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The central path visits all the vertices of the Klee–Minty cube
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McMaster University, Hamilton, Ontario, Canada
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The Klee–Minty cube is a well-known worst-case example for which the simplex method takes an
exponential number of iterations as the algorithm visits all the 2n vertices of the n-dimensional cube.
While such behaviour is excluded by polynomial interior point methods, we show that, by adding
an exponential number of redundant inequalities, the central path can be bent along the edges of the
Klee–Minty cube. More precisely, for an arbitrarily small δ, the central path takes 2n − 2 turns as it
passes through the δ-neighbourhood of all the vertices of the Klee–Minty cube in the same order as
the simplex method does.

Keywords: Linear programming; Central path; Klee–Minty cube

1. Introduction

While the simplex method, introduced by Dantzig [1] works very well in practice for linear
optimisation problems, Klee and Minty [2] gave an example in 1972 for which the simplex
method takes an exponential number of iterations. More precisely, they considered a maximi-
sation problem over an n-dimensional squashed cube and proved that a variant of the simplex
method visits all of its 2n vertices, that is, the time complexity is not polynomial for the worst
case, as 2n − 1 iterations are necessary for this n-dimensional linear optimisation problem. The
pivot rule used in the Klee–Minty example was the most negative reduced cost, but variants of
the Klee–Minty n-cube showing an exponential running time exist for most pivot rules, see [3]
and the references therein. The Klee–Minty worst-case example partially stimulated the search
for a polynomial algorithm and, in 1979, Khachiyan’s [4] ellipsoid method proved that linear
programming is indeed polynomially solvable. In 1984, Karmarkar [5] proposed a more effi-
cient polynomial algorithm that sparked the research on polynomial interior point methods. In
short, while the simplex method goes along the edges of the polyhedron corresponding to the
feasible region, interior point methods pass through the interior of this polyhedron. Starting at
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852 A. Deza et al.

the analytic centre, most interior point methods follow the so-called central path and converge
to the analytic centre of the optimal face, see for example, [6–8,11,12].

In this paper, following the Klee–Minty approach, we show that, by carefully adding an
exponential number of redundant constraints to the Klee–Minty n-cube, the central path can
be bent along its edges. In other words, we give an example where, for an arbitrarily small
δ, starting from the δ-neighbourhood of a vertex adjacent to the optimal solution, the central
path takes 2n − 2 turns as, before converging to the optimal solution, it passes through the
δ-neighbourhood of all the vertices of the Klee–Minty cube in the same order as the simplex
method does.

Before stating the main result in section 2 and giving its proof in section 3, we illustrate
the bending of the central path in the two and three dimensional cases. Figures 1 and 2
show the trajectory of the central path starting from the highest vertex and converging to the
origin after visiting each vertex of the Klee–Minty cube. The redundant constraints correspond
to hyperplanes parallel to the facets of the cube containing the origin. More precisely, in
dimension 2, the redundant inequality 16 + x1 � 0 is added 15,360 times and the redundant
inequality 16 + x2 − x1/4 � 0 is added 40,960 times. Starting from the highest vertex and with
δ = 0.1, the central path visits the δ-neighbourhood of each vertex of the Klee–Minty cube in
the same order as the simplex algorithm does before converging to the optimal solution, that is,
the origin. In dimension 3, the redundant inequality 48 + x1 � 0 (resp. 48 + x2 − x1/4 � 0
and 48 + x3 − x2/4 � 0) is added 161,280 (resp. 552,960, and 1,474,560 times).

Figure 1. Central path nearing all the vertices of the Klee–Minty 2-cube.

Figure 2. Central path nearing all the vertices of the Klee–Minty 3-cube.
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Central path visits vertices of the Klee–Minty cube 853

2. Notations and the main result

We consider the following Klee–Minty variant where ε is a small positive factor by which the
unit cube [0, 1]n is squashed.

min xn

subject to 0 � x1 � 1

ε xk−1 � xk � 1 − ε xk−1 for k = 2, . . . , n.

We denote this linear optimisation problem by KM. This minimisation problem has 2n

constraints, n variables and the feasible region is an n-dimensional cube denoted by C. Some
variants of the simplex method take 2n − 1 iterations to solve KM as they visit all the vertices
ordered by the decreasing value of the last coordinate xn starting from v{n} = (0, . . . , 0, 1)

until the optimal value x∗
n = 0 is reached at the origin v∅. If an interior point method is used to

solve KM, the central path starts from the analytic centre χ of C and converges to the origin,
as shown in figure 3.

While adding a set h of redundant inequalities does not change the feasible region of KM, the
analytic centre χh and the central path are affected by the addition of redundant constraints. We
consider redundant inequalities induced by hyperplanes parallel to the n facets of C containing
the origin. To ease the analysis, we consider that all redundant hyperplanes are put at the same
distance d to the corresponding parallel facet of C. The constraint parallel to H1: x1 = 0 is
added h1 times and the constraint parallel to Hk: xk = εxk−1 is added hk times for k = 2, . . . , n.
By abuse of notation, the set h is denoted by the integer vector h = (h1, . . . , hn). With these
notations, the redundant linear optimisation problem KMh is defined by

min xn

subject to 0 � x1 � 1

ε xk−1 � xk � 1 − ε xk−1 for k = 2, . . . , n

0 � d + x1 repeated h1 times

ε x1 � d + x2 repeated h2 times

...
...

ε xn−1 � d + xn repeated hn times

To give a flavour of the main result, we first present Lemma 2.1 stating that, by adding
(d + 1)/(εn−1δ) times the redundant inequality εxn−1 � d + xn to the original KM formula-
tion, the analytic centre χh can be pushed arbitrarily close to the vertex v{n} = (0, . . . , 0, 1).

Figure 3. The central path in the non-redundant Klee–Minty 2-cube.
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854 A. Deza et al.

To warranty, without loss of generality, that h is integer-valued, we assume that both 1/ε and
1/δ are positive integers.

LEMMA 2.1 Given δ � ε � 1/4, d positive integer and h = (0, . . . , 0, (d + 1)/(εn−1δ)), the
analytic centre χh satisfies |χh − v{n}|∞ � δ.

While Lemma 2.1 sets the starting point of the central path in the δ-neighbourhood of v{n},
Proposition 2.2 states that, for a careful choice of d and h, the central path of the cube takes
2n − 2 turns before converging to the origin as it passes through the δ-neighbourhood of all
the 2n vertices of the Klee–Minty n-cube.

PROPOSITION 2.2 Given ε � 1/4, δ < εn−1, choose integer d ≥ n2n+1 and h = 4nd/δ

((2n − 1)/ε, . . . , (2n − 2k−1)/εk, . . . , 2n−1/εn), then for each vertex vS of the Klee–Minty
n-cube, there is a point χh(vS

n ) of the central path satisfying |χh(vS
n ) − vS |∞ ≤ δ.

3. Proofs of Lemma 2.1 and Proposition 2.2

3.1 Proof of Lemma 2.1

The analytic centre χh = (ξh
1 , . . . , ξh

n ) of KMh is the solution to the problem consisting of
maximising the product of the slack variables

s1 = x1

sk = xk − εxk−1 for k = 2, . . . , n

s̄1 = 1 − x1

s̄k = 1 − εxk−1 − xk for k = 2, . . . , n

s̃1 = d + s1 repeated h1 times

...
...

s̃n = d + sn repeated hn times

Equivalently, χh is the solution of the following maximisation problem

max
x

n∑
k=1

(log sk + log s̄k + hk log s̃k)

i.e. with the convention x0 = 0

max
x

n∑
k=1

(log(xk − εxk−1) + log(1 − εxk−1 − xk) + hk log(d + xk − εxk−1))

The optimality conditions (the gradient is equal to zero at optimality) for this concave
maximisation problem give

1

σh
k

− ε

σh
k+1

− 1

σ̄ h
k

− ε

σ̄ h
k+1

+ hk

σ̃ h
k

− hk+1ε

σ̃ h
k+1

= 0 for k = 1, . . . , n − 1

1

σh
n

− 1

σ̄ h
n

+ hn

σ̃ h
n

= 0 (1)

σh
k > 0, σ̄ h

k > 0, σ̃ h
k > 0 for k = 1, . . . , n,
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Central path visits vertices of the Klee–Minty cube 855

where

σh
1 = ξh

1

σh
k = ξh

k − εξh
k−1 for k = 2, . . . , n

σ̄ h
1 = 1 − ξh

1

σ̄ h
k = 1 − εξh

k−1 − ξh
k for k = 2, . . . , n

σ̃ h
k = d + σh

k for k = 1, . . . , n.

The following lemma states that, for hn large enough relatively to the other hk values, the
analytic centre χh is pushed to the neighbourhood of the vertex v{n} = (0, . . . , 0, 1).

LEMMA 3.1 Given δ � ε � 1/4 and h1, . . . , hn−1, we have

|χh − v{n}|∞ � δ for hn � d + 1

ηn

where

1

ηn

= max
1�k�n−1

{
1

2εn−k

(
hk

d
+ 2

δ

)}
.

Proof The analytic centre χh = (ξh
1 , . . . , ξh

n ) is the solution of equation (1). Let us consider
the nth equation of (1). As σ̃ h

n � d + 1, we have hn � (d + 1)/σ̄ h
n . Thus, as hn � (d + 1)/ηn,

we have σ̄ h
n � ηn, which implies σ̄ h

n � δ/2. Let us then consider the (n − 1)th equation. We
have

1

σh
n−1

= 1

σ̄ h
n−1

+ ε

σh
n

+ ε

σ̄ h
n

− hn−1

σ̃ h
n−1

+ hnε

σ̃ h
n

� ε

σ̄ h
n

− hn−1

σ̃ h
n−1

+ hnε

σ̃ h
n

As σ̄ h
n � ηn, σ̃ h

n−1 � d and σ̃ h
n � d + 1, this implies

1

σh
n−1

� 2ε

ηn

− hn−1

d
� 2

δ

i.e. σh
n−1 � δ/2. The first n − 1 equations of (1) can be rewritten as

1

σh
k

+ hk

σ̃ h
k

= 1

σ̄ h
k

+ ε

(
1

σh
k+1

+ hk+1

σ̃ h
k+1

)
+ ε

σ̄ h
k+1

for k = 1, . . . , n − 1.

For k � n − 2, forward substitutions for the kth, (k + 1)th, . . . , (n − 1)th equations give

1

σh
k

+ hk

σ̃ h
k

= 1

σ̄ h
k

+ 2
n−1∑

j=k+1

εj−k

σ̄ h
j

+ εn−k

σ h
n

+ hnε
n−k

σ̃ h
n

+ εn−k

σ̄ h
n

which implies
1

σh
k

� εn−k

σ̄ h
n

− hk

σ̃ h
k

+ hnε
n−k

σ̃ h
n

As σ̄ h
n � ηn, σ̃ h

k � d and σ̃ h
n � d + 1, this implies

1

σh
k

� 2εn−k

ηn

− hk

d
� 2

δ

i.e. σh
k � δ/2 for k = 1, . . . , n − 2. Therefore, for hn � (d + 1)/ηn, we have ξh

k � δ for k =
1, . . . , n − 1 and 1 − ξh

n � δ. �

Lemma 2.1 is a direct corollary of Lemma 3.1 with h = (0, . . . , 0, hn).
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856 A. Deza et al.

3.2 Proof of Proposition 2.2

3.2.1 Preliminary Lemmas

LEMMA 3.2 Given δ � ε � 1/4 and integer d � n2n+1, then h = 4nd/δ((2n − 1)/ε, . . . ,

(2n − 2k−1)/εk, . . . , 2n−1/εn) is a positive and integer solution of Ah � b, where b =
4n/δ(1, . . . , 1) and

A =




−1

d
0 0 0 . . . 0

2εn−1

d + 1
1

d + 1

−ε

d
0 0 . . . 0 0

−1

d

2ε

d + 1

−ε2

d
0 . . . 0 0

−1

d

−ε

d(d + 1)

2ε2

d + 1

−ε3

d
. . . 0 0

...
...

...
...

. . .
...

...

−1

d

−ε

d(d + 1)

−ε2

d(d + 1)

−ε3

d(d + 1)
. . .

−εn−2

d
0

−1

d

−ε

d(d + 1)

−ε2

d(d + 1)

−ε3

d(d + 1)
. . .

2εn−2

d + 1

−εn−1

d




Proof Multiplying both sides of Ah � b by δε(d + 1)/4n, we have

d(1 − ε) � 2n − 1 + ε

d(1 − ε) � 2n − 2 + ε

d(1 − ε) � 2n+1 − 5 + ε

d(1 − ε) � 2n − 2k +
k−1∑
j=1

(2n − 2j−1) + ε for k = 4, . . . , n,

which, as d(1 − ε) � n2n, is implied by the obvious conditions

n2n � 2n − 1 + ε

n2n � 2n − 2 + ε

n2n � 2n+1 − 5 + ε

n2n � k2n − 3 · 2k−1 + 1 + ε for k = 4, . . . , n.

�

To ease the notations, we define, for k = 1, . . . , n − 1

�k = hk

d + 1
− hk+1ε

d

uk = hk

d
− hk+1ε

d + 1



D
ow

nl
oa

de
d 

B
y:

 [M
cM

as
te

r U
ni

ve
rs

ity
 L

ib
ra

ry
] A

t: 
18

:3
1 

2 
S

ep
te

m
be

r 2
00

7 

Central path visits vertices of the Klee–Minty cube 857

LEMMA 3.3 The system Ah � b is equivalent to

2hnε
n−1

d + 1
− h1

d
� 4n

δ

�1 � 4n

δ

�kε
k−1 −

k−1∑
j=1

ujε
j−1 � 4n

δ
for k = 2, . . . , n − 1.

Proof The first two inequalities are direct reformulations of the first two inequalities of the
system Ah � b. For k = 2, . . . , n − 1, the inequality �kε

k−1 − ∑k−1
j=1 ujε

j−1 � 4n/δ can be
rewritten as:

2hkε
k−1

d + 1
− hk+1ε

k

d
− h1

d
− 1

d(d + 1)

k−1∑
j=2

hjε
j−1 � 4n

δ
.

�

COROLLARY 3.4 For h satisfying the last n − 1 inequalities of Ah � b, we have

�kε
k−1 ≥ 2k+1n

δ
for k = 1, . . . , n − 1.

Proof The proof is by induction on k. We have �1 ≥ 4n/δ and the result follows by using
uk � �k in Lemma 3.3. �

COROLLARY 3.5 Given δ � ε � 1/4 and a positive integer h satisfying the last n − 1
inequalities of Ah � b, we have

|χh − v{n}|∞ � δ for
2hnε

n−1

d + 1
� h1

d
+ 2

δ

Proof Corollary 3.4 implies �k � 0 for k = 1, . . . , n − 1. Hence, in Lemma 3.1 we have
1/ηn = (h1/d + 2/d)/(2εn−1), which gives the result. �

The central path of KMh can be defined as the set of analytic centresχh(α) = (xh
1 , . . . , xh

n−1, α)

of the intersection of the hyperplane Hα: xn = α with the feasible region of KMh where
0 � α � ξh

n , see [6]. These intersections are called the α-level sets and χh(α) is the solution
of the following system

1

sh
k

− ε

sh
k+1

− 1

s̄h
k

− ε

s̄h
k+1

+ hk

s̃h
k

− hk+1ε

s̃h
k+1

= 0 for k = 1, . . . , n − 1

sh
k > 0, s̄h

k > 0, s̃h
k > 0 for k = 1, . . . , n − 1

(2)
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858 A. Deza et al.

where

sh
1 = xh

1

sh
k = xh

k − εxh
k−1 for k = 2, . . . , n − 1

sh
n = α − εxn−1

s̄h
1 = 1 − xh

1

s̄h
k = 1 − εxh

k−1 − xh
k for k = 2, . . . , n − 1

s̄h
n = 1 − α − εxh

n−1

s̃h
k = d + sh

k for k = 1, . . . , n.

In the rest of the paper, we assume that δ � εn−1 and that a positive integer h satisfying Ah � b

is given. Corollary 3.5 implies that 1 − δ � ξh
n and therefore we can consider the α-level set

for α � 1 − εn−1 as it implies α � ξh
n .

LEMMA 3.6 Given ε � 1/4, δ < εn−1, integer d � n2n+1 and a positive integer h satisfying
Ah � b; for 0 � α � 1 − εn−1 and k �∈ {1, n}, if the kth coordinate xh

k of the analytic centre
χh(α) satisfies

xh
k ∈ [εk−1 − tkε

k−1δ, 1 − εk−1 + tkε
k−1δ],

where




t1 = 1

t2 = 1 − 2

4n − 1

tk+1 = tk − 1

n
for k = 2, . . . , n − 1,

then, xh

k̂
� 1 − ε for some k̂ smaller than or equal to k − 1.

Proof Assume to the contrary that the statement is false, i.e. xh

k̂
< 1 − ε for k̂ = 1, . . . , k − 1.

Considering the first equation of (2) and successively using xh
1 < 1 − ε, δ < ε and Lemma 3.3,

we have

ε

sh
2

+ ε

s̄h
2

= 1

sh
1

− 1

s̄h
1

+ h1

s̃h
1

− h2ε

s̃h
2

� −1

ε
+ h1

d + 1
− h2ε

d
� −1

δ
+ h1

d + 1
− h2ε

d
� 4n − 1

δ

which implies either

xh
2 � εxh

1 + 2εδ

4n − 1
< ε(1 − ε) + 2εδ

4n − 1
� ε(1 − δ) + 2εδ

4n − 1
= ε − t2εδ,

or

xh
2 � 1 − εxh

1 − 2εδ

4n − 1
> 1 − ε(1 − ε) − 2εδ

4n − 1
> 1 − ε.

As xh
2 < 1 − ε, this implies xh

2 < ε − t2εδ. Similarly, considering the k̂th equation of (2)

for k̂ = 2, . . . , k − 2, we have xh

k̂
< εk̂−1 − tk̂ε

k̂−1δ. Considering the (k − 1)st equation and
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successively using xh
k−1 < εk−1, xh

k−2 < 1 and Corollary 3.4, we have

ε

sh
k

+ ε

s̄h
k

= 1

sh
k−1

− 1

s̄h
k−1

+ hk−1

s̃h
k−1

− hkε

s̃h
k

� 1

εk−2
− 1

1 − εk−2 − ε
+ hk−1

d + 1
− hkε

d
� �k−1 � 2kn

εk−2δ

which implies either

xh
k � εxh

k−1 + εk−1δ

2k−1n
< ε(εk−2 − tk−1ε

k−2δ) + εk−1δ

2k−1n
� εk−1 − tkε

k−1δ

or

xh
k � 1 − εxh

k−1 − εk−1δ

2k−1n
> 1 − ε(εk−2 − tk−1ε

k−2δ) − εk−1δ

2k−1n
� 1 − εk−1 + tkε

k−1δ.

This is impossible as xh
k ∈ [

εk−1 − tkε
k−1δ, 1 − εk−1 + tkε

k−1δ
]
. �

LEMMA 3.7 Given ε � 1/4, δ < εn−1, d � n2n+1, a positive integer h satisfying Ah � b

and t1, . . . , tn as specified in Lemma 3.6; for 0 � α � 1 − εn−1 and k �∈ {1, n}, if the kth
coordinate xh

k of the analytic centre χh(α) satisfies

xh
k ∈ [tkεk−1δ, 1 − tkε

k−1δ]
then sh

k̂
≥ εk̂−1δ/(2k̂n) for some k̂ smaller than or equal to k − 1.

Proof Assume to the contrary that the statement is false, i.e. sh

k̂
< (1/2k̂n)εk̂−1δ for k̂ =

1, . . . , k − 1. This implies

xh

k̂
<

εk̂−1δ

4n

k̂−1∑
j=1

1

2j−2
for k̂ = 1, . . . , k − 1

Considering the (k − 1)st equation of (2) and using s̄h
k−1 = 1 − 2εxh

k−2 − sh
k−1, we have

ε

sh
k

+ ε

s̄h
k

= 1

sh
k−1

− 1

s̄h
k−1

+ hk−1

s̃h
k−1

− hkε

s̃h
k

� 2k−1n

εk−2δ
− 1

1 − 2ε − 1/(2k−1n)εk−2δ
+ hk−1

d + 1
− hkε

d
� �k−1

By Corollary 3.4, this implies

ε

sh
k

+ ε

s̄h
k

� 2kn

εk−2δ
,

which further implies either, since 1/n � tk

xh
k � εxh

k−1 + εk−1δ

2k−1n
<

εk−1δ

4n

k−2∑
j=1

1

2j−2
+ εk−1δ

2k−1n

= εk−1δ

4n

k−1∑
j=1

1

2j−2
� εk−1δ

n
� tkε

k−1δ,
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or

xh
k � 1 − εxh

k−1 − εk−1δ

2k−1n
> 1 − εk−1δ

4n

k−2∑
j=1

1

2j−2
− εk−1δ

2k−1n

= 1 − εk−1δ

4n

k−1∑
j=1

1

2j−2
� 1 − tkε

k−1δ.

This is impossible because xh
k ∈ [

tkε
k−1δ, 1 − tkε

k−1δ
]
. �

3.2.2 Proof of Proposition 2.2 By analogy with the unit cube [0, 1]n, we denote the vertices
of the Klee–Minty cube C using a subset S of {1, . . . , n}. For S ⊆ {1, . . . , n}, a vertex vS of
C is defined by

vS
1 =

{
1, if 1 ∈ S

0, otherwise

vS
k =

{
1 − εvS

k−1, if k ∈ S

εvS
k−1, otherwise

k = 2, . . . , n.

PROPOSITION 3.8 Given ε � 1/4, δ < εn−1, d � n2n+1 and a positive integer h satisfying
Ah � b, for k �= n, the (k + 1)th and kth coordinates of the analytic centre χh(vS

n ) of the
vS

n -level set satisfy

|xh
k+1 − vS

k+1| � tk+1ε
kδ =⇒ |xh

k − vS
k | � tkε

k−1δ.

Proof Assume to the contrary that the statement is false, i.e. for at least one k smaller than
or equal to n − 1, we have |xh

k+1 − vS
k+1| � tk+1ε

kδ and |xh
k − vS

k | > tkε
k−1δ. We consider a

case by case analysis.

Case 1 vS
k = 0

The inequality |xh
k − vS

k | > tkε
k−1δ implies xh

k > tkε
k−1δ and, as εxh

k � xh
k+1 � 1 − εxh

k , we
have

tkε
kδ < xh

k+1 < 1 − tkε
kδ

As tk+1 < tk , this implies tk+1ε
kδ < xh

k+1 < 1 − tk+1ε
kδ. This contradicts the inequality

|xh
k+1 − vS

k+1| ≤ tk+1ε
kδ, where vS

k+1 = 0 or 1 because vS
k = 0.

Case 2 0 < vS
k < 1

The inequality |xh
k − vS

k | > tkε
k−1δ implies xh

k ∈]0, vS
k − tkε

k−1δ[ or xh
k ∈]vS

k + tkε
k−1δ, 1[.

By ]a, b[ we denote the open interval between a and b.

(1) xh
k ∈]vS

k + tkε
k−1δ, 1[

As εxh
k � xh

k+1 � 1 − εxh
k , we have ε(vS

k + tkε
k−1δ) < xh

k+1 < 1 − ε(vS
k + tkε

k−1δ).
As tk+1 < tk , this implies εvS

k + tk+1ε
kδ < xh

k+1 < 1 − εvS
k − tk+1ε

kδ. This contradicts
the inequality |xh

k+1 − vS
k+1| � tk+1ε

kδ, where vS
k+1 = εvS

k or 1 − εvS
k .

(2) xh
k ∈]0, vS

k − tkε
k−1δ[
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(a) xh
k < εk−1 − tkε

k−1δ

Considering the kth equation of (2) and successively using xk < εk−1 and
Corollary 3.4, we have

ε

sh
k+1

+ ε

s̄h
k+1

= 1

sh
k

− 1

s̄h
k

+ hk

s̃h
k

− hk+1ε

s̃h
k+1

� 1

εk−1
− 1

1 − εk−1 − ε
+ hk

d + 1
− hk+1ε

d
� �k � 2k+1n

εk−1δ
,

which implies either

xh
k+1 � εxh

k + 1

2kn
εkδ < ε(εk−1 − tkε

k−1δ) + 1

2kn
εkδ � εk − tk+1ε

kδ

or

xh
k+1 � 1 − εxh

k − εkδ

2kn
> 1 − ε(εk−1 − tkε

k−1δ) − εkδ

2kn
� 1 − εk + tk+1ε

kδ.

This contradicts the inequality |xh
k+1 − vS

k+1| � tk+1ε
kδ, where vS

k+1 � εk because
vS

k > 0.
(b) εk−1 − tkε

k−1δ � xh
k < vS

k − tkε
k−1δ (we have k �= 1 as 0 < vS

k < 1)
By Lemma 3.6, there is a k̂ smaller than or equal to k − 1 such that xh

k̂
� 1 − ε,

which implies sh

k̂
� 1 − 2ε. Considering the k̂-th equation of (2) and using sh

k̂
�

1 − 2ε, we have

εk̂

sh

k̂+1

= εk̂−1

sh

k̂

− εk̂−1

s̄h

k̂

− εk̂

s̄h

k̂+1

+ hk̂ε
k̂−1

s̃h

k̂

− hk̂+1ε
k̂

s̃h

k̂+1

� εk̂−1

1 − 2ε
− εk̂−1

ε
− εk̂

s̄h

k̂+1

+ hk̂ε
k̂−1

d
− hk̂+1ε

k̂

d + 1

which implies

εk̂

sh

k̂+1

� hk̂ε
k̂−1

d
− hk̂+1ε

k̂

d + 1
= uk̂ε

k̂−1

The previous inequality, which corresponds to the case i = k̂, can be generalised to

εi

sh
i+1

�
i∑

j=k̂

uj ε
j−1 for i = k̂, . . . , k − 1

which clearly holds for k = k̂ + 1 and, for k > k̂ + 1, is obtained by multiplying the ith
equation of (2) by εi−1 for i = k̂ + 1, . . . , k − 1 and using successively a similar argument.
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Noticing that we could have initially permute sh

k̂+1
and s̄h

k̂+1
, gives

εk−1

s̄h
k

�
k−1∑
j=k̂

uj ε
j−1

Together with the kth equation of (2), this implies

εk

sh
k+1

+ εk

s̄h
k+1

= εk−1

sh
k

− εk−1

s̄h
k

+ hkε
k−1

s̃h
k

− hk+1ε
k

s̃h
k+1

� hkε
k−1

d + 1
− hk+1ε

k

d
−

k−1∑
j=k̂

uj ε
j−1

i.e.

εk

sh
k+1

+ εk

s̄h
k+1

� �kε
k−1 −

k−1∑
j=k̂

uj ε
j−1

Using Lemma 3.3, Corollary 3.4 and uk � �k , this implies

εk

sh
k+1

+ εk

s̄h
k+1

� 4n

δ
+

k̂−1∑
j=1

ujε
j−1 � 2k̂+1n

δ

which implies either

xh
k+1 � εxh

k + εkδ

2k̂n
< ε(vS

k − tkε
k−1δ) + εkδ

2k̂n
� εvS

k − tk+1ε
kδ,

or

xh
k+1 � 1 − εxh

k − εkδ

2k̂n
> 1 − ε(vS

k − tkε
k−1δ) − εkδ

2k̂n
� 1 − εvS

k + tk+1ε
kδ.

This contradicts the inequality |xh
k+1 − vS

k+1| ≤ tk+1ε
kδ, where vS

k+1 = εvS
k or 1 − εvS

k .

Case 3 vS
k = 1

The inequality |xh
k − vS

k | > tkε
k−1δ implies xh

k < 1 − tkε
k−1δ.

(1) xh
k < tkε

k−1δ

Considering the kth equation of (2) and successively using xh
k < tkε

k−1δ, tkε
k−1δ � ε

and Corollary 3.4, we have

ε

sh
k+1

+ ε

s̄h
k+1

= 1

sh
k

− 1

s̄h
k

+ hk

s̃h
k

− hk+1ε

s̃h
k+1

� 1

tkεk−1δ
− 1

1 − tkεk−1δ − ε
+ hk

d + 1
− hk+1ε

d
� �k � 2k+1n

εk−1δ

which implies either

xh
k+1 � εxh

k + εkδ

2kn
< tkε

kδ + εkδ

2kn
=

(
tk + 1

2kn

)
εkδ

or

xh
k+1 � 1 − εxh

k − εkδ

2kn
> 1 − tkε

kδ − εkδ

2kn
= 1 −

(
tk + 1

2kn

)
εkδ

This contradicts the inequality |xh
k+1 − vS

k+1| ≤ tk+1ε
kδ, where vS

k+1 = ε or 1 − ε because
vS

k = 1.
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(2) tkε
k−1δ � xh

k < 1 − tkε
k−1δ

(a) k = 1
From the first equation of (2), we have

ε

sh
2

+ ε

s̄h
2

= 1

sh
1

− 1

s̄h
1

+ h1

s̃h
1

− h2ε

s̃h
2

� −1

δ
+ �1 � 4n − 1

δ

which implies either

xh
2 � εxh

1 + 2εδ

4n − 1
< ε(1 − δ) + 2εδ

4n − 1
� ε − t2εδ

or

xh
2 � 1 − εxh

1 − 2εδ

4n − 1
> 1 − ε(1 − δ) − 2εkδ

4n − 1
� 1 − ε + t2εδ

This contradicts |xh
2 − vS

2 | � t2εδ where vS
2 = ε or 1 − ε as vS

1 = 1.
(b) k �= 1

By Lemma 3.7, there is a k̂ smaller than or equal to k − 1 such that sh

k̂
�

εk̂−1δ/(2k̂n). Considering the k̂th equation of (2), we have

εk̂

sh

k̂+1

= εk̂−1

sh

k̂

− εk̂−1

s̄h

k̂

− εk̂

s̄h

k̂+1

+ hk̂ε
k̂−1

s̃h

k̂

− hk̂+1ε
k̂

s̃h

k̂+1

� 2k̂n

δ
+ hk̂ε

k̂−1

d
− hk̂+1ε

k̂

d + 1
= uk̂ε

k̂−1 + 2k̂n

δ

This inequality, which corresponds to the case i = k̂, can be generalised to

εi

sh
i+1

�
i∑

j=k̂

uj ε
j−1 + 2k̂n

δ
for i = k̂, . . . , k − 1,

which clearly holds for k = k̂ + 1 and, for k > k̂ + 1, is obtained by multiplying the ith
equation of (2) by εi−1 for i = k̂ + 1, . . . , k − 1 and using successively a similar argument.
Noticing that we could have initially permute sh

k̂+1
and s̄h

k̂+1
, gives

εk−1

s̄h
k

�
k−1∑
j=k̂

uj ε
j−1 + 2k̂n

δ

Together with the kth equation of (2), this implies

εk

sh
k+1

+ εk

s̄h
k+1

= εk−1

sh
k

− εk−1

s̄h
k

+ hkε
k−1

s̃h
k

− hk+1ε
k

s̃h
k+1

� −
k−1∑
i=k̂

uiε
i−1 − 2k̂n

δ
+ hkε

k−1

d + 1
− hk+1ε

k

d
.



D
ow

nl
oa

de
d 

B
y:

 [M
cM

as
te

r U
ni

ve
rs

ity
 L

ib
ra

ry
] A

t: 
18

:3
1 

2 
S

ep
te

m
be

r 2
00

7 

864 A. Deza et al.

Using Lemma 3.3, Corollary 3.4 and uk � �k , the previous inequality gives

εk

sh
k+1

+ εk

s̄h
k+1

� �kε
k−1 −

k−1∑
i=k̂

uiε
i−1 − 2k̂n

δ

� 4n

δ
+

k̂−1∑
i=1

uiε
i−1 − 2k̂n

δ
� 2k̂+1n

δ
− 2k̂n

δ
= 2k̂n

δ

which implies either

xh
k+1 � εxh

k + εkδ

2k̂−1n
< ε(1 − tkε

k−1δ) + εkδ

2k̂−1n
� ε − tk+1ε

kδ

or

xh
k+1 � 1 − εxh

k − εkδ

2k̂−1n
> 1 − ε(1 − tkε

k−1δ) − εkδ

2k̂−1n
� 1 − ε + tk+1ε

kδ

This contradicts |xh
k+1 − vS

k+1| � tk+1ε
kδ where vS

k+1 = ε or 1 − ε as vS
k = 1. �

Proposition 2.2 is a direct corollary of Proposition 1 as, for S �= ∅ and S �= {n}, we have
|xh

n − vS
n | = 0; implying |xh

k − vS
k | � tkε

k−1δ for k = 1, . . . , n − 1. In other words, |χh(vS
n ) −

vS |∞ � δ. Furthermore, by Corollary 3.5 we have |χh − v{n}|∞ � δ, and the central path
converges to the origin v∅.

4. Remarks and future work

1. We showed that, without changing the geometry of the feasible set of KM, the central path
can be forced to visit arbitrarily small neighbourhoods of all the vertices of the Klee–Minty
n-cube by carefully adding redundant constraints.

2. This result highlights that, although the central path is a smooth analytical curve in the inte-
rior of the set of feasible solutions, it might be severely distracted by redundant constraints.
In particular, exponentially many redundant constraints interplaying with the geometry of
the problem, may force the central path to take exponentially many and arbitrarily sharp
turns.

3. Our example leads to an 	(2n) lower bound for the number of iterations needed for central
path-following interior point methods. The theoretical iteration-complexity upper bound
O(

√
NL) = O(29nn4) as, for this example, the number of constraints N = O(26nn2) and

the bit length of the input data L = O(26nn3). Therefore, the 	(2n) lower bound yields
an 	(

6
√

N/ln2 N) iteration-complexity lower bound. Using a different analysis, Todd and
Ye [9] gave an 	(

3
√

N) iteration-complexity lower bound between two updates of the barrier
function. In a subsequent paper, Deza et al. [10] essentially closed the gap between the
lower and upper bounds.

4. State-of-the-art preprocessing tools in modern linear optimisation software would eliminate
the added redundant inequalities.Therefore, interior point methods based codes would solve
the preprocessed KMh efficiently, just as commercial simplex codes do solve the KM in
only one pivot. A challenging task would be to design a variant of KMh that cannot be
easily simplified by known preprocessing heuristics.
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