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a b s t r a c t

In the mid-eighties Tardos proposed a strongly polynomial algorithm for solving linear programming
problems for which the size of the coefficient matrix is polynomially bounded in the dimension of the in-
put. Combining Orlin’s primal-basedmodification andMizuno’s use of the simplex method, we introduce
a modification of Tardos’ algorithm considering only the primal problem and using the simplex method
to solve the auxiliary problems. The proposed algorithm is strongly polynomial if the coefficient matrix
is totally unimodular and the auxiliary problems are non-degenerate.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

In themid-eighties Tardos [7,8] proposed a strongly polynomial
algorithm for solving linear programming problems min{c⊤x |

Ax = b, x ≥ 0} for which the size of A is polynomially bounded in
the dimension of the input. Such instances include minimum cost
flow, bipartite matching, multicommodity flow, and vertex pack-
ing in chordal graphs. The basic strategy of Tardos’ algorithm is to
identify the coordinates equal to zero at optimality. The algorithm
involves solving several auxiliary dual problems by the ellipsoid or
interior-point methods. By successively identifying such vanishing
coordinates, the problem is made smaller and an optimal solution
is obtained inductively. Considering only the primal problem, Or-
lin [5] proposed a modification of Tardos’ algorithm which specif-
ically identifies the coordinates strictly positive at optimality. He
observed that the right-hand side coefficients of the auxiliary prob-
lems might be impractically large.

Mizuno [4] modified Tardos’ algorithm by using a dual sim-
plex method to solve the auxiliary problems. He observed that
this approach is strongly polynomial if A is totally unimodular
and the auxiliary problems are non-degenerate; that is, the basic
variables are strictly positive for every basic feasible solution. The
strongpolynomiality is a consequence of the results of Kitahara and
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Mizuno [2,3] which extend in part Ye’s result [9] for Markov de-
cision problems. The results of [2,3] bound the number of distinct
basic feasible solutions generated by the simplexmethod, and thus
bounds the number of pivots for non-degenerate instances.

Combining Orlin’s and Mizuno’s approaches, we introduce a
modification of the algorithm proposed by Mizuno considering
only the primal problem. The proposed algorithm is strongly poly-
nomial if A is totally unimodular and the auxiliary problems are
non-degenerate. As it involves only the primal and does not suffer
from impractically large right-hand side coefficients, the proposed
algorithm improves the implementability of the approach. While
the proposed algorithm and the complexity analysis are focusing
on the case where A is totally unimodular, the algorithm could be
enhanced to handle any matrix. The enhanced algorithmwould be
strongly polynomial if A is integer and the absolute value of any
subdeterminant of A is polynomially bounded in the dimension of
the input.

2. A primal-simplex based Tardos’ algorithm

2.1. Formulation and main result

Consider the following formulation:

minimize c⊤x
subject to Ax = b, x ≥ 0 (1)

where A ∈ Rm×n, b ∈ Rm, and c ∈ Rn are given. We assume that A
has full row rank m. The optimal solution of (1), if any, is assumed
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without loss of generality to be unique. Otherwise c could be per-
turbed by (ϵ, ϵ2, . . . , ϵn) for a sufficiently small ϵ > 0. Since the
results of [2,3] do not depend on the specific value of c , such pertur-
bation does not impact the analysis. Alternatively, in practice, the
simplex method can be performed using a lexicographical order if
a tie occurs when choosing an entering variable by Dantzig’s rule.

Let K ∗
⊆ N = {1, 2, . . . , n} be the set of indices i such

that x∗

i > 0 for the optimal solution x∗ of (1). The proposed
algorithm inductively builds a subset K̄ ⊆ K ∗ through solving an
auxiliary problem. If K̄ = K ∗, we obtained the optimal solution.
Otherwise, we obtain a smaller yet equivalent problem by deleting
the variables corresponding to K̄ . Thus, the optimal solution is
obtained inductively. For clarity of the exposition of the algorithm
and of the proof of Theorem 1, we assume in the remainder of the
paper that A is totally unimodular; that is, all its subdeterminants
are equal to either −1, 0 or 1.

Theorem 1. The primal-simplex based Tardos’ algorithm is strongly
polynomial if A is totally unimodular and all the auxiliary problems
are non-degenerate; that is, all the basic variables are strictly positive
for every basic feasible solution.

Proof. See Section 3. �

2.2. A primal-simplex based Tardos’ algorithm

Step 0 (initialization): Let K̄ := ∅ and its complement K := N .
Step 1 (reduction): If K̄ ≠ ∅, remove the variables corresponding

to K̄ in the following way.
Let G ∈ Rm×m be a nonsingular submatrix of A such

that its first |K̄ | columns form AK̄ and H = G−1. Let H1

consist of the first |K̄ | rows ofH ,H2 denote the remainder,
and consider the following reduced problem:

minimize c ′⊤x′

subject to A′x′
= b′, x′

≥ 0
(2)

where A′
= H2AK , b′

= H2b, c ′
= cK − (H1AK )⊤cK̄ , and

x′
= xK .

If K̄ = ∅, set A′
:= A, b′

:= b, and c ′
:= c .

Go to Step 2.
Step 2 (scaling and rounding): Letm′

= m−|K̄ | and n′
= n−|K̄ |.

For a basis L ⊆ K of A′ and L̄ = K \ L, rewrite (2) as:

minimize c ′⊤x′

subject to x′

L + (A′

L)
−1A′

L̄x
′

L̄ = (A′

L)
−1b′, x′

≥ 0.
(3)

If (A′

L)
−1b′

= 0, stop. Otherwise, consider the following
scaled problem:

minimize c ′⊤x′

subject to x′

L + (A′

L)
−1A′

L̄x
′

L̄ = (A′

L)
−1b′/k, x′

≥ 0,
(4)

where k = ∥A′⊤(A′A′⊤)−1b′
∥2/(m′

+ (n′)2). Then,
consider the following rounded problem:

minimize c ′⊤x′

subject to x′

L + (A′

L)
−1A′

L̄x
′

L̄ = ⌈(A′

L)
−1b′/k⌉, x′

≥ 0.
(5)

If (5) is infeasible, stop. Otherwise, solve (5) using the
simplex method with Dantzig’s rule. If (5) is unbounded,
stop. Otherwise, let x′′ denote the optimal solution and
L′′ the optimal basis. If K̄ ∪ L′′ is an optimal basis of the
original problem (1), stop. Otherwise, go to Step 3.

Step 3 (iteration): Set K̄ := K̄ ∪ J and K := K \ J where J = { i |

x′′

i ≥ n′, i ∈ K }.
If |K | = n − m, stop. Otherwise, go to Step 1.
2.3. Annotations of the proposed algorithm

Observation 1points out that if K̄ ⊆ K ∗ and the optimal solution
of (1) is unique, thenwe can remove the non-negativity constraints
for xi for each i ∈ K̄ , and thus solve the reduced problem (2) instead
of (1).

Observation 1. Let K̄ ⊆ K ∗. If |K̄ | = m; that is |K | = n − m, K̄
forms an optimal basis. Otherwise, let (1)′ be the relaxation obtained
from (1) by deleting the constraints xi ≥ 0 for all i ∈ K̄ . If (1) is
feasible and bounded, and hence has a unique optimal solution x∗,
then x∗ is also the unique optimal solution of (1)′.

Proof. Assume by contradiction, that there exists a feasible solu-
tion x′ of (1)′ such that x′

≠ x∗ and c⊤x′
≤ c⊤x∗. By the definitions

of K ∗ and of (1)′, x∗

i > 0 for any i ∈ K̄ while x′

i can be negative
for i ∈ K̄ . Let y = (1 − ϵ)x∗

+ ϵx′ with ϵ > 0. For a sufficiently
small ϵ, y is non-negative and Ay = (1 − ϵ)Ax∗

+ ϵAx′
= b, while

c⊤x∗
≥ c⊤y ≥ c⊤x′ which contradicts the assumption that x∗ is

the unique optimum of (1). �

Note that the reduced problem (2) is a concise expression of
the problem (1)′ introduced in Observation 1. Specifically, (2) is
obtained by expressing xK̄ asH1b−H1AKxK and substitutingH1b−

H1AKxK for xK̄ in the objective function. Therefore, the optimal
solution for (2) yields the optimal solution for (1) via xK̄ = H1b −

H1AKxK . The constant term in the objective function is removed for
simplicity. Note that the matrices A′ and [I, (A′

L)
−1A′

L̄
] involved in

(2), (3), (4), and (5) are totally unimodular ifA is totally unimodular,
see Theorem 19.5 in Schrijver [6].

In Step 2, the scaling factor k is strictly positive if (A′

L)
−1b′

≠

0 and, see Lemma 2, ∥⌈(A′

L)
−1b′/k⌉∥∞ is polynomially bounded

from above in m′ and n′, which is a key fact for showing the
strong polynomiality. Although the proposed algorithm builds the
simplex tableau associated to (3) and the reduced problem (2) from
scratch at each iteration, it is essentially for clarity of the exposition
and can be ignored. In particular, one can observe that L′′

\ J forms
the basis L for (3) at the next iteration, thus enabling a warm start.
By performing Phase one of the two-phase simplex method for
the rounded problem (5), we can check the feasibility of (5) and
compute an initial basic feasible solution, unless it is infeasible.

In Step 3, J ≠ ∅ by Lemma 1; that is, the size of K is strictly
decreasing. Thus, the proposed algorithm terminates after at most
m iterations. If (1) has an optimal solution, K̄ ⊆ K ∗ by Corollary 1.

The stopping conditions of the proposed algorithm are:

◦ if (A′

L)
−1b′

= 0, the simplex tableau associated to (3) yields
either the optimality of x′

= 0 or the unboundedness of the
reduced problem (2).

◦ since the rounded problem (5) is a relaxation of the scaled
problem (4),
– the scaled problem (4) and the original problem (1) are both

infeasible if (5) is infeasible
– the scaled problem (4) is unbounded or infeasible if (5) is

unbounded. In both cases, the original problem (1) has no
optimal solution.

◦ if |K | = n − m in Step 3, the problem (1) is infeasible as
otherwise the algorithm finds an optimal basis in Step 2.

3. Proof of Theorem 1

Lemma 1 states that the set J = {i | x′′

i ≥ n′, i ∈ K} used in
Step 3 is never empty and thus, the proposed algorithm solves the
rounded problem (5) at mostm times.

Lemma 1. J ≠ ∅ as any solution x′′ of the rounded problem (5) sat-
isfies ∥x′′

∥∞ ≥ n′.
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Proof. We first remark that A′ has full row rank. Indeed, if K̄ = ∅,
then A′

= A and has full row rank. Otherwise, recall that G is a non-
singular submatrix of A such that its first |K̄ | columns form AK̄ , that
H = G−1, and that the first |K̄ |, respectively, the lastm − |K̄ | rows
ofH , are denoted byH1, respectivelyH2. AsH is invertible and A has
full row rank,HA also has full row rank. Thus,H2A, which consists of
the lastm−|K̄ | rows ofHA, has full row rank. On the other hand,we
observe that H2AK̄ is a zero matrix from the definition of G and H .
Therefore, A′

= H2AK , a submatrix obtained from H2A by dropping
the zero matrix H2AK̄ , has full row rank. Thus A′ has full row rank
in either case; that is, A′A′⊤ is positive definite.

We then remark that, for any g , A′T (A′A′T )−1g is the minimal
l2-norm point satisfying A′x′

= g . Indeed, consider the following
minimization problemwhere B is amatrix such that BB⊤ is positive
definite: min{x⊤x/2 | Bx = g}. The Lagrangian multiplier method
– see [1] for example – yields that the minimum point satisfies
x + B⊤λ = 0 and g − Bx = 0 for some λ.

Let x′′ be a solution of the rounded problem (5). We have
A′x′′

= A′

L⌈(A
′

L)
−1b′/k⌉, A′A′⊤ is positive definite, and, for any g ,

A′T (A′A′T )−1g is the minimal l2-norm point satisfying A′x′
= g .

Thus,

∥x′′
∥2 ≥ ∥A′T (A′A′T )−1A′

L⌈(A
′

L)
−1b′/k⌉∥2

≥ ∥A′T (A′A′T )−1b′/k∥2 − ∥A′T (A′A′T )−1A′

Ld∥2

= (m′
+ (n′)2) −

A′T (A′A′T )−1A′


d
0L̄


2

≥ (n′)2 + m′
− ∥d∥2

where k = ∥A′⊤(A′A′⊤)−1b′
∥2/(m′

+ (n′)2) and d = (A′

L)
−1b′/k −

⌈(A′

L)
−1b′/k⌉. Since ∥d∥∞ < 1, we obtain that

∥x′′
∥∞ ≥ ∥x′′

∥2/n′ > ((n′)2 + m′
− m′)/n′

= n′. �

Corollary 1 ensures the validity of the reduction performed in
Step 4, that is, K̄ ⊆ K ∗, whose proof is a direct consequence of
Theorem 2.

Theorem 2 (Theorem 10.5 in Schrijver [6]). Let A be an m × n-
matrix, and let ∆∗ be such that for each nonsingular submatrix B
of A all entries of B−1 are at most ∆∗ in absolute value. Let c be a
column n-vector, and let b′′ and b∗ be column m-vectors such that
P ′′

: max{c⊤x | Ax ≤ b′′
} and P∗

: max{c⊤x | Ax ≤ b∗
} are

finite. Then, for each optimal solution x′′ of P ′′, there exists an optimal
solution x∗ of P∗ with ∥x′′

− x∗
∥∞ ≤ n∆∗

∥b′′
− b∗

∥∞.

Corollary 1. Let x′′ be an optimal solution of the rounded prob-
lem (5), and J = {i | x′′

i ≥ n′, i ∈ K} as defined in Step 3 of the
proposed algorithm. If the scaled problem (4) is feasible, the ith co-
ordinate of the optimal solution of the scaled problem (4) is strictly
positive for i ∈ J . Furthermore, the same holds for the reduced prob-
lem (2) and the original problem (1) as the scaling factor k is strictly
positive.

Proof. Define Ã ∈ R(2m′
+n′)×n′

, b̃′′, and b̃∗
∈ R2m′

+n′

as:

Ã =

 E
−E
−I


, b̃∗

=

 (A−1
L b′)/k

−(A−1
L b′)/k
0

 , and b̃′′
= ⌈b̃∗

⌉

where E = [I, (A′

L)
−1A′

L̄
]. With this notation, the rounded problem

(5), respectively the scaled problem (4), can be restated as P ′′
:

max{−c ′⊤x | Ãx ≤ b̃′′
}, respectively P∗

: max{−c ′⊤x | Ãx ≤ b̃∗
}.

Since E is totally unimodular, Ã is totally unimodular, and thus
∆∗

= 1 in Theorem2. In addition, note that ∥b̃′′
−b̃∗

∥∞ < 1. Recall
that the scaled problem (4) and P∗ share the same unique optimal
solution x∗ as the optimal solution of the original problem (1) is
assumed to be unique. Therefore, since x′′ is an optimal solution
of P ′′, we observe that ∥x′′

− x∗
∥∞ < n′ by Theorem 2 and thus,

x∗

i > 0 for i ∈ J . �

Finally, we show the strong polynomiality of the proposed al-
gorithm using the results of Kitahara and Mizuno [2,3] showing
that the number of different basic feasible solutions generated by
the primal simplex method with the most negative pivoting rule –
Dantzig’s rule – or the best improvement pivoting rule is bounded
by:

n

m

γ

δ
log


m

γ

δ


where m is the number of constraints, n is the number of vari-
ables, and δ and γ are, respectively, the minimum and the max-
imum values of all the positive elements of the primal basic feasi-
ble solutions. Thus, we need to estimate the values δ and γ for the
introduced auxiliary problems.

Since the coefficient matrices used in the proposed algorithm
are totally unimodular and the right hand side vector of the
rounded problem (5) is integer, we have δ ≥ 1. For γ , we use
Lemma 2.

Lemma 2. For the auxiliary problem (5), we have γ ≤ γ ∗
= m(mn

(m + n2) + 1).

Proof. Note that the right-hand side vector for (5) is ⌈(A′

L)
−1b′/k⌉.

By the total unimodularity of A′

L, we observe that

∥⌈(A′

L)
−1b′/k⌉∥∞ ≤ ∥(A′

L)
−1b′/k∥∞ + 1 ≤ m′

∥b′
∥∞/k + 1.

The numerator ∥A′⊤(A′A′⊤)−1b′
∥2 of k is bounded from below by

∥b′
∥∞/n′ implying ∥⌈(A′

L)
−1b′/k⌉∥∞ ≤ m′n′(m′

+ (n′)2)+1. Thus,
by Cramer’s rule and the total unimodularity of the coefficient
matrix [I, (A′

L)
−1A′

L̄
] of (5), the l∞-norm of a basic solution of (5)

is bounded from above bym′(m′n′(m′
+ (n′)2) + 1). �

The two-phase simplex algorithm is called at most m times. Thus,
the number of auxiliary problems solved by the proposed algo-
rithm is bounded from above by 2m as each call corresponds to
2 auxiliary problems : one for each phase. Thus, if all the auxil-
iary problems are non-degenerate, the total number of basic so-
lutions generated by the algorithm is bounded from above by
2m[n⌈mγ ∗ log(mγ ∗)⌉]; that is by

2mn⌈(m4n + m3n3
+ m2) log(m4n + m3n3

+ m2)⌉

which completes the proof of Theorem 1. Alternatively, since
m ≤ n, this bound can be restated as O(m4n4 log n). While assum-
ing the non-degeneracy of the auxiliary problems is needed to use
Kitahara–Mizuno’s bound, the number of degenerate updates of
bases at a single basic solution is typically not too large in practice.
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