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Let �(d, n) be the maximum possible diameter of the vertex-edge graph over all d-dimensional polytopes
defined by n inequalities. The Hirsch bound holds for particular n and d if �(d, n) ≤ n − d. Francisco
Santos recently resolved a question open for more than five decades by showing that �(d, 2d) ≥ d + 1
for d = 43; the dimension was then lowered to 20 by Matschke, Santos and Weibel. This progress has
stimulated interest in related questions. The existence of a polynomial upper bound for �(d, n) is still an
open question, the best bound being the quasi-polynomial one due to Kalai and Kleitman in 1992. Another
natural question is for how large n and d the Hirsch bound holds. Goodey showed in 1972 that �(4, 10) = 5
and �(5, 11) = 6, and more recently, Bremner and Schewe showed that �(4, 11) = �(6, 12) = 6. Here,
we show that �(4, 12) = �(5, 12) = 7.

Keywords: pivoting methods; linear optimization; discrete geometry; combinatorics; convex polytopes

1. Introduction

Finding a good bound on the maximal diameter �(d, n) of the 1-skeleton (vertex-edge graph)
of a polytope in terms of its dimension d and the number of its facets n is one of the basic
open questions in polytope theory [10]. Although some bounds are known, the behaviour of the
function �(d, n) is largely unknown. The Hirsch conjecture, formulated in 1957 and reported
in [4], states that �(d, n) is linear in n and d: �(d, n) ≤ n − d. The conjecture was recently
disproved by Santos [18] by exhibiting a counterexample for �(d, 2d) with d = 43 which was
further improved to d = 20 [17]. The conjecture is known to hold in small dimensions, that
is, for d ≤ 3 [15], along with other specific pairs of d and n (Table 1). However, the asymp-
totic behaviour of �(d, n) is not well understood: the best upper bound – due to Kalai and
Kleitman [12] – is quasi-polynomial. For more background on the Hirsch Conjecture, see the
survey [14].

The behaviour of �(d, n) is not only a natural question of extremal discrete geometry, but
also historically closely connected with the theory of the simplex method. The approach of using
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Table 1. Previously known bounds on �(d, n) [2,9,11,16].

n − 2d

d 0 1 2 3 4

4 4 5 5 6 7+
5 5 6 7–8 7+ 8+
6 6 7–9 8+ 9+ 9+
7 7–10 8+ 9+ 10+ 11+
8 8+ 9+ 10+ 11+ 12+

abstract models [7,8,13] to study linear optimization has recently achieved the exciting result of
a subexponential lower bound for Zadeh’s rule [8], another long-standing open problem. On the
positive side, several authors have recently shown upper bounds for interesting special cases of
the simplex method [21] and the diameter problem [5].

In this article, we show the following theorem.

Theorem 1.1 �(4, 12) = �(5, 12) = 7.

The first of these new values continues the pattern of �(4, n) = n − 5 for n ≥ 10. It would be
very interesting to establish a general sub-Hirsch bound for d = 4. The considered computational
approaches might help to narrow the gap between the smallest entries for d and n − d yielding a
counterexample and the largest ones for which the Hirsch conjecture still holds.

Our approach is computational and builds on the approach used by Bremner and Schewe [2].
As in [2], we reduce the determination of �(d, n) to a set of simplicial complex realizability
problems. Section 2 introduces our computational framework and some related background. A
common theme in the SAT literature is that the hardest instances to solve are those that are ‘almost
satisfiable’; we find a similar classification of our realizability problems. Compared to [2], this
work involves significantly more computation, and we discuss a simple but effective parallelization
strategy in Section 2. Finally, we discuss our new bounds in Section 3. Again comparing with [2],
the results here have the feature that they do not rely on having a priori upper bounds on the
value of �(d, n) to be computed, but rather on inductive computation of �(d, n) using bounds on
�(d − 1, n − 1).

2. General approach

In this section, we give a summary of our general approach. For more on the theoretical
background, the reader is referred to [2].

It is easy to see via a perturbation argument that �(d, n) is always achieved by some simple
polytope. By a reduction applied from [16], we only need to consider end-disjoint paths: paths
where the end vertices do not lie on a common facet (facet-disjointness). It will be convenient
from both an expository and a computational view to work in a polar setting where we consider
the lengths of facet paths on the boundary of simplicial polytopes. We apply the term end-disjoint
equally to the corresponding facet paths, where it has the simple interpretation that two end facets
do not intersect.

A combinatorial facet path is a simplicial complex with a path as a dual graph, where edges are
defined by two d-simplices sharing a (d − 1)-simplex. Our general strategy is to show �(d, n) �= k
by generating all non-isomorphic combinatorial facet paths of length k on n vertices in dimension
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444 D. Bremner et al.

Figure 1. An end-disjoint path on seven vertices, generated by pivot sequence (2, 4)(3, 5)(1, 7)(4, 6).

Figure 2. Example of a facet path.

d and showing that none can be embedded on the boundary of a simplicial polytope as a shortest
path.

The generation of all possible paths for particular d and n begins with the case where the paths
are non-revisiting, that is, paths where no vertex is visited more than once. These can be generated
via a simple recursive scheme, using a bijection with restricted growth strings, that is, k-ary strings
where the symbols first occur in order. Each symbol represents a choice of pivot, and the strings
can be unpacked into combinatorial facet paths. Figure 1 illustrates a non-revisiting path with
d = 3, n = 7; we will use this path as a running example in this section.

Multiple revisit facet paths are generated from facet paths with one less revisit by identifying
pairs of vertices. Such an identification is valid only if it results in another facet path, that is, does
not introduce new ridges, and if the resulting facet path is still end-disjoint.

If a vertex is not used in a facet path, we call this occurrence a drop. See Figure 2 for an
illustration of a path of length 6 involving 1 revisit (vertex 2) and 1 drop (vertex 8) with n = 9
and d = 3. We can then classify paths by dimension d, primal facets/dual vertices n, length k,
the number of revisits m, and the number of drops l. For end-disjoint paths, a simple counting
argument yields:

m − l = k + d − n,

m ≤ k − d,

l ≤ n − 2d.

Table 2 provides the number of paths to consider for each possible combination of d, n, k, m, and l.
It will turn out that each path generates an SAT instance that needs to be shown to be unsatisfiable.
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Table 2. Number of paths to consider, SAT instances to solve.

d n k m l #

4 10 6 0 0 15
4 10 6 1 1 24
4 10 6 2 2 16
4 11 7 0 0 50
4 11 7 1 1 200
4 11 7 2 2 354
4 11 7 3 3 96
4 12 8 0 0 160
4 12 8 1 1 1258
4 12 8 2 2 5172
4 12 8 3 3 7398
4 12 8 4 4 1512
5 11 7 1 0 98
5 11 7 2 1 98
5 12 8 1 0 1079
5 12 8 2 1 3184
5 12 8 3 2 2904
6 12 7 1 0 11

For any set Z = {x1, . . . , xd−1, y1, . . . , y4} ⊂ R
d+1, as a special case of the Grassmann–Plücker

relations on determinants [1, Section 3.5], we have

det(X, y1, y2) · det(X , y3, y4) + det(X , y1, y4) · det(X, y2, y3) − det(X, y1, y3) · det(X, y2, y4) = 0,
(1)

where X = {x1 . . . , xd−1}. We are, in particular, interested in the case where Z represents (d + 3)-
points in R

d in homogeneous coordinates; the various determinants are then signed volumes of
simplices. In the case of points drawn from the vertices of a simplicial polytope, we may assume
without loss of generality that these simplices are never flat, that is, determinant 0. Thus, if we
define χ(v1, . . . , vd+1) = sign(det(v1, . . . , vd+1)), it follows from (1) that

{χ(X, y1, y2)χ(X , y3, y4), −χ(X , y1, y3)χ(X , y2, y4), χ(X, y1, y4)χ(X, y2, y3)} = {−1, +1}. (2)

Any alternating map χ : Ed+1 → {−, +} satisfying these constraints for all (d + 3)-subsets (and
all choices of y1 . . . y4) is called a uniform chirotope; this is one of the many axiomatizations
of uniform-oriented matroids [1]. In the rest of this paper, we call uniform chirotopes simply
chirotopes.

There are
( n

d+3

)(d+3
4

)
Grassmann–Plücker constraints in their natural encoding, and this further

expands by a factor of 16 when converted to conjunctive normal form (CNF) suitable for an SAT
solver. In the particular case of d = 3, n = 7 (cf. Figure 1), there are 105 constraints of the form
(2). The first two (lexicographically) are

{χ(1, 2, 3, 4) · χ(1, 2, 5, 6), −χ(1, 2, 3, 5) · χ(1, 2, 4, 6), χ(1, 2, 3, 6) · χ(1, 2, 4, 5)} = {+1, −1},
{χ(2, 3, 1, 4) · χ(2, 3, 5, 6), −χ(2, 3, 1, 5) · χ(2, 3, 4, 6), χ(2, 3, 1, 6) · χ(2, 3, 4, 5)} = {+1, −1}.

A facet is a d-set F ⊂ E such that for all g ∈ E \ F, χ(F, g) has the same sign. An interior
point of a chirotope is some g ∈ E that is not contained in any facet. We are mainly concerned
with convex chirotopes, that is, those without interior points.

Facet constraints actually remove variables from the problem, since they define sets of equations.
Equations can be removed as a preprocessing step, although most modern SAT solvers deal with
equality constraints quite effectively, even when the constraints are transformed to CNF.
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446 D. Bremner et al.

Referring back to the example of Figure 1, we can derive the following equations:

α = χ(1, 2, 3, 4) = χ(1, 2, 3, 5) = χ(1, 2, 3, 6) = χ(1, 2, 3, 7),

α = χ(1, 3, 4, 2) = χ(1, 3, 4, 5) = χ(1, 3, 4, 6) = χ(1, 3, 4, 7),

α = χ(1, 4, 5, 2) = χ(1, 4, 5, 3) = χ(1, 4, 5, 6) = χ(1, 4, 5, 7),

−α = χ(4, 5, 7, 1) = χ(4, 5, 7, 2) = χ(4, 5, 7, 3) = χ(4, 5, 7, 6),

−α = χ(5, 6, 7, 1) = χ(5, 6, 7, 2) = χ(5, 6, 7, 3) = χ(5, 6, 7, 4).

These equations can be substituted into our example Grassmann–Plücker constraints to simplify

{α · χ(1, 2, 5, 6), −α · χ(1, 2, 4, 6), α · χ(1, 2, 4, 5)} = {+1, −1},
{α · χ(2, 3, 5, 6), −α · χ(2, 3, 4, 6), α · χ(2, 3, 4, 5)} = {+1, −1}.

Since every convex polytope defines a convex chirotope, our diameter bounds can be established
by showing that for each candidate combinatorial facet path π there is no alternating sign map
χ(·) that

(P1) satisfies the Grassmann–Plücker constraints, that is, a chirotope,
(P2) forces each d-simplex of the candidate facet path to be a facet of the chirotope,
(P3) does not induce a shortcut, that is, a facet path of length shorter than k between the end

facets of π . See Figure 3 for an illustration of a shortcut on a three-dimensional polytope.

Each potential shortcut can be eliminated with constraints encoding the fact that some d-simplex
of the potential shortcut is not a facet. In principle, one can generate all conceivable shortcuts
by considering all short paths in the graph of all possible pivots between d-simplices, but this
approach is generally impractical. We therefore use an incremental approach where candidate
chirotopes are generated and any shortcuts on the boundary of these candidate solutions are used
to generate new constraints. In the case of Figure 3, we need to add (at least) the constraint that
both {2, 3, 6} and {2, 5, 6} are not facets. Since we know that χ(2, 3, 6, 5) = −χ(2, 5, 6, 3), we can

1 2

3

6

5

4

7

Figure 3. Illustrating a non-shortest embedding of the path from Figure 1. The path {{1, 2, 3}, {2, 3, 6}, {2, 5, 6}, {5, 6, 7}}
is a shortcut.
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combine this into a single high-level constraint (which generates two CNF constraints):

{−χ(2, 3, 6, 1), −χ(2, 3, 6, 4), −χ(2, 3, 6, 5), −χ(2, 3, 6, 7), χ(2, 5, 6, 1), χ(2, 5, 6, 3),

χ(2, 5, 6, 4), χ(2, 5, 6, 7)} = {+1, −1}.
A notable omission from the list of constraints above is that we do not explicitly constrain the

alternating map χ(·) to be convex. We note that either every element is in some facet, and thus the
chirotope is convex by definition, or there is some interior point not used by the long facet path. A
realization with interior points corresponds to a realization on a smaller number of elements. In
the work here, we always have bounds for �(d, j) for j < n when working on a bound for �(d, n),
so we effectively reduce non-convex cases to smaller convex ones.

Chirotopes can be viewed as a generalization of real polytopes in the sense that for every real
polytope, we can obtain its chirotope directly. Therefore, showing the non-existence of chirotopes
satisfying properties P1–P3 immediately precludes the existence of real polytopes satisfying the
same properties.

The search for a chirotope with properties P1 and P2 is encoded as an instance of SAT [2,19,20],
with P3 handled implicitly via adding constraints and resolving. Each SAT problem is solved with
MiniSat [6]. MiniSat itself discovers many constraints during the solution process, and these are
carried forward between successive subproblems.

With the implementation of [2], we were able to reconfirm Goodey’s results for �(4, 10) and
�(5, 11) in a matter of minutes. While the number of paths to consider increases with the number
of the revisits, in our experiments, these paths are much less computationally demanding than the
ones with fewer revisits. For example, the 7398 paths of length 8 on 4-polytopes with 12 facets
and involving 3 revisits and 3 drops require only a tiny fraction of the computational effort to
tackle the 160 paths without a drop or revisit.

In order to deal with the intractability of the problem as the dimension, number of facets,
and path length increased, we proceeded by splitting our original facet embedding problem into
subproblems by fixing chirotope signs. We use the non-SAT-based mpc backtracking software [3]
to backtrack to a certain fixed level of the search tree; every leaf job was then processed in parallel
on the Shared Hierarchical Academic Research Computing Network. Figure 4 (a partial trace of
the execution of mpc) illustrates the splitting process on a problem generated from the octahedron.
Note that variable propagation (similar to the unit propagation used by SAT solvers) reduces the
number of leaves of the tree.

Figure 4. Using partial backtracking to generate subproblems.
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448 D. Bremner et al.

Table 3. Number of difficult paths.

d n k m l #

4 12 8 0 0 2
5 12 8 1 0 15
5 12 8 2 1 6

Jobs requiring a long time to complete were further split and executed on the cluster until the
entire search space was covered. Table 3 provides the number of paths which were computationally
difficult enough to require splitting. For example, out of 160 paths of length 8 on 4-polytopes
with 12 facets without drop or revisit, 2 required splitting.

3. Results

Summarizing the computational results, we have the following.

Proposition 3.1 There are no (4, 12)- or (5, 12)-polytopes with facet-disjoint vertices at
distance 8.

Note that we actually prove something slightly stronger: for (d, n) = (4, 12) or (5, 12), no
(d, n)-chirotope has vertex-disjoint facets at distance 8, where distance is defined by the shortest
facet path.

While the non-existence of k-length paths implies the non-existence of (k + 1)-length paths,
it is not obvious if the non-existence of end-disjoint k-length paths implies the non-existence of
(k + 1)-length paths. To be able to rule out vertices – not necessarily facet-disjoint – at distance
l > k, we introduce the following lemma.

Lemma 3.2 If �(d − 1, n − 1) < k and there is no (d, n)-polytope with two facet-disjoint
vertices at distance k, then �(d, n) < k.

Proof Assume the contrary. Let u and v be the vertices on a (d, n)-polytope at distance l ≥ k.
By considering a shortest path from u to v, there is a vertex w at distance k from u. u and w must
share a common facet F to prevent a contradiction. F is a (d − 1, n − 1)-polytope with diameter
at least k. �

By Proposition 3.1 and because �(3, 11) = 6 and �(4, 11) = 6 [2,15], we can apply Lemma
3.2 to obtain the main theorem.

Theorem 3.3 �(4, 12) = �(5, 12) = 7.

We recall the following result of Klee and Walkup [16]:

Property 3.4 �(d, 2d + k) ≤ �(d − 1, 2d + k − 1) + �k/2	 + 1 for 0 ≤ k ≤ 3.

Property 3.4 along with the two new entries for �(d, n) imply the additional upper bounds:
�(5, 13) ≤ 9, �(6, 13) ≤ 8, �(6, 14) ≤ 11, �(7, 14) ≤ 9, �(7, 15) ≤ 12, and �(8, 16) ≤ 13 see
Table 4 where the new entries and bounds are entered in bold.
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Table 4. Summary of bounds on �(d, n).

n − 2d

d 0 1 2 3 4

4 4 5 5 6 7
5 5 6 7 7–9 8+
6 6 7–8 8–11 9+ 9+
7 7–9 8–12 9+ 10+ 11+
8 8–13 9+ 10+ 11+ 12+

4. Conclusions

In this paper, we have presented new bounds for the diameter of the 1-skeleton of convex polytopes
in dimensions 4 and 5. It remains open to find the smallest n and d for which the Hirsch bound fails
to hold; we are also interested if the current trend which shows �(4, n) = n − 5 continues beyond
n = 12. The tools used here are mainly computational as in [2], although further analysis of the
relationship between bounds on end-disjoint paths and bounds on more general paths was needed
in order to establish new bounds without requiring a priori upper bounds. Furthermore, the scale
of the computations forced us to solve individual cases in parallel. The simple strategy we used
may be effective for other so-called tree search problems. Finally, we observe experimentally that
among our unrealizable simplicial complexes, the most difficult to show unsatisfiable are those
with the simplest topology.
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