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Abstract. We establish sharp asymptotic estimates for the diameter of primi-
tive zonotopes when their dimension is fixed and the number of their generators
grows large. We also prove that, for infinitely many integers k, the largest pos-
sible diameter δz(d, k) of a lattice zonotope contained in the hypercube [0, k]d

is uniquely achieved by a primitive zonotope. We obtain, as a consequence,
that δz(d, k) grows like kd/(d+1) up to an explicit multiplicative constant, when
d is fixed and k goes to infinity, providing a new lower bound on the largest
possible diameter of a lattice polytope contained in [0, k]d.

1. Introduction

A polytope is called a lattice polytope when all of its vertices belong to the integer
lattice Zd. These objects appear in a variety of fields as for instance in combinatorics
[3,8,9,17,25], in discrete geometry [1,4,6,7,10,20], or in combinatorial optimization
[11,21,22,26]. In order to investigate their extremal properties, the lattice polytopes
contained in convex sets of growing size, such as balls [4], squares [1,29], hypercubes
[11, 12], or arbitrary 2-dimensional compact convex sets [6] have been considered.
For instance, the largest possible number of vertices φ(2, k) of a lattice polygon
contained in the square [0, k]2 is known to behave as

(1.1) φ(2, k) ∼ 12

(2π)2/3
k2/3

when k goes to infinity [1,29]. In higher dimension, a similar result can be obtained
from [2] and from [4]. More precisely, the largest possible number of vertices φ(d, k)
of a lattice polytope contained in the hypercube [0, k]d grows like kd(d−1)/(d+1) up
to a multiplicative term that only depends on d. Note that no expression is known
for this multiplicative term when d is greater than 2.

Another quantity that has attracted attention, due to its connection with the
complexity of the simplex algorithm [16,24,27,28,30], is the largest diameter δ(d, k)
a lattice polytope contained in [0, k]d can have [11–13, 18, 21]. Here, by the diam-
eter of a polytope, we mean the diameter of the graph made of its vertices and
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edges. Since a polygon with n vertices has diameter �n/2�, estimating the asymp-
totic behavior of φ(d, k) and δ(d, k) when k goes to infinity can be considered two
generalizations of (1.1) to higher dimensions. It is shown in [21] that δ(d, 1) = d,
in [11] that δ(d, 2) = �3d/2�, in [13] that

δ(d, k) ≤ kd−
⌈
2d

3

⌉
− (k − 3) when k ≥ 3,

and in [12] that

(1.2) δ(d, k) ≥
⌊
(k + 1)d

2

⌋
when k < 2d.

This lower bound on δ(d, k) is obtained using a family of lattice zonotopes called
primitive zonotopes. Recall that a zonotope is the Minkowski sum of pairwise non-
collinear line segments, which we call its generators. Informally, primitive zonotopes
are generated by the shortest possible lattice segments. In particular these segments
themselves are primitive in the sense that the only lattice points they contain
are their extremities. A formal definition of primitive zonotopes will be given in
Section 2. In this paper, we provide the asymptotic diameter of the primitive
zonotopes defined in [12] when their dimension is fixed while the number of their
generators goes to infinity. We also show that, for infinitely-many integers k, the
largest possible diameter δz(d, k) of a lattice zonotope contained in the hypercube
[0, k]d is uniquely achieved by a primitive zonotope. As a first consequence, we
partially answer a question posed by Günter Rote:1 how can one compute δz(d, k)?
In addition, we establish the following asymptotic estimate for δz(d, k). In the
statement of this result, ζ stands for Riemann’s zeta function.

Theorem 1.1. For any fixed d, the largest possible diameter of a lattice zonotope
contained in the hypercube [0, k]d satisfies

δz(d, k) ∼ c(d)k
d

d+1 ,

when k goes to infinity, where c(d) =

(
2d(d+ 1)d

2 d!ζ(d)

) 1
d+1

.

Theorem 1.1 can be thought of as a generalization of (1.1) to zonotopes of arbi-
trary dimension because, as mentioned above, the number of vertices of a polygon
is roughly twice its diameter. In particular, c(2) is half the multiplicative constant
in (1.1). More generally, c(d) can be expressed as follows for all even d, by the
relation between ζ(d) and the Bernoulli number Bd:

c(d) = |Bd|
−1
d+1

(
d+ 1

π

) d
d+1

.

It is also noteworthy that

lim
d→∞

c(d) = 2e.

Theorem 1.1 immediately provides a lower bound on δ(d, k) similar to (1.2),
except that it is valid when k goes to infinity.

Corollary 1.2. For any fixed d, δ(d, k) ≥ c(d)k
d

d+1 + o(1).

1Günter Rote asked for a way to compute δz(d, k) during the lecture of the first author at the
Facets of Complexity colloquium in Berlin on June 25, 2018.
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It is conjectured in [12] that δ(d, k) is achieved for all d and k by a lattice
zonotope generated by line primitive segments. Hence, Corollary 1.2 conjecturally
provides the correct asymptotic estimate for δ(d, k).

The asymptotic diameter of primitive zonotopes will be established in Section 2.
The proof that the unique lattice zonotope of diameter δz(d, k) contained in the
hypercube [0, k]d is a primitive zonotope for infinitely-many values of k is given in
Section 3. Finally, Theorem 1.1 is proven in Section 4.

2. The asymptotic diameter of primitive zonotopes

We first recall the formal definition of primitive zonotopes [12]. Call a point in
the lattice Z

d primitive when it is not equal to 0 and the greatest common divisor
of its coordinates is 1. In other words, the segment between the origin of Rd and
such a point is primitive in the sense given in the previous section. The set of
the primitive points contained in Z

d will be denoted by P
d. We also refer to the

d-dimensional ball of radius p centered in 0 for the q-norm as Bq(d, p).
A first family of primitive zonotopes, denoted by Hq(d, p), is defined in [12]

as the lattice zonotopes whose generators are the segments incident to 0 on one
end and to a point in P

d ∩ Bq(d, p) whose first non-zero coordinate is positive
on the other. Another family, referred to as H+

q (d, p) are the lattice zonotopes
whose generators are the generators of Hq(d, p) contained in the positive orthant
[0,+∞[d. A useful property of zonotopes is that their diameter is equal to the
number of their generators [31]. Therefore, in order to determine the diameter of
Hq(d, p) and H+

q (d, p), we only need to count the primitive points in Bq(d, p) at

the extremity of their generators. For instance, H1(d, 2) has diameter d2. In this
section we provide the asymptotic diameter of both Hq(d, p) and H+

q (d, p) for any
fixed d and q, when p goes to infinity; that is, when the radius of the ball the
generators of these zonotopes are picked from grows large.

It is well known that the density of the primitive points in the lattice is 1/ζ(d)
[15, 19, 23]. The following result is proven in [19] (see also the remark on page 4
of [5]). In the statement of this result, C is any convex compact subset of Rd that
contains the origin and whose interior is non-empty and vol(pC) stands for the
volume of the dilation of C by a coefficient p.

Lemma 2.1. lim
p→∞

∣∣pC ∩ P
d
∣∣

vol(pC)
=

1

ζ(d)
.

It is also well known that

(2.1) vol(Bq(d, p)) =

(
2Γ

(
1
q + 1

)
p
)d

Γ
(

d
q + 1

) ,

where Γ denotes Euler’s gamma function.
In the remainder of the article, we refer to the diameter of a polytope P as δ(P ).

The following is obtained by combining (2.1) with Lemma 2.1.

Theorem 2.2. lim
p→∞

δ(Hq(d, p))

pd
=

(
2Γ

(
1
q + 1

))d

2Γ
(

d
q + 1

)
ζ(d)

.
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Proof. Recall that the diameter of Hq(d, p) is equal to the number of its generators;
that is, to the number of the primitive points in Bq(d, p) whose first non-zero
coordinate is positive or, equivalently, to half the number of the primitive points
contained in Bq(d, p). As a consequence,

(2.2)
δ(Hq(d, p))

pd
=

∣∣Bq(d, p) ∩ P
d
∣∣

2pd
.

Taking pC = Bq(d, p) in the statement of Lemma 2.1 and evaluating the volume
of this ball using equation (2.1) yields

(2.3) lim
p→∞

∣∣Bq(d, p) ∩ P
d
∣∣

pd
=

(
2Γ

(
1
q + 1

))d

Γ
(

d
q + 1

)
ζ(d)

.

Combining equalities (2.2) and (2.3) completes the proof. �

We now turn our attention to the primitive zonotopes H+
q (d, p).

Theorem 2.3. lim
p→∞

δ
(
H+

q (d, p)
)

pd
=

Γ
(

1
q + 1

)d

Γ
(

d
q + 1

)
ζ(d)

.

Proof. Denote by aq(d, p) the number of generators of H+
q (d, p) that are not con-

tained in any face of dimension less than d of the cone [0,+∞[d. Consider a face
F of [0,+∞[d. Assume that F is i-dimensional with i ≥ 0 and observe that there
are exactly aq(i, p) generators of H+

q (d, p) contained in F but not in any face of

[0,+∞[d of dimension less than i. Further observe that [0,+∞[d has exactly
(
d
i

)
faces of dimension i. Since the diameter of H+

q (d, p) is the number of its generators,

that is,
∣∣Bq(d, p) ∩ [0,+∞[d

∣∣, we therefore obtain

(2.4) δ
(
H+

q (d, p)
)
=

d∑
i=1

(
d

i

)
aq(i, p).

Now consider the 2d orthants of Rd. These orthants are polyhedral cones, and the
faces of these cones collectively form a polyhedral subdivision of Rd. The number of
i-dimensional polyhedra contained in this subdivision is equal to the number of the
(i − 1)-dimensional faces of a d-dimensional cross-polytope; that is, 2i

(
d
i

)
. Hence,

the number of primitive lattice points in Bq(d, p) satisfies

(2.5)
∣∣Bq(d, p) ∩ P

d
∣∣ = d∑

i=1

2i
(
d

i

)
aq(i, p).

The equalities (2.4) and (2.5) yield

(2.6) 2dδ
(
H+

q (d, p)
)
=

∣∣Bq(d, p) ∩ P
d
∣∣+ d−1∑

i=1

(2d − 2i)

(
d

i

)
aq(i, p).

Now observe that

0 ≤
d−1∑
i=1

(2d − 2i)

(
d

i

)
aq(i, p) ≤ d2d−1

d−1∑
i=1

(
d− 1

i

)
aq(i, p).
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According to (2.4), the right-hand side of the second inequality can be expressed
in terms of δ

(
H+

q (d− 1, p)
)
. Therefore, by (2.6),

(2.7) 0 ≤ 2dδ
(
H+

q (d, p)
)
−
∣∣Bq(d, p) ∩ P

d
∣∣ ≤ d2d−1δ

(
H+

q (d− 1, p)
)
.

This double inequality makes it possible to prove the theorem by induction on d.
Indeed, under the inductive property that

lim
p→∞

δ
(
H+

q (d− 1, p)
)

pd
= 0,

the combination of (2.1), (2.7), and Lemma 2.1 provides the desired result. We still
need to establish the base case for the induction. Observe that aq(1, p) = 1. As a
consequence, equalities (2.4) and (2.5) yield∣∣Bq(2, p) ∩ P

2
∣∣ = 4δ

(
H+

q (2, p)
)
− 4.

Combining this with (2.1) and Lemma 2.1 proves the result when d = 2. �

3. Lattice zonotopes with the largest possible diameter

For any d-dimensional lattice polytope P , we will denote by κ(P ) the smallest
integer k such that some translate of P by a lattice vector is contained in the
hypercube [0, k]d. We show in this section that, for all p, the unique lattice polytope
with diameter δz(d, κ(H1(d, p))) contained in the hypercube [0, κ(H1(d, p))]

d is a
translate of H1(d, p). Observe that the primitive zonotopes H1(d, p) and the 1-
norm they are built from play an important role here.

Theorem 3.1. Consider a d-dimensional lattice zonotope Z and a positive integer
p. If δ(H1(d, p)) ≤ δ(Z), then κ(H1(d, p)) ≤ κ(Z). If, in addition, the first of
these inequalities is strict, then so is the second one, and if both inequalities are
equalities, then Z is a translate of H1(d, p).

Proof. Denote by Z the set of the generators of Z and by G the set of the generators
of H1(d, p). We will assume that the generators of Z are all incident to the origin of
R

d and that the first non-zero coordinate of their other vertex is positive. This can
be done without loss of generality by translating the generators of Z or equivalently,
by translating Z itself. Recall that the diameter of a zonotope is equal to the number
of its generators. Therefore, if the diameter of H1(d, p) is not greater than that
of Z, then there exists an injection ψ from G into Z. Since distinct generators of
a zonotope are never collinear, we can require this injection to be such that, if a
generator z of Z is collinear to a generator g of H1(d, p), then ψ(g) is equal to z. By
this assumption, the 1-norm of a generator g of H1(d, p) is never greater than the
1-norm of ψ(g). Moreover, by construction, if these 1-norms are equal, then g and
ψ(g) must coincide. Now observe that the 1-norms of the generators of Z sum to
at most κ(Z)d and, since H1(d, p) is invariant up to translation by the isometries of
R

d that consist in permuting coordinates, the 1-norms of the generators of H1(d, p)
sum to exactly κ(H1(d, p))d. As a consequence,

κ(H1(d, p))d ≤ κ(Z)d,

and this inequality is strict when the number of generators of Z is greater than that
of H1(d, p). Dividing this inequality by d provides the first part of the theorem.
Now observe that, if δ(H1(d, p)) = δ(Z), then ψ must be a bijection. If in addition,
κ(H1(d, p)) = κ(Z), the 1-norm of a generator of H1(d, p) is necessarily equal to
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the 1-norm of its image by ψ. In this case, Z and H1(d, p) have exactly the same
generators and they must coincide. �

Theorem 3.1 will be one of the main ingredients in the proof of Theorem 1.1. It
also admits the following consequence, announced above.

Corollary 3.2. The unique lattice zonotope of diameter δz(d, κ(H1(d, p))) con-
tained in the hypercube [0, κ(H1(d, p))]

d is a translate of H1(d, p).

Proof. Consider a lattice zonotope Z with diameter δz(d, κ(H1(d, p))) contained in
the hypercube [0, κ(H1(d, p))]

d. In particular,

(3.1) κ(Z) ≤ κ(H1(d, p)).

By definition, H1(d, p) is a lattice zonotope contained, up to translation in
[0, κ(H1(d, p))]

d. Therefore, its diameter must be at most δz(d, κ(H1(d, p))). In
other words, δ(H1(d, p)) ≤ δ(Z). Hence, by Theorem 3.1,

(3.2) κ(H1(d, p)) ≤ κ(Z).

According to (3.1) and (3.2), κ(H1(d, p)) and κ(Z) coincide. Since the diameter
of H1(d, p) is not greater than that of Z, it therefore follows from Theorem 3.1 that
these diameters also coincide. Invoking Theorem 3.1 a third time, we obtain that
Z is a translate of H1(d, p). It remains to show that there is only one translate
of H1(d, p) contained in the hypercube [0, κ(H1(d, p))]

d. This is an immediate
consequence of H1(d, p) being invariant up to translation by the isometries of Rd

that consist in permuting coordinates. �

Corollary 3.2 provides a way to determine δz(d, k) when, for some integer p, k is
equal to κ(H1(d, p)). This partially answers the question of Günter Rote mentioned
in Section 1. Indeed, in this case, it follows from Corollary 3.2 that it suffices to
count the points in P

d ∩B1(d, p) whose first non-zero coordinate is positive.

4. An upper bound on the diameter of lattice zonotopes

This section is devoted to proving Theorem 1.1. In order to do that, we first
relate κ(H1(d, p)) and δ(H1(d, p)) as follows.

Lemma 4.1. κ(H1(d, p))d = pδ(H1(d, p))−
p−1∑
i=0

δ(H1(d, i)).

Proof. Recall that the diameter of H1(d, p) is the number of primitive lattice points
in B1(d, p) whose first non-zero coordinate is positive. Hence, when 1 ≤ i ≤ p, the
number of these points whose 1-norm is equal to i is

δ(H1(d, i))− δ(H1(d, i− 1)) .

By symmetry, the 1-norms of the primitive lattice points in B1(d, p) whose first
non-zero coordinate is a positive sum to κ(H1(d, p))d. As a consequence,

κ(H1(d, p))d =

p∑
i=1

i[δ(H1(d, i))− δ(H1(d, i− 1))] .

Rearranging the right-hand side of this equality completes the proof. �

The following theorem provides the asymptotic behavior of κ(H1(d, p)).
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Theorem 4.2. lim
p→∞

κ(H1(d, p))

pd+1
=

2d−1

(d+ 1)!ζ(d)
.

Proof. First observe that, according to Theorem 2.2,

(4.1)

∣∣∣∣δ(H1(d, p))

pd
− 2d−1

d!ζ(d)

∣∣∣∣ ≤ ε(p),

where ε : N → R is a function such that

lim
p→∞

ε(p) = 0.

We can further assume without loss of generality that ε is decreasing. Invoking
Lemma 4.1, and using (4.1), one obtains

(4.2)

∣∣∣∣∣κ(H1(d, p))d

pd+1
− 2d−1

d!ζ(d)

(
1− 1

pd+1

p−1∑
i=1

id

)∣∣∣∣∣ ≤ ε(p) +
1

pd+1

p−1∑
i=1

ε(i)id.

However, by Faulhaber’s formula,

(4.3)

p−1∑
i=1

id =
1

d+ 1
pd+1 +N(p),

where N(p) is a polynomial of degree at most d in p. Therefore,

lim
p→∞

2d−1

d!ζ(d)

(
1− 1

pd+1

p−1∑
i=1

id

)
=

d2d−1

(d+ 1)!ζ(d)
.

Now observe that

lim
p→∞

1

pd+1

p−1∑
i=1

ε(i)id = 0.

Indeed,

1

pd+1

�√p�∑
i=1

ε(i)id ≤ ε(1)

p(d+1)/2
,

and

1

pd+1

p−1∑
i=�√p�

ε(i)id ≤ ε(
√p�).

Hence, letting p go to infinity in (4.2) provides the desired limit. �

The following result is a consequence of Theorems 2.2 and 4.2. It provides the
exact asymptotic behavior of the diameter of H1(d, p) in terms of κ(H1(d, p)) when
d is fixed and p goes to infinity.

Corollary 4.3. lim
p→∞

δ(H1(d, p))
d+1

κ(H1(d, p))
d

=
2d(d+ 1)d

2 d!ζ(d)
.

Proof. By Theorem 2.2,

lim
p→∞

δ(H1(d, p))
d+1

pd(d+1)
=

(
2d−1

d!ζ(d)

)d+1

,
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and by Theorem 4.2,

lim
p→∞

κ(H1(d, p))
d

pd(d+1)
=

(
2d−1

(d+ 1)!ζ(d)

)d

.

Combining these equalities provides the desired result. �

Note that, for any fixed d, δ(d, k) is an increasing function of k. Therefore,
Corollary 1.2 is immediately obtained from Corollary 4.3.

We are finally ready to prove Theorem 1.1.

Proof of Theorem 1.1. Consider a lattice zonotope Z contained in the hypercube
[0, k]d, where k is positive. We can assume without loss of generality that the
diameter of Z is not less than the diameter of H1(d, 1). Since

lim
p→∞

δ(H1(d, p)) = +∞,

there exists a non-negative integer p such that

δ(H1(d, p)) ≤ δ(Z) ≤ δ(H1(d, p+ 1)) .

According to the first inequality and to Theorem 3.1,

κ(H1(d, p)) ≤ k.

Therefore, it follows from the second inequality that

(4.4)
δ(Z)

k
d

d+1

≤ δ(H1(d, p+ 1))

κ(H1(d, p))
d

d+1

.

By Corollary 4.3,

lim
p→∞

δ(H1(d, p))

κ(H1(d, p))
d

d+1

=

(
2d(d+ 1)d

2 d!ζ(d)

) 1
d+1

,

and by Theorem 2.2,

lim
p→∞

δ(H1(d, p+ 1))

δ(H1(d, p))
= 1.

Therefore, the right-hand side of (4.4) satisfies

(4.5) lim
p→∞

δ(H1(d, p+ 1))

κ(H1(d, p))
d

d+1

=

(
2d(d+ 1)d

2 d!ζ(d)

) 1
d+1

.

By construction, when k goes to infinity, so does p. Hence, combining inequality
(4.4) with equation (4.5) provides the desired result. �
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