n points that are isometrically embeddable into some IT*, see[2], it is easy to see
that m < (’2‘) Those polyhedra were considered by many authors, see for instance
(1, 3, 6,9, 10, 11, 12, 13, 16, 17] and references there.

One of the motivations for the study of these polyhedra comes from their applica-
tions in combinatorial optimization, see for instance [11]. Given a graph G = (V,, E)
and nonnegative weights w,, e € F, assigned to its edges, the max-cut problem con-
sists in finding a cut §(S) whose weight } . 5 5) We is as large as possible. By setting
we = 0 if e is not an edge of G, we can consider the complete graph on V,,. Then
the max-cut problem can be stated as a linear programming problem over the cut
polytope CutP, as follows:

{ max wT-z

z € CutP,.

Since MetP, is a relaxation of CutP,, optimizing wT -z over the metric polytope
instead of the cut polytope provides an upper bound for the max-cut problem [3].

With E the set of edges of the complete graph on V;,, an instance of the mul-
ticommodity flow problem is given by two nonnegative vectors indexed by E: a
capacity c(e) and a requirement r(e) for each e € E. Let U = {e € E : r(e) > 0}. If
T denotes the subset of V,, spanned by the edges in U, then we say that the graph
G = (T,U) denotes the support of r. For each edge e = (s,t) in the support of
r, we seek a flow of r(e) units between s and ¢ in the complete graph. The sum
of all flows along any edge ¢’ € E must not exceed c(e’). If such a flow exists, we
call ¢, r feasible. A necessary and sufficient condition for feasibility is given by the
Japanese theorem [15]: a pair c,r is feasible if and only if (¢ — r)Tz > 0 is valid
over Met,. For example, Tr;; ; can be seen as an elementary solvable flow problem
with ¢(ij) = r(ik) = r(jk) = 1 and c(e) = r(e) = 0 otherwise, so the inequalities (1)
correspond to (¢ — r)Tz > 0 for ¢ € Met,,. Therefore, the metric cone Met,, is the
dual cone to the cone of feasible multicommodity flow problems.

The metric polytope MetP,, and the cut polytope CutP, share the same sym-
metry group induced by permutations on V,, = {1,...,n} and switching reflections
[9, 16]. This group is isomorphic to Aut(O,), see Remark 3.4 below. Given a cut
6(S), the switching reflection rs(s) is defined by y = rs(s)(z) where y;; = 1 — zy; if
(4,7) € 6(S) and y;j = z;j otherwise. These symmetries, which preserve adjacency,
are widely used in the study of MetP, and its relatives.
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: CutP3 and MetP; are combinatorially equivalent to the tetrahedron and Cut Py
. and Met P4 are combinatorially equivalent to the 6-dimensional cyclic polytope with
8 vertices. More generally the cut polytope is a 3-neighbourly polytope [12]. Any
two cuts are adjacent both on CutP, [3] and on MetP, [18]; in other words MetP,
is quasi-integral in terms of [19], i.e. the edge graph of the convex hull of its integral
- vertices, the edge graph of the cut polytope, is an induced subgraph of the edge
. graph of the metric polytope itself.

The paper is organized as follows. In Section 2 we characterize the ridge graph
~ of the metric polytope MetP, and the metric cone Met,. In Section 3, respectively
- Section 4, we give a partial result on the edge graph of the metric polytope MetP,
and the ridge graph of the cut polytope CutP,. Section 5 contains the proofs of
 Lemma 2.1 and Theorem 2.2. A general reference for the graph theory used in this
paper is [4].

2. Ridge Graph of the Metric Polytope and the Metric Cone

. 2.1. RIDGE GRAPH OF THE METRIC POLYTOPE

. The ridge graph Gy, of the metric polytope Met P, is the edge graph of its dual. The
~ nodes of G,, are the 4(2) triangle facets of MetP,, and two facets are adjacent if and
only if their intersection is a ridge, i.e. a face of codimension 2. We first determine
the various intersections of two facets of MetP, by the following lemma:

Lemma 2.1 For n > 4, the intersection of two facets of MetP, is either:
(a) a face of codimension n — 1, combinatorially equivalent to MetP,_,, or
(b) a face of codimension 3, or

(¢) a face of codimension 2, i.e. a ridge.

We call faces of type (a) weak triangle faces. From the proof of Lemma 2.1 given
in Section 5, it is easy to check that all weak triangle faces belong to a facet of the

cube [0, 1](;) and form one orbit of the symmetry group of MetP,, i.e. are equivalent
under permutation and switching. Since each weak triangle face is combinatorially
equivalent to Met P, _, the metric polytope Met P, contains 2(';) copies of MetP,_,.
The same proof also shows that, for n > 4, two facets intersect in a ridge if and only
if they are non-conflicting. Two facets are called conflicting if there exists a pair i, j
such that the two facets have nonzero coordinates of distinct signs at the position 1, 5.
- For example, Tr;23 and Tra4 3 are conflicting at pair 2,3. The notion of conflicting
facets was introduced in [13, 16]. Using this property we are able to characterize
Ghn, the ridge graph of MetP,. G3 = K4 and G4 is the (4 x 4)-grid. For higher
values of n, it is more convenient to consider G,,, the complement of G,, which
has a smaller valency. For i = 1,...,n, let G; ~# G be n isomorphic graphs and
I'i & T their isomorphic induced subgraphs, we call bouquet of n graphs G with
common T' the graph with vertex set V = UL ,V(G; \ Ti) U V(T) and edge set
E=U,E(Gi\T;)U{(z,y): z € I,y € G; \ T, z and y adjacent}. For example,
Fig. 1 and Fig. 2 represent a bouquet of 3 (3 x 3)-grids with common K3 and a
bouquet of 2 hexagons with common edge. With v denoting the number of nodes,
k the valency of each node, A the number of nodes adjacent to two adjacent nodes
and g the number of nodes adjacent to two non-adjacent nodes, we have:




362 g ANTOINE DEZA AND MICHEL DEZA

A

Fig. 1. The local graph of Gg

Theorem 2.2 For n > 4, G, is locally the bouquet of (n — 3) (3 x 3)-grids with
common K3 having parameters: v = 4(3), k = 3(2n —5), A = 2(n — 2) or 4, and
u=26,4forn>50r0 forn>6.

Fig. 1 illustrates Theorem 2.2 for the case n = 6. From the parameters of G,, we can
compute some parameters of G,: the valency v = ?L'l:?la!ﬁil and y = An=3)(n -13)

3
or M"—a)-g"—_-@ + 2. This gives the two following corollaries:

Corollary 2.3 For n > 4, the diameter of G, 1s 2.

ProoF. Forn >4, u> 0,i.e. any two non-adjacent nodes of G, share a common
neighbour. The diameter of G3 is obviously 1. o

Corollary 2.4 The metric polytope has ezactly }i(-n——s—ﬂ(il ridges.

ProoF. The number of faces of codimension 2 of a polytope is half of the total
valency of its ridge graph. Since we know the common valency of all 4(;) nodes of
G, the result is a straightforward calculation.

G4, the ridge graph of MetPy, is the (4 x4)-grid = L(K4,4) = L(O4), the line
graph of the folded 4-cube. G, is a strongly regular graph with parameters v = 16,
k=6, ) =2and u = 2. There exists only one other strongly regular graph with
the same parameters, namely the Shrikhande graph [4]. For Gs, the complement of
the ridge graph of MetPs, both A and p take their values in {4,6}, providing first
example of an interesting generalization of strongly regular graph: regular graph of
diameter 2 with A, s € {a, b} with b >a > 0.

Remark 2.5 As a direct consequence of the proof of Lemma 2.1, we obtasn that two
facets Fy and Fy of Cut P, contained in two facets F{ and F3 of MetP, are adjacent
in CutP, if and only if F| and F} are adjacent in MetP,. This implies that any
ridge of the metric polytope contains a ridge of the cut polytope.
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Before presenting another interesting consequence of the proof of Lemma 2.1, we
recall the notion of 0-lifting which was considered in[10]. Let v be a vector of length
('2') and v/ = (v,0...,0) of length (";'1), then the inequality v -z < a defines a facet
F' of CutPy 41, called 0-lifting of F, if and only if the inequality v - £ < a defines
a facet F' of CutP,. We extend this notion to a ridge of CutP,, W = F, N Fy, by
defining the 0-lifting of W: W' = F{ N F}, where F{, respectively F}, is the 0-lifting
of F, respectively Fj. For example, the (n — 3)-times 0-lifting of a ridge of MetPs,
i.e. of an edge, is a weak triangle face of MetP,. By a proof similar to the one used
for the Lemma 2.1 and by direct checking for n = 4, we have:

Lemma 2.6 For n > 4, the 0-lifting of ridge of CutP, is a ridge of CutP, 4.

In the next theorem, we give some additional characteristics of the ridge graph of
the metric polytope. With w(G,,), respectively a(G,,), the size of the largest clique,
respectively co-clique, of G, and k(G,) the number of maximal cliques of full rank
(3), where the rank of a clique is the rank of the set of the {—1,0, 1}-valued vectors
representing the coefficients of the triangle facets belonging to the clique, we have:

Theorem 2.7 For n > 5, the inlersection of the facets belonging to a mazimal
cligue C of G, is a (('2') —rank(C))-face containing a unique {%, 2} -valued point of
MetP which is a vertez if and only if rank(C) = (3). k(Gn) equals the number of
31 2}-valued vertices of MetP,, w(Gn) = (2) and (G,) = 4.

ProoF  The support of a triangle facet T¥;;  or Thr;jx is the 3-set {i,j,k}. Since
the 4 triangle facets sharing a same support obviously form the largest clique of G,,,
we have a(G,) = 4. Let C be a maximal clique of G, and f be the face of MetP,
which is the intersection of the facets belonging to C. We show that any 2-set {4, j}
belongs to the support of a facet of C' by exhibiting, otherwise, a new facet T non-
conflicting with any facet F' of C (which contradicts the maximality of C). For any
k€ {1,...,n}\ {34}, the coefficients Fi; and Fji of F can be (< 0,< 0), (< 0,> 0),
(=2 0,<0)or (>0,>0); the corresponding facet T is ’I‘r,, k, Tk, ,,Th;” or Tr,lk

Then the point y defined by Yij = 1f Fij=-landy; =% 2 if Fi; = 1 is the unique
{3, 2}-valued point of MetP, in f Since clearly dim(f) = (3) — rank(C), f is a
vertex v if and only if rank(C) = (2) then, by unicity, v = y. One can easily check
that a {;, }-valued vertex can belong to at most 1 of the 4 triangle facets sharing a
same support (it holds for any vertex v such that 0 < v;; < 1), and that any anticut

6(S) = 2(1,.. 6(S), which is a vertex of MetP, for n > 5 (see Section 3),
belongs to exactly (3) triangle facets. It implies that w(Gn) = (§ ) For example, the
10 non-homogeneous triangle facets of MetPs intersect on the vertex y = 2(1 1)
while the 6 facets Tri3 3, Tr12 4, Tr12,5, Tras 1, Tras 2 and Trys 3 intersect on a 4- face f
of MetP5 generated by the vertices 6(.5') S = 0, {1 4}, {1, 5} {2,4} and {2,5}. The
unique {3, 2}-valued point of f is v = £(6(1,4) +6(1,5) + 6(2,4) + 6(2,5) + 26(8)),
so Jv is the path metric of K5 with the edges 1,2 and 4,5 deleted. o

Remark 2.8 A vertez of the metric polytope belongs to at most 3( ) triangle facets,
t.e. to 3/4 of the total number of facets of the metric polytope, and this value is
attained only by the cuts. On the other hand, a facet of the cut polytope contains at
most 3 -2"~3 cuts, i.e. 3/4 of the total number of vertices of the cut polytope, and
this value is attained by the triangle facets, see [7].
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2.2. RIDGE GRAPH OF THE METRIC CONE

The ridge graph Gy, of the metric cone Met, can be easily deduced from G, since,
for n > 4, two facets of the metric cone intersect in a ridge if and only if they are
non-conflicting. We have:

Theorem 2.9 Forn > 4, G/, is locally the bouquet of (n—3) hezagons with common
edge having parameters: v=3(3), k=2(2n—5), A\=n—-20r2, andp=4, 3 or 2
or 0 for n > 5.

Fig. 2. The local graph of G is the graph of the molecule of naphthalene'

Fig. 2 illustrates Theorem 2.9 for the case n = 5, G§ is locally the graph of the
molecule of naphthalene. As for G,, we can compute some parameters of G: the
valency v = (."_':i*lg_"_‘_ﬁl and y = ("'3)(2" =12 or ("'3)(; =11 4 1. This gives the
two following corollaries:

Corollary 2.10 Forn > 4, the diameter of G/, is 2.
Corollary 2.11 The metric cone has ezactly 3(n? — 6)('4') ridges.

%4, the ridge graph of Met,, is the (4 x 3)-grid, i.e. L(K43). G is a co-edge
regular graph with parameters v =12, k=5, A=2or 1 and pu = 2.

In the same way as for the metric polytope and using a result of [13], we have:
for n > 5, k(G/,), the number of maximal cliques of rank ('2‘) —1 of the ridge graph of
the metric cone, is equal to the number of the {1, 2}-valued, up to multiple, extreme
rays of the metric cone.

3. Edge Graph of the Metric Polytope

While the edge graph of the cut polytope Cut P, is known to be a clique, even to find
all the vertices of the metric polytope MetP, seems to be hopeless. Therefore, we
first consider the restriction of Ty, the edge graph of MetP,, to the 27~1! cuts §(S)
and 2"~! anticuts §(S) = 2(1,...,1)-36(S) which are vertices of MetP, for n > 5.
The cuts, respectively the anticuts, belong to the same orbit, i.e are equivalent under
permutation and switching. We recall the definitions of the folded n-cube and the
bipartite double of a graph, see[4]. The folded n-cube is the graph whose vertices
are the partitions of V;; into two subsets, two partitions being adjacent when their
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common refinement contains a set of size one. The bipartite double of a graph G is
the graph whose vertices are the symbols v+, v~ (v € G) and whose edges are the
2-sets {y?,67}, with ¥ and § adjacent in G and ¢ # 7. We have:

Theorem 3.1 Forn > 5, the restriction of the edge graph of the metric polytope to
the cuts and anticuts, is, besides the cligue on the cuts, the bipartite double of the
complement of the folded n-cube.

PROOF. The cuts, respectively the anticuts, are known to form a clique [18], and
a co-clique [16]. To find the adjacency relations between the cuts and the anticuts,
we use the following result proved in [1]. An anticut 6(S) lies on an extreme ray
of the metric cone Met, if and only if 1 < |S| < n— 1. In other words, 8(0) and
6(S) are adjacent if and only if min(|S],]5]) > 1. Using the fact that switching
preserves adjacency and that ryry(8(S)) = §(SAT), it implies that 6(S’) and 6(S)
are adjacent if and only if min(|SAS'|,|SAS'[) > 1, i.e. 6(S') and §(S), seen as

vertices of the folded n-cube, are not adjacent. 0

Corollary 3.2 The diameter of the restriction of the edge graph of the metric poly-
tope to the cuts and anticuts is 2.

PROOF.  Since the cuts, respectively the anticuts, form a clique and a co-clique,
we shall exhibit a cut §(T) adjacent to both anticuts 6(S) and 6(S') for any pair
S,S5’. Without loss of generality we can assume that IS| < 2. Let &' = {1,2},
if |S] > 1, 6(T") = 6(B) is obviously adjacent to both 6(S) and §(5). 1If IS] = 1,
8(T) = §(I) with I = {i} and i ¢ SUS'. For |S| = 0, 6(T) = 6(J), with J = {i, 5}
and : ¢ S’ and j € &, is adjacent to both §(S) and 6(S'). Then, using permutations
and switching, we can exhibit a cut 8(T) adjacent to any pair of anticuts 6(S) and
8(S"). D

The 32 vertices of Met P; are exactly the 16 cuts and the 16 anticuts, moreover,
the complement of the folded 5-cube is isomorphic to the Clebsch graph [4], i.e. the
skeleton %H (5,2) of the 5-dimensional half-cube. Therefore, I's is, besides the clique

'~ K6 on the cuts, the bipartite double of the Clebsch graph.

Corollary 3.3 MetP; has ezactly 280 edges and its diameter is 2.
PrROOF.  Since the valency of the Clebsch graph is 10, adjacency relations between
the cuts and anticuts create 10 x 16 = 160 edges. The clique on the cuts creates

(126) = 120 edges, and the co-clique on the anticuts none. Corollary 3.2 implies
6(F5) = 2. O

Remark 3.4 [9] The symmetry group of the metric polytope MetP, and the cul
polytope Cut P, is isomorphic 1o the automorphism group of the folded n-cube, i.e.
Is(MetP,) = Is(CutP,) ~ Aut(O,).

We consider for n > 6, in addition to the orbits of cuts and anticuts, the orbit
formed by the 2"‘1('2‘) vertices called trivial eztension of anticuts of MetP,,_,. The
notion of trivial extension was introduced in (13, 16]. Given S C V, = {1,2,...,n}
and a pair i,j with 1 < i < j < n, the trivial extension of anticut V(ij, S) deter-
mined by S and the pair i, j is given by:
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Via(ij, S) = 8 (S) for1<k<l!<nandl#i

Va(ij, S) = 8 (S) + (=1)%W;(ij, S)  for I ¢ {4, 5},

Vii (15, 5) = 6i(S).
For n > 6, the 2“‘1('2‘) trivial extensions of anticuts are vertices of the metric poly-
tope. Vi(ij,S) for i € {k,I}, the projection of V(ij,S), is the anticut §(S\{i})
of MetP, 1. The adjacency relations induced by trivial extensions of anticuts were
given in [14]. Without loss of generality we can choose S’ such as |SAS’| < |SAS|,

otherwise we take 5’. Then the adjacency relations induced by the trivial extensxons
of anticuts are:

(a) V(ij,S) and V(i'§',S’) are adjacent if and only if |{i,j} N {#,7}] = 1 and
SAS' c {i,j}n{¢,j'}.

(b) V(ij,S) and 6(S’) are adjacent if and only if, either |[SAS’| > 2, or |[SAS'| =2
and {i,j} C (SAS).

(¢) V(ij,S) and §(S’) are adjacent if and only if |SAS'| < 1 and SAS' C {i,j}.

This leads to a generalization of Theorem 3.1, where M;; = {V(ij,S) : S C V,} and
Ms = {V(ij,S):1<i<j<n}:

Theorem 3.5 For n > 6, besides the cliqgue on the cuts and the bipartite double
of the complement of the folded n-cube on the cuts and anlicuts, the restriction of
the edge graph of the metric polytope to the cuts, anticuts and trivial extensions of
anticuls, is given by:

(1) Mij = K2 -1.

(2) Mg = L(K,,), the line graph of the complete graph.

(3) Adjacencies between Mg and Mg ezist if and only if 6(S) and 6(S’) are adjacent
on the folded n-cube and, in this case, they form the bipartite double of L(K ).

(4) V(ij,S) is adjacent to 3 anticuts, namely §(SA{i}), §(SA{s}) and 6(S), and
to 2" 1-3n + 2 cuts.

Corollary 3.6 For n > 6, the diameter of the restriction of the edge graph of the
meltric polytope to the cuts, antlicuts and trivial extensions of anticuts is 2.

PROOF. Since the diameter of the restriction of edge graph of the metric polytope
to the cuts and anticuts is 2, we shall find a common neighbour to any pair of trivial
extensions V (ij, S) and V(¢#5/,5"). Forn >7,2"~1-3n+2 > 272 i.e. the number
of cuts adjacent to a given trivial extension V(ij, S) is more than half the number
of cuts. This implies that any pair of non-adjacent trivial extensions of anticuts is
adjacent to a common cut; by same reasons any pair of non-adjacent anticut and
trivial extension of anticut shares a common neighbour. For n = 6, one can directly
check it. ‘ O

Corollary 3.7 MetPs has exactly 14 256 edges and its diameter s 2.

PrOOF. The 544 vertices of MetPs are exactly the 32 cuts, 32 anticuts and 480
trivial extensions of anticuts. Since each trivial extension of anticut is adjacent to
4(n — 2) trivial extensions, and to 2"~1-3n+ 5 cuts and anticuts, they create 12960
edges. The valency of the complement of the folded 6-cube being 25, the cuts and
anticuts create 1296 edges. Corollary 3.6 gives §(I's) = 2. O
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Remark 3.8 It was conjectured in [16] that the integral vertices of the metric poly-
tope, t.e. the culs, form a dominating cligue in its edge graph T'y, i.e. that every
verter of the metric polytope is adjacent to a cut. It would imply that the diameter
of the metric polytope satisfies 6(Tn) < 3.

4. Ridge Graph of the Cut Polytope

As for the vertices of the metric polytope MetP,, the:determination of all the facets
of the cut polytope Cut P, seems to be hopeless. For n odd, we consider the restric-
tion of Q,,, the ridge graph of the cut polytope, to the 4(':_;) triangle facets, which are
all equivalent under permutations and switching, and the 2"~! facets of the orbit
of the equicut facet, where, for n odd, the equicut facet is defined by the following
inequality:

All cuts contained in the equicut facet are equicuts, i.e. cuts 6(S) such that || = 3]
or |S| = [2]. We have:

Lemma 4.1 For odd n > 5, the facets of the orbit of the equicut facet form the
co-cligue Kyn_, in the ridge graph of the cut polytope.

Proor. Let F and F’ be two facets of the orbit of the equicut facet, since
switching preserves adjacency, we can assume that F is the equicut facet. Let
6(S) be the nonzero cut such that F’ is the switching of F' by §(S), and let Wy,
respectively Wg, be the projection of W = F N F’ on S, respectively S. To prove
that F and F’ are not adjacent in the ridge graph of the cut polytope, we shall show
that codim(W) > 2. We have: dim(W) < dim(Ws) + dim(W3) + |S| - ||, then,
since Wy is in r(3) and W3 is in in R('s?')), the last inequality can be rewritten:
codim(W) > codim(Ws) + codim(Wz). By construction Ws, respectively W, is
the face Es defined by the inequality: }:a‘,jes,i<j ri; < [h;-lj . ng_l", respectively

the face E5 defined by the inequality: 2-',je§,i<j zi; < [l-‘;l_l . f]‘—.fl] Thus we have:
codim(W) > codim(Es) + codim(Eg). A result of [5] states that codim(Es) = 1 if
|S] is odd and |S| otherwise, then assuming that |S| is even (otherwise we consider
S), we obtain codim(W) > |S| +1 > 2 since S #0. a

Theorem 4.2 For odd n > 7, besides G,, on the triangle facets, and the co-clique
on the orbit of the equicut facet, the restriction of the ridge graph of the cut polytope
to the triangle facets and the orbit of the equicut facet is the complete bipartite graph
Ky with k = 4(3) and | = 2"=1 between the k triangle facets and the | facets
switching equivalent to the equicut facet.

PROOF. We use the following result provedin [8]. Givenv € R(?), if the inequality
v-z < 0 defines a facet of Cut,,, then the inequality v/ < 0 defines a facet of the
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equicut polytope EP, for all odd n > 2m + 1, where v/ = (v,0...,0) € R() and
E P, is the convex hull of all the equicuts of V,,. We apply this result for m = 3 to
a triangle facet of Cuts defined by the inequality v- £ < 0, then any facet defined
by (v,0...,0)-z <0, i.e. any homogeneous triangle facet of Cut,, is a facet of EP,
for odd n > 7. In other words, any homogeneous triangle facet of Cut,, intersects
with the equicut facet on a ridge for odd n > 7. Then, similarly, one can check
that all triangle facets are ridge-adjacent to the equicut facet and, by switching,
ridge-adjacent to all facets of the orbit of the equicut facet. a
The 56 facets of Cut Ps are exactly the 40 triangle facets and the 16 facets switch-
ing equivalent to the equicut facet, One can directly check that a pair of facets of
Cut Ps are ridge-adjacent if and only if they are non-conflicting. It implies that the
facets switching equivalent to the equicut facet form a co-clique and that each of
these 16 facets is ridge-adjacent to 10 triangle facets. For example, the equicut facet
is ridge-adjacent to.the 10 non-homogeneous triangle facets.

Corollary 4.3 The diameter of (25 is 2.

ProoF. Since the diameter of G5 is 2, we shall exhibit a facet adjacent to any
pair of facets of the orbit of the equicut facet. Let F' denote the equicut facet and
F(s) denote the facet obtained by the switching of F' by the nonzero cut §(S). If
|S| = 1, respectively |S| = 2, Trs\(;; for i € S, respectively Trg, are adjacent to
F and Fys). Then, by switching, any pair of facets of the orbit of F' has 1 or 4
common neighbours. a

Corollary 4.4 CutPs has ezactly 640 ridges.

PRrROOF. Ridges of CutPs which are not among the 480 ridges of MetPs, see
Corollary 2.4, arise from the 160 adjacency relations between the orbit of the triangle
facets and the orbit of the equicut facet. m]

Remark 4.5 With f;(P) denoting the number of i-faces of a polytope P, we have:
f,‘(MetPs) + fg_?(MCtP5) = f,‘(C‘utps) + fg_,'(Gutps) fori =20 orl.

Corollary 4.6 For odd n > 5, the diameter of the restriction of the edge graph of
the cut polytope to the triangle facets and the orbit of the equicut facet is 2.

PrOOF. Since the diameter of G, is 2, it is a direct consequence of Theorem 4.2
and Corollary 4.3. ]

Conjecture 4.7 The triangle facets form a dominating set in the ridge graph of the
cut polytope, i.e. every facet of the cut polytope is adjacent to a triangle facet. Since
the diameter of the restriction of 2y, to the triangle facets is 2, it would tmply that
the diameter of the dual cut polytope satisfies §(2y) < 4. This conjecture holds for
n < 7, moreover, §() = 3, see[7].

Remark 4.8 One can check that, with d(G) the dominating number of a graph G,
i.e. the size of the smallest dominating set in G, we have, for the ridge graph of the
cut polytope, d(Q23) = 1, d(4) = 4 and d(Q25) = 10 (take the 10 non-homogeneous
facets), and for the ridge graph of the metric polytope d(I's) = 1, d(I'y) = 1 and
d(T's) = 6 (take the cuts §({i}),i=1,...,5 and the cut §({1, 2})).
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5. Proofs

5.1. PRoOF OoF LEMMA 2.1

The proof of Lemma 2.1 is based on a case by case analysis of the different intersec-
tions of pairs of triangle facets. The common support o of two triangle facets Th;; ;
(or Thijk) and Trisji ks (or Trijiy) is defined by o = {i,5,k} U {#, 5, k'}. Then we
consider the 4 cases corresponding to the 4 possible values taken by o.

Case 0 =3

We first recall the definition of trivial extension of a vertex of MetP,_; given in [16],
which generalizes the trivial extension of anticuts of MetP,_; given in Section 3.
For 6 = 0 or 1, we consider the map ¢; from R(7) to R(3) defined as follows. For
v € MetP,_,, the metric polytope on the (n—1) points of {1,...,n}\{i},

$5(V)k1 = Vi forl<k<I<nandl#i
¢5(’U),‘1 =6+ (—l)dvﬂ for [ ¢ {i,j}, '
¢s(v)ij =6

#5(v) is called a trivial extension of v. Since permutations and switching reflections
preserve the adjacency, without loss of generality, we can consider the following
intersection of a pair of triangle facets: F = Try123N Tri35. We have:

vEF =Tr133NTr3,2

= V12— 13— v3 <0
V13— V12— v23 < 0

=}{'023=0

V13 = V12

using 0 < v <lforl<i<j<n

v23 =0
= { vi3 = vj3 for i ¢ {2,3}

= { vE ¢0(MetPn—1)
v E (Tz,',a n'Ib‘3,',2) for 7 ¢ {2, 3}

On the other hand, we obviously have: ¢o(MetP,_1) C (Tri23N Tri32). Then,
since the map ¢;5 preserves the faces of MetP,_; as well as their dimension [16],
F = ¢o(MetP,_;) implies that F, which is called a weak triangle face, is a face of
dimension (";1) combinatorially equivalent to MetP,_;.

Case 0 =4 «
We first recall the definitions of the intersection vector 7(S) and the characteristic
vector x(S). For S C V,, m(S) € {0,1}("%") is defined by: n(S)i; = 1if {35} C S
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and 0 otherwise, and x(S) € {0, 1}" is defined by: x(S)i = 1if {i} C S and 0 other-
wise. We also recall that the linear independence of the characteristic vectors x(S;)

for i = 1,...,n implies the linear independence of the cuts §(S;) for i = 1,...,n,
and that linear independence of the intersection vectors #(S;) for i = 1,...,n is
equivalent to the linear independence of the cuts §(S;) fori =1,...,n.

We consider the intersection of a pair of non-conflicting triangle facets, for ex-
ample: F' = Tryz 1 N Tre3 4. Since F is the intersection of 2 facets, its codimension,
codim(F), is at least 2. We show that codim(F) is exactly equal to 2 by exhibiting,
besides the cut §(0), a family of (3 ) 2 linearly independent cuts of the metric poly-
tope MetP, belonging to F. For n = 4, the vertices of F' are 6(0), 6(2), 6(3),8(1,2)
and 6(1,3), and one can easily check that the last 4 cuts are linearly independent.
Then, assume that F' contains ( )—2 linearly independent nonzero cuts of MetP,:
6(Si)fori=1,.. (") —2. Then, in addition to the (})—2 following nonzero cuts of

Met P, 1: 6(Si) for i=1,. ) —2, we consider the n cuts of MetPp 41 §(S{n+1})

fori =1,...,n. To check the linear independence of these ( )-24+n= ("'H) 2
cuts of MetP, 41, we consider the matrix I,4+; of their associated intersection vec-
tors. With the last (n + 1) columns corresponding to the coordinates §; ,41 for
i=1,...,n+1 and the last n rows corresponding to 7(S;U{n+1}) fori=1,... n,
we have:

where I, is the matrix of the intersection vectors associated to the cuts of the metric
polytope MetP,: 6(S;) for i = 1,...,n and X, the matrix of the characteristic
vectors associated to the cuts of MetP,4+1: 6(SiU{n+1}) for i = 1,...,n. Since
rank(I,) = (3)—2 and rank(X,) = n, we have rank(lny1) = (3)-2+n=("$)-2.
So, for n > 4 the codimension of the mtersectwn of a pair of non-conflicting triangle
facets is 2.

Then, we consider the intersection of a pair of conflicting triangle facets, for
example: F = Tryz; N Tras 3. Exactly in the same way as we did for the non-
conflicting case, we can show that the codimension of F' cannot increase with n.
Since for n = 4, the vertices of F' are §(0),6(2),6(4) and 6(1,2), the codimension
of F is 3. It implies that for n > 4, codim(F) < 3. One can easily check that
F = Try31 N Trag3 = Traq, N Try4 3, which implies that F', being an intersection of
more than 3 facets, can not be a ridge, i.e. codim(F) = 3.

Case o =5 or 6 .

For o = 5 or 6, any pair of triangle facets is non-conflicting. As for the case of a
non-conflicting pair for o = 4, we first determine the dimension of F' for n = 5 or
6. It turns out that F is always a ridge. For example, F = Try3 1 N Traq 5 contains
the cuts: §(0), §(2),8(3),6(4),6(1,2),6(1,3),56(2,4),6(4,5) and 6(3,5) and one can
check that the last 8 cuts are linearly independent. Then, using once again the fact
that the codimension of F cannot increase with n, we obtain that, for n > 5 or 6,
F is a ridge.
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Remark 5.1 From the proof of Lemma 2.1, one can easily check that a weak triangle
face contains 2°=2 cuts, a face resulting from the intersection of a pair of conflicting
facets with o = 4 contains 2"~2 cuts, and that a ridge contains either 5 - 2"=* cuts
foro=4,0r9-2"5 foro =25 or6.

5.2. PROOF OF THEOREM 2.2

Theorem 2.2 is a direct consequence of the fact that, for n > 4, a pair of triangle
facets are not ridge-adjacent if and only if they are conflicting. For example, the 3
neighbours of the facet Try23 in G, the complement of the ridge graph of the metric
polytope, corresponding to the case ¢ = 3, i.e. Try23,Tr132 and Tra3; form the
common K3 of a bouquet of (n — 3) (3 x 3)-grids. The 6(n — 3) other neighbours,
corresponding to the case 0 = 4, belong to (n — 3) (3x3)-grids. Fori =4,...,n
each grid is:
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