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a b s t r a c t

We introduce a chance constrained optimization model for the fulfillment of guaranteed display Internet
advertising campaigns. The proposed formulation for the allocation of display inventory takes into account
the uncertainty of the supply of Internet viewers. We discuss and present theoretical and computational
features of the model via Monte Carlo sampling and convex approximations. Theoretical upper and lower
bounds are presented along with a numerical substantiation.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Internet advertising has witnessed growth of 15% in 2012, reaching
$36.6 billion in the United States [11]. This field is markedly different
from traditional media used by advertisers such as radio, television
and newspaper. Information such as a user's profile, data input and
past Internet activity allow marketers to display their advertisements
to targeted audiences, resulting in an efficient use of their advertising
budget and an improved experience for users.

Our work is interested in the planning of guaranteed display
Internet advertising by an ad network, which acts as an intermediary
between website publishers and advertisers. Advertisers purchase an
advertising campaign from the ad network consisting of a guaranteed
campaign goal, which is the number of ads to be displayed, and a set
of viewer types, which describes who to show the campaign's ads to.
Guaranteed display advertising campaigns are typically for brand
awareness where the industry practice is for ad networks to maximize
representativeness, which is accomplished by displaying ads of each
campaign as proportionally as possible to all targeted viewer types, see
Yang et al. [20].

Quadratic optimization programs for this problem have recently
been developed by Turner [18] and Yang et al. [20]. In particular, Turn-
er showed that performance metrics are maximized using a proposed
allocation methodology assuming the viewer supply follows a certain
distribution. Our work addresses the uncertainty in viewer supply
using a chance constrained framework. Bharadwaj et al. [4] presented

an extension to [20] tangential to our research, using a two-stage
stochastic program with recourse, with the second stage selling or
purchasing ads on the spot market if the realized supply is greater or
less than expected. An alternative objective to spread ads across camp-
aigns is to maximize entropy, see Tomlin [17]. We pursue the quadratic
objective function approach motivated in part by the availability of
advanced and efficient solvers.

We introduce the model in Section 2 and formulate the joint
chance constrained optimization program to solve the ad network's
problem. Section 3 discusses how lower and upper bounds can be
found through sample approximations. In Section 4, a convex appro-
ximation program is presented which can be used to find lower and
upper bounds under different Internet viewer distribution assump-
tions. We conclude with Section 5, which discusses the results of a
computational substantiation of the introduced bounds. A nomen-
clature table can be found at the end of the text.

2. Chance constrained optimization model

2.1. Definitions and notation

An online ad network is an aggregator of display ad slots, which
it sells to advertisers in partnership with website publishers. For
each guaranteed display advertising campaign, the ad network
displays ads to a targeted set of viewers that fit certain criteria,
such as by demographic or interest. Advertisers are able to choose
their targeted set of viewers from the set V of viewer types, which
partitions the publishers' viewers by a predefined set of attributes.
Namely, the supply of viewers is modeled as a jV j -dimensional
random variable with mean vector μ and covariance matrix Σ. Let
Sv denote the supply of incoming ad slots across all websites in the
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ad network loaded by individuals of viewer type vAV , with μv and
σv being its mean and standard deviation respectively. Let K
denote the set of advertising campaigns. For a campaign kAK ,
the campaign goal gk is the number of ads to be displayed to
viewers, which we assume is given. For research concerning
optimal campaign goal sizes, see [1]. The subset of viewer types
VkDV are the viewer types targeted by advertiser k. The subset of
campaigns KvDK are the campaigns which target viewer type v.

This problem can be viewed as a stochastic transportation problem
with each viewer type as a source with random supply and each
advertising campaign as a sink with known demand. Each time a user
loads a website affiliated with the ad network, a decision must be
made as to which advertisement to display. This paper focuses on the
high level planning stage at the beginning of each optimization time
period, determining what proportion of ads from each viewer type to
allocate to each applicable campaign. The decision variables of the ad
network are pvk, the proportion of each viewer type v's supply
allocated to each campaign kAKv. Another means of planning,
especially when dealing with campaigns over short time periods, is
by allocating ads to one minute time slots, whereby all visitors during
each time period are shown the same ads, see [8].

2.2. Chance constrained optimization program

We introduce an optimization program to find the proportion
allocations, pvk, for all viewer types and targeting campaigns, with
an explanation following.

min
X
kAK

wk

jVk j
X
vAVk

ðpvk�qkÞ2

s:t:
X
kAKv

pvk r1 8vAV

P
X
vAVk

SvpvkZgk 8kAK

 !
Z1�α

qk ¼
1

jVk j
X
vAVk

pvk 8kAK

pvkZ0 8kAK; vAVk ðCCÞ
The first constraint ensures that no more than 100% of a viewer

type's supply is allocated. The second constraint models the idea of
guaranteed campaign fulfillment, which is interpreted as fulfill-
ment with high probability. In particular, the second constraint
ensures that all campaigns are fulfilled with a probability of at
least 1–α, where αo0:5 is the un-fulfillment tolerance. The fourth
constraint ensures that proportions are non-negative.

Chance constrained programming has been used in many differ-
ent fields such as finance [12] and water resource management [19].
We model campaign fulfillment using a chance constraint for two

reasons. The first is that the success of an advertising campaign is
unlikely to change dramatically if gk ads or ð1�ϵÞgk ads are displayed
for some small percentage ϵ, whereas strictly requiring the former
may significantly limit the number of advertising campaigns the ad
network can accept. With the parameter α, the ad network is able to
balance advertiser satisfaction with the total number of advertising
campaigns executed. The second, more fundamental reason is that
robust solutions are unlikely to exist without making strong assump-
tions on the underlying distribution of Internet viewers. Pð[kAK

fPvAVk
SvogkgÞ ¼ 0 is a necessary condition for the existence of a

robust solution. For distribution assumptions of viewer type supply
where this condition does not hold, e.g., normal, Poisson, log-normal,
there exists a minimal α̂40 such that αZ α̂ for (CC) to be a feasible
program.

The objective of the ad network is to maximize representative-
ness by allocating each campaign k's ads across all vAVk propor-
tionally to the supply, which is achieved by having pvk ¼ pv’k for all
v; v0AVk. Objectives of the following general form have been
proposed for guaranteed advertising campaigns, see [18,20],

min
X
kAK

X
vAVk

wvk pvk�
gk
μk

� �2

where the wvk's are weights, μk ¼
P

vAVk
μv is the total expected

supply from the viewer types targeted by campaign k, and gk=μk is
the target proportion. The objective maximizes weighted repre-
sentativeness of campaigns, assuming the ad network is con-
strained to fulfill campaigns in expectation. Given the chance
constraint, an ideal feasible allocation is unknown a priori. We
propose to minimize the variance of each campaign's allocation
proportions. The objective is thenX
kAK

wk

jVk j
X
vAVk

ðpvk�qkÞ2

where qk is the mean of the proportions allocated to campaign k from
viewer types in Vk, enforced in the third constraint, and the weights
wk represent the campaign's priority to the ad network. For example,
assume campaign k targets 5 viewer types, and a feasible solution to
(CC) includes the vector of proportions allocated to campaign k,
pk ¼ ½0:2;0:3;0:1;0:4;0�. Since qk ¼ ð0:2þ0:3þ0:1þ0:4þ0Þ=5¼ 0:2,
the variance of pk is then 1

5

P5
v ¼ 1 ðpvk�0:2Þ2 ¼ 0:02. The objective

attempts to set pk ¼ ½ϕ;ϕ;ϕ;ϕ;ϕ� for some unknown ϕ, which would
achieve perfect representativeness for campaign k, with a variance of 0.

Joint chance constraint programs are in general difficult to
solve due to their non-convexity and the numerical integration
required to calculate PðPvAVk

SvpvkZgk; 8kAKÞ, see Pagnoncelli
et al. [16]. Sample Approximation method provides theoretically
well founded solution approaches where Monte Carlo sampling is
used to generate approximate mixed integer programs, see [5]. In

Nomenclature

α campaign un-fulfillment tolerance
μ mean vector of viewer type supply
μk mean vector of the viewer types' supply which cam-

paign K targets
μv mean supply from viewer type v

Sk vector of the viewer types' supply which campaign k
targets

Sv supply of viewer type v

Σ covariance matrix of viewer type supply
Σk covariance matrix of the viewer types’ supply which

campaign k targets

σv standard deviation of viewer type v's supply
ξ campaign un-fulfillment tolerance for (SA)
gk campaign goal of campaign k
K set of advertising campaigns
Kv set of campaigns which target viewer type v

N number of viewer type supply scenarios for (SA)
pk vector of proportions allocated to campaign k from

viewer types in Vk

pvk proportion of viewer type v's supply allocated to
campaign kAKv

V set of viewer types
Vk set of viewer types targeted by campaign k
wk campaign k's priority weighting
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Section 3, we present results enabling the construction of sample
approximations which, when solved, achieve lower and upper
bounds with high probability for (CC).

3. Sample approximations

3.1. SA program

The following program, (SA), is a finite approximation to (CC).
For i¼1,…,N, the Si

v's are independently sampled supply scenarios.
The binary variable xi¼1 enforces the fulfillment of all campaign
goals in scenario i. The second and third constraints require that all
campaign goals are satisfied in at least ⌈ð1�ξÞN⌉ scenarios, which
approximates the joint chance constraint PðPvAVk

SvpvkZgk 8k
AKÞZ1�ξ:

min
X
kAK

wk

jVk j
X
vAVk

ðpvk�qkÞ2

s:t:
X
kAKv

pvkr1 8vAV

X
vAVk

Si
vpvkZxigk 8kAK ; i¼ 1;…;N

XN
i ¼ 1

xiZ⌈ð1�ξÞN⌉

qk ¼
1

jVk j
X
vAVk

pvk 8kAK

pvkZ0 8kAK; vAVk

xiAf0;1g 8 i¼ 1;…;N ðSAÞ
We can obtain lower and upper bounds with high probability by
solving (SA) with an appropriate choice for N and ξ.

3.2. SA lower bound

Assume (CC) is a feasible program with optimal objective value
zðCCÞn and optimal solution pðCCÞnvk . Property 1 determines the
probability of pðCCÞnvk being feasible in (SA), implying the optimal
objective value of ðSAÞ, zðSAÞnrzðCCÞn. When (CC) is not feasible,
zðSAÞnrzðCCÞn, using the convention zðCCÞn ¼1.

Property 1 (Luedtke and Ahmed [14]). PðzðSAÞnrzðCCÞnÞZP⌊ξNc
i ¼ 0

N

i

� �
αið1�αÞN� i.

3.3. SA upper bound

Property 2 requires that the objective is convex, the determi-
nistic feasible region is convex and closed, and that the chance
constraint mapping is closed and convex. Let ðRSAÞ be the robust
version of (SA) with ξ¼0. This implies all xi¼1 converting (SA)
into a convex quadratic program. Property 2 gives the probability
that zðRSAÞnZzðCCÞn.

Property 2 (Calafiore and Campi [7]). PðzðRSAÞnZzðCCÞnÞZ1�
N

jVK j

 !
ð1�αÞN� j VK j , where jVK j ¼

Pj K j
k ¼ 1 jVk j is the number of

decision variables.

3.4. A branching scheme for the branch-and-bound algorithm

In this subsection we discuss an aspect of the algorithm used to
find sample approximation lower bounds, which enabled us to
solve larger scale problems. Assuming we are in the midst of
solving (SA), we must solve the following program, (SAm), at node

m of the Branch-and-Bound algorithm:

min
X
kAK

wk

jVk j
X
vAVk

ðpvk�qkÞ2

s:t:
X
kAKv

pvk r1 8vAV

X
vAVk

Si
vpvk Zxigk 8kAK ; i¼ 1;…;N

XN
i ¼ 1

xi ¼ ⌈ð1�ξÞN⌉

xTdiagðX1
mÞ ¼ 1TdiagðX1

mÞ
xTdiagðX0

mÞ ¼ 0

qk ¼ 1
jVk j

X
vAVk

pvk 8kAK

pvk Z0 8kAK; vAVk

xi A ½0;1� 8 i¼ 1;…;N ðSAmÞ
where X1

m and X0
m are binary vectors of length N which indicate the

xi set to one and zero at node m of the branching tree. We use an
equality in the constraint

PN
i ¼ 1 xi ¼ ⌈ð1�ξÞN⌉, as for any integral

optimal solution with
PN

i ¼ 1 x
n

i ¼ ⌈ð1�ξÞN⌉þr for some rAZ40,
any r xni 's equal to 1 not enforced by X1

m can be set to 0 with no
effect to the optimal solution or objective value.

After solving (SAm), assume that pðSAmÞn is not feasible in (SA)
and the optimal objective value, zðSAmÞn is less than the current
upper bound. Thus, we want to branch on one of the xi for
iAfl : X1

mðlÞ ¼ 0;X0
mðlÞ ¼ 0g. We use the following heuristic which

finds the scenario j with the constraint which is the farthest from
being satisfied on a percentage basis:

j¼ arg min
i:X1

mðiÞ ¼ 0;X0
mðiÞ ¼ 0

min
k ¼ 1;…;j K j

P
vAVk

Si
vp

ðSAmÞn
vk

gk
:

For the path with xj¼1, the branching tree can be effectively
pruned as enforcing scenario j will likely enforce other scenarios,
and the path with xj¼0 will lead to near optimal solutions as xj is a
promising candidate for one of the ⌊ξNc scenarios to discard.

4. Convex approximations

In this section we present convex constraints which can replace
the joint chance constraint in (CC) to achieve bounding convex
programs efficiently solvable using an interior point method. General
methodologies for generating convex relaxations and restrictions
have been developed by Ahmed [2] and Nemirovski and Shapiro
[15], respectively. Let Sk be the vector of the viewer types' supply
which campaign k targets, with μk being the jVk j -dimensional mean
vector and Σk being the jVk j � jVk j covariance matrix. In addition,
let pk be the jVk j -dimensional vector of proportions allocated to
campaign k from viewer types in Vk.

4.1. Distribution-free bounds

This subsection assumes that we only have estimates for the
first two moments with no knowledge of the underlying distribu-
tion. We present lower and upper bounds based on classic
probability inequalities.

Property 3 (Distribution-free lower bound). Any feasible solution of
(CC) satisfies the constraints pTkμkZð1�αÞgk for kAK .

Proof. Assume there exists a k0AK with pTk0μk0 o ð1�αÞgk0 , then
PðpTkSkZgk 8kAKÞrPðpTk0Sk0 Zgk0 ÞrpTk0μk0=gk0 o1�α, where the
second inequality follows from Markov's inequality. □
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Property 4 (Distribution-free upper bound). The constraints

gk�pTkμkþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�αk

αk

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pTkΣkpk

q
r0 8kAK

where
P

kAKαk ¼ α, αk40 form a conservative approximation of
PðpTkSkZgk 8kAKÞZ1�α.

Proof. Following the reasoning in [15, Section 2], assume
PðpTkSkogkÞrαk 8kAK , then Pð[kAK fpTkSkogkgÞr

P
kAKPðpTkSk

ogkÞrα, implying PðpTkSkZgk 8kAKÞZ1�α. To show PðpTkSk

ogkÞrαk, we use the one-sided Chebyshev inequality, PðYrEðYÞ
�bÞrVarðYÞ=ðVarðYÞþb2Þ for a random variable Y and constant
b40,

PðpTkSkogkÞrPðpTkSkrgkÞ

r pTkΣkpk
pTkΣkpkþðpTkμk�gkÞ2

r pTkΣkpk
pTkΣkpkþ1�αk

αk
pTkΣkpk

¼ αk:

Therefore the conclusion holds. □

4.2. Bounds assuming a normal distribution

The normal distribution has been proposed in the literature for
modeling viewer type supply, see [4]. This subsection presents
convex approximations under the assumption that Sk follows a
multivariate normal distribution, so that pTkSk �NðpTkμk; p

T
kΣkpkÞ.

Let Fk denote the cumulative distribution function of pTkSk.

4.2.1. Normal lower bound
Requiring each campaign's probability of fulfillment to be at

least 1�α is necessary for feasibility in (CC), resulting in a convex
relaxation. The chance constraint for each campaign is equivalent
to a second-order cone constraint [6],

PðpTkSkZgkÞ ¼ 1�FkðgkÞZ1�α
FkðgkÞrα

gk rF �1
k ðαÞ

gk rpTkμkþnα
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pTkΣkpk

q
;

where nα is the α percentile of a standard normal random variable.

4.2.2. Normal upper bound
As in Property 4, an upper bound can be found by requiring

PðpTkSkrgkÞrαk for all kAK . Assuming the viewer supply follows
a normal distribution, we can then use the constraints found in
Section 4.2.1 with α replaced by αk.

4.3. Summary

The above convex approximations can be obtained by solving
the following convex approximation program (CA) with the proper
choice of parameters uk and hk as summarized in Table 1:

min
X
kAK

wk

jVk j
X
vAVk

ðpvk�qkÞ2

s:t:
X
kAKv

pvkr1 8vAV

pTkμk�uk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pTkΣkpk

q
Zhk 8kAK

qk ¼
1

jVk j
X
vAVk

pvk 8kAK

pvkZ0 8kAK; vAVk ðCAÞ

(CA) was solved using a primal-dual interior point algorithm.
The algorithm used generalized logarithm barriers to solve for
points on the central path, see [6, Chapter 11.6–11.8]. To form the
modified KKT conditions, the Jordan algebra for second-order
cones is used to express the complementary slackness conditions
of the second-order cone constraints, see [3]. The system of
equations to solve for the Newton steps was simplified so that
only a system involving the step of p, Δp, was required to be
solved, with closed form expressions for the remaining dual
variable steps in terms of their current value, p, and Δp. In order
to maintain stability, a universal step size was found such that all
variables remained feasible. The central path parameter t is
updated to equal a multiple of the reciprocal of the maximum
error of the modified KKT conditions involving t. The algorithm
quits when the maximum error of the modified KKT conditions is
less than or equal to a small ϵtimes the current objective function
value. In order to find an initial feasible solution, we begin with a
function which spreads proportions relative to the campaign's goal
size to expected targeted supply, while satisfying the first and
fourth constraints of (CA). The Big M method is then used to find
an initial solution feasible in the second set of constraints.

4.4. Setting the αk's

We now present an iterative method to calculate upper bounds.
When finding a distribution-free upper bound, (CA) is first solved
with the αk's set equal to α=jK j , as proposed in [15, Section 2].
Letting pn

k be the optimal solution, with optimal objective value zðCAÞn,
the approximating constraint of Property 4 can be rearranged as

αkZ
pnT
k Σkpn

k

pnT
k Σkpn

kþðgk�pnT
k μkÞ2

¼ α̂k:

For any k for which this constraint is not tight, we can set αk ¼ α̂k. As
these tighter constraints are valid for (CA), resolving the optimization
problem with the tighter constraints, (TCA), will result in an objective
value zðTCAÞn ¼ zðCAÞn. Assuming there was at least one constraint in (CA)
which had slack,

P
kαkoα in (TCA). The total slack s¼ α�Pkαk can

be added evenly to all αk's of the originally tight constraints in (CA).
Solving this relaxation of (TCA), (RTCA), will result in an objective value
zðRTCAÞnrzðTCAÞn. This process of redistributing slack among the αk's is
iterated until the improvement in the objective value becomes
sufficiently small. The same process is used for the normal upper
bound, where for all approximating constraints with slack, αk is
updated to equal FkðgkÞ. The algorithm for solving the distribution-
free upper bound is presented below, with the necessary changes to
solve for the normal upper bound in the comments.

Algorithm 1. Calculating the distribution-free upper bound.

1: αk ¼ α
j K j 8kAK

2: uk ¼
ffiffiffiffiffiffiffiffiffiffi
1�αk
αk

q
8kAK {uk ¼ �nαk for the normal upper

bound.}
3: ½zn; pn� ¼ CAðu; gÞ
4: znold ¼1

Table 1
Parameters in (CA).

Bound uk hk

Distribution-free lower bound 0 ð1�αÞgk
Distribution-free upper bound

ffiffiffiffiffiffiffiffiffi
1�αk
αk

q
gk

Normal lower bound �nα gk
Normal upper bo und �nαk gk
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5: I ¼ 0j K j {Indicator vector with kth entry set to 1 when
slack found in constraint associated with campaign k.}

6: while znold�zn40 do
7: s¼0{Stores total slack across all constraints.}
8: for k¼ 1 : jK j do
9: if αk4 α̂k then
10: s¼ sþαk� α̂k {α̂k ¼ FkðgkÞ for the normal upper

bound.}
11: αk ¼ α̂k

12: Ik¼1
13: end if
14: end for
15: if s40 &

Pj K j
j ¼ 1 Ijo jK j then

16: for k¼ 1 : jK j do
17: if Ik¼0 then
18: αk ¼ αkþ s

j K j �
P j K j

j ¼ 1
Ij

19: end if
20: end for
21: end if
22: znold ¼ zn

23: uk ¼
ffiffiffiffiffiffiffiffiffiffi
1�αk
αk

q
8kAK {uk ¼ �nαk for the normal upper

bound.}
24: ½zn; pn� ¼ CAðu; gÞ
25: end while

5. Computational substantiation

In this section we compare the solutions of the sample and convex
approximations. All testing was conducted on a Windows 7 Home
Premium 64-bit, Intel Core i5-2320 3 GHz processor with 8 GB of
RAM. All coding was done in Matlab R2012a interfaced with CPLEX
12.4 using YALMIP [13] dated 13 February 2013. Ten random test
problems were generated. For each test problem, the number of
campaigns and viewer types were chosen randomly between 5;…;10
and 10;…;20. Campaign targeting was achieved by generating a
jK j � jV j matrix of Bernoulli random variables with p¼0.5, with cell
ði; jÞ ¼ 1 indicating that campaign i targets viewer type j. If there was a
campaign or viewer type which was not assigned at least one viewer
type or campaign, then a random cell in the appropriate row or
column was set to 1. A random vector of viewer type means were
generated, with each mean following a uniform distribution between
[1000, 10,000]. Given the mean, μv, σ2v was randomly generated
uniformly within ½0:25;0:5� � μv. A random correlation matrix was
generated using the random Gram matrix approach [10]. For each
campaign, gk ¼ U½0:5;0:75�

P
vAVk

ðμv=jKv j Þ, where U½0:5;0:75� is uniform
between ½0:5;0:75�. For all campaigns wk¼1.

The sample approximation parameters for each test problem were
chosen so that the optimal solution is between the bounds with a
probability of at least 99%. For the first five problems α¼0.1, with the
lower bound parameters chosen as N¼108 and ϵ¼ 1:76α, and for the
remaining five problems α¼0.05, with the lower bound parameters
chosen as N¼102 and ϵ¼ 2:16α. For both cases,P⌊ξNc

i ¼ 0
N
i

� �
αið1�αÞN� i ¼ 0:995. The value of N for the upper bound

is problem instance specific, and was set as the minimum N such that
1�ð N

j VK j Þ ð1�αÞN� j VK j Z0:995. The average value of N was 1487 for
α¼0.1, and 3371 for α¼0.5, and the average value of
1�ð N

j VK j Þð1�αÞN� j VK j was 0.9952 over all 10 problem instances. We
tested all bounds sampling the viewer supply from a normal
distribution.

Let the probability of fulfillment (PF) equal PðPvAVk
SvpvkZgk;

8kAKÞ. This probability is estimated for all solutions by generating
100,000 supply scenarios. Indicator variables, 1f

P
vA Vk

Si
vpvk Zgk 8k

AKg, for each scenario i were generated and treated as a Bernoulli
sample. The 99% one-sided confidence interval of the probability

of fulfillment, P̂F , was then estimated, PðPFZ P̂F Þ ¼ 0:99.
Results for each test problem are displayed in the Appendix.

Objective values were multiplied by 1000 for readability. For the
sample approximation bounds, the lower bound objective, the
lower bound solution's P̂F , the lower bound computation time
using the branching heuristic of Section 3.4, the lower bound
computation time solving directly with CPLEX, the upper bound
objective, the upper bound solution's P̂F , and the upper bound
computation time are presented from left to right in Table 2. When
computing the lower bound directly with CPLEX, a time limit of
20nTH was set, after which CPLEX would quit, where TH is the
computation time using the branching heuristic.

For the convex approximation bounds, the lower bound objective,
the lower bound solution's P̂F , and the lower bound computation
time comprise columns 2–4 of Tables 3 and 4. With αk ¼ α=jK j , the
upper bound objective, the upper bound solution's P̂F , and the
computation time follow in columns 5–7. Using the algorithm of
Section 4.4, the upper bound objective, the upper bound solution's P̂F ,
and the computation time are displayed in columns 8–10.

The average optimality gap for the sample approximation bounds
was 43%, with an average computation time of 320 s using the
heuristic. The heuristic required on average 230 s to solve for the
lower bound. Directly solving with CPLEX required significantly more
time, taking 420nTH for cases 1,2,3, and 5, and 410nTH for cases
6,8, and 10.

The average optimality gap and computation time for the
distribution-free bounds was 385% and 0.21 s using the algorithm.
The large optimality gap for the convex approximations is to be
expected as we are finding bounds taking into account the most
extreme possible distributions. The average improvement of the
distribution-free upper bound using the algorithm was 16%. We
see there is a trade-off between time and solution quality when
deciding between sample and convex approximations.

With specific knowledge of the distribution, much tighter bounds
can be found. The average optimality gap and computation time for the
normal bounds was 11% and 0.15 s using the algorithm. Examining the
normal upper bounds, we can see these solutions are close to optimality,
with P̂F in excess of 1�α on average by only 2.4%. The average
improvement of the normal upper bound using the algorithm was 4%.

The sample approximation and distribution-free bounds are very
conservative for our problem data, with P̂F40:99 and P̂F ¼ 0:99995
for all instances, respectively. In practice, high quality solutions can
be attained using the sample approximation technique. Beginning
with the theoretical upper bound value of N, (SA) can be iteratively
solved, decreasing the value of N until a near optimal solution is
found with P̂F sufficiently close to 1�α.

6. Conclusion and future research

This paper presents a chance constrained optimization model for
guaranteed displayed Internet advertising campaigns. A sample appr-
oximation program with a branching heuristic was developed, as well
as convex approximations under Normal and distribution-free viewer
supply assumptions, with an iterative method for improving feasible
solutions. Log-normal and Poisson distributions have also been
proposed to model viewer supply, see [4,9]. Convex approximations
under these assumptions is an area of potential future research.
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Table 2
Results for sample approximation bounds.

Sample Approximation bounds

# LB UB

z P̂F TH (s) TC (s) z P̂F T (s)

1 0.08656 0.67382 394.12189 7885.28954 0.29815 0.99883 36.11891
2 38.47802 0.83258 271.55118 5432.76618 43.57778 0.99931 12.98950
3 1.39652 0.72996 118.50722 2372.77228 1.98864 0.99448 20.11220
4 147.26848 0.78323 642.50342 5631.70639 159.05476 0.99384 12.74514
5 1.55731 0.76499 228.41868 4570.70080 2.91692 0.99728 20.72935
6 100.38367 0.76192 139.77481 1454.69702 117.07098 0.99687 43.10787
7 209.21887 0.78952 375.03623 3746.96343 219.04089 0.99844 65.37173
8 29.24341 0.83597 69.03840 1128.23085 32.06909 0.99838 73.24367
9 0.00000 0.99995 0.45513 1.50496 0.00000 0.99995 36.52844

10 313.32316 0.80525 578.03043 9679.22504 338.78909 0.99755 57.58939

Table 3
Results for distribution-free bounds.

Distribution-free bounds

# LB UBα=j K j UBALG

z P̂F T (s) z P̂F T (s) z P̂F T (s)

1 0.02433 0.10208 0.04318 1.56683 0.99995 0.13366 0.70294 0.99995 0.33721
2 35.11906 0.16493 0.00708 51.48740 0.99995 0.01638 49.67440 0.99995 0.19283
3 1.07339 0.11786 0.00652 4.90718 0.99995 0.02245 3.27246 0.99995 0.27213
4 134.91058 0.05268 0.00575 199.83478 0.99995 0.01840 194.25912 0.99995 0.17045
5 0.91310 0.17005 0.00610 9.19147 0.99995 0.01769 4.96429 0.99995 0.24479
6 88.71204 0.09186 0.00600 219.27627 0.99995 0.01562 198.94794 0.99995 0.24656
7 200.41163 0.01049 0.00738 276.35676 0.99995 0.02342 266.59733 0.99995 0.20504
8 26.67377 0.10453 0.00721 54.57600 0.99995 0.02209 52.12026 0.99995 0.24255
9 0.00000 0.99995 0.01565 0.00000 0.99995 0.01508 0.00000 0.99995 0.02982

10 290.49479 0.05637 0.00673 503.95350 0.99995 0.01890 503.95350 0.99995 0.03657

Table 4
Results for normal bounds.

Normal bounds

# LB UBα=j K j UBALG

z P̂F T (s) z P̂F T (s) z P̂F T (s)

1 0.08488 0.68915 0.13207 0.16233 0.96111 0.02831 0.13225 0.90751 0.11698
2 37.80323 0.72256 0.04230 39.48617 0.93148 0.01569 39.27912 0.91504 0.04832
3 1.41510 0.70816 0.02301 1.71973 0.96048 0.01950 1.61711 0.91542 0.21837
4 144.25999 0.61781 0.01768 150.74349 0.92082 0.01747 150.16448 0.90605 0.05213
5 1.53287 0.74523 0.01855 2.11183 0.96274 0.01825 1.85374 0.90628 0.05421
6 100.78383 0.80557 0.01657 107.56587 0.96945 0.02045 106.72161 0.96050 0.06145
7 208.52184 0.73829 0.02060 213.06374 0.96324 0.01995 212.60627 0.95321 0.21879
8 29.15067 0.83168 0.02237 30.56063 0.97911 0.02198 30.08620 0.95146 0.07682
9 0.00000 0.99995 0.01484 0.00000 0.99995 0.01449 0.00000 0.99995 0.02862

10 311.30318 0.73201 0.02364 323.19042 0.95818 0.02235 323.18883 0.95787 0.24979

RGPIN/311969-2010, RGPIN/386124-2010) and by the Canada Research Chairs program. The authors would like to thank the anonymous
referees for their helpful comments.

Appendix

Results for sample approximation bounds, distribution-free bounds and normal bounds are given in Tables 2–4, respectively.
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