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Abstract. We investigate the following question: How close can two disjoint lattice polytopes
contained in a fixed hypercube be? This question stems from various contexts where the mini-
mal distance between such polytopes appears in complexity bounds of optimization algorithms. We
provide nearly matching bounds on this distance and discuss its exact computation. We also give
similar bounds for disjoint rational polytopes whose binary encoding length is prescribed.
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1. Introduction. In general, the distance between two disjoint convex bodies
P and Q contained in \BbbR d can become arbitrarily small. However, this is no longer
the case when P and Q satisfy certain constraints. For instance, if P and Q are
two d-dimensional 0/1-polytopes, then they cannot be closer than a positive distance
that only depends on d. This is due to the observation that, when d is fixed, there
are finitely many such pairs of polytopes. Another relevant constraint that often
arises in optimization algorithms is when P and Q are rational polytopes whose
binary encoding length (as subsets of \BbbR d satisfying a set of linear inequalities) is
prescribed. Here, again, the smallest possible distance between P and Q is a positive
number that depends on that encoding length and on d. Our goal is to estimate
these minimal distances. Our study stems from the complexity bounds established
by Braun, Pokutta, and Weismantel [4]. They provide an algorithm that computes a
point in P \cap Q when that intersection is nonempty or certifies that P \cap Q is empty.
In the latter case, the number of calls to a linear optimization oracle over P and Q
required to certify that P \cap Q is empty is

O

\Biggl( 
1

d(P,Q)2

\Biggr) 
,

and therefore it is natural to ask how small d(P,Q) can become.
Our study is related to the notion of facial distance considered by Pe\~na and

Rodr\'{\i}guez [11, section 2] and Gutman and Pe\~na [8, 10]. It is also linked to the vertex-
facet distance of a polytope investigated by Beck and Shtern [2] and to the closely
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2644 A. DEZA, S. ONN, S. POKUTTA, AND L. POURNIN

related pyramidal width studied by Lacoste-Julien and Jaggi [9] and Rademacher and
Shu [12]. We refer the reader to the survey by Braun et al. [3] for an overview of these
notions. The facial distance is crucial in establishing linear convergence rates for
conditional gradient methods over polytopes and naturally occurs in the complexity
bounds. The facial distance of a polytope P is defined as

\Phi (P ) =min
\Bigl\{ 
d
\bigl( 
F, conv(\scrV \setminus F )

\bigr) 
: F \in \scrF 

\Bigr\} 
,

where \scrV denotes the vertex set of P and \scrF the set of its proper faces. In other
words, the facial distance of P is the minimal distance between any of its faces and
the convex hull of its vertices not contained in that face. In contrast to our study,
this notion considers a specific polytope P and decomposes it into its faces and their
complements. The vertex-facet distance of P is defined as

\Delta (P ) =min
\Bigl\{ 
d
\bigl( 
aff(F ), conv(\scrV \setminus F )

\bigr) 
: F \in \scrF 

\Bigr\} 
,(1.1)

where \scrF is the set of the facets of P , as shown in [11, section 2]. Bounds have
been given on the smallest possible vertex-facet distance of 0/1-simplices [1, 6]. In
particular, Alon and V\~u [1, Theorem 3.2.2] show that

1
\surd 
2
d logd - 2d+o(d)

\leq min \Delta (S)\leq 1
\surd 
2
d logd - 4d+o(d)

,(1.2)

where the minimum is over all the d-dimensional 0/1-simplices S.
The results of Vavasis on the complexity of quadratic optimization [14], general-

ized by Del Pia, Dey, and Molinaro in [5], imply as a special case that the squared
distance between two rational polytopes is a rational number. Our work is concerned
with providing bounds on how close such polytopes can be under the mentioned con-
straints. Recall that a polytope whose vertices belong to the integer lattice \BbbZ d is
a lattice polytope. We will refer to a lattice polytope contained in the hypercube
[0, k]d as a lattice (d, k)-polytope. In this article, we first provide a lower bound as
a function of d and k on the smallest possible distance between two disjoint lattice
(d, k)-polytopes, and then we complement these lower bounds with constructions that
provide almost matching upper bounds.

In terms of lower bounds our main result is the following.

Theorem 1.1. If P and Q are disjoint lattice (d, k)-polytopes, then

d(P,Q)\geq 1

(kd)2d
.

We shall in fact prove a stronger bound (see Theorem 2.3) of which Theorem 1.1 is
a consequence. We also prove a lower bound on the distance of two rational polytopes
in terms of the dimension and their binary encoding length (see Theorem 6.5). Our
main result regarding upper bounds in the following.

Theorem 1.2. Consider a positive integer k. For any large enough d, there exist
two disjoint (d, k)-lattice polytopes P and Q such that

d(P,Q)\leq 1\bigl( 
k
\surd 
d
\bigr) \surd d

.
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KISSING POLYTOPES 2645

As above, Theorem 1.2 follows from a stronger bound (see Theorem 3.2). We also
give an upper bound on the smallest possible distance between two rational polytopes
whose binary encoding length is prescribed (see Theorem 6.6).

By its definition, the facial distance of a polytope is a distance between two
polytopes. Inversely, the distance between two disjoint polytopes P and Q is the
distance between two of their faces that belong to distinct parallel hyperplanes. In
particular, d(P,Q) is at least the facial distance of the convex hull of these two faces.
As a consequence, our results provide bounds on the smallest possible facial distance
of a lattice (d, k)-polytope in terms of d and k.

Theorem 1.3. For any positive k and large enough d,

1

(kd)2d
\leq min\Phi (P )\leq 1\bigl( 

k
\surd 
d
\bigr) \surd d

,(1.3)

where the minimum is over all the lattice (d, k)-polytopes P .

Similar bounds in the case of rational polytopes, in terms of their dimension and
binary encoding length, follow from Theorems 6.5 and 6.6.

We establish the announced lower bounds for lattice polytopes in section 2. The
upper bounds and the corresponding constructions are provided in section 3. These
upper bounds are only valid for all sufficiently large dimensions, and we provide
bounds in section 4 that hold in all dimensions. In the same section, we study the
smallest possible distance of two lattice polytopes whose dimension is fixed indepen-
dently on the dimension of the ambient space. Section 5 contains computational
results. We report in that section the exact value of the smallest possible distance
between disjoint lattice (d, k)-polytopes for certain d and k (see Table 1). In order
to compute these distances, we prove in section 5 that one can restrict to consider-
ing a well-behaved subset of the pairs of lattice (d, k)-polytopes. We end the article
with section 6 where our lower and upper bounds are given on the smallest possible
distance of two rational polytopes in terms of their binary encoding length.

2. Lower bounds. In this section P and Q are two fixed, disjoint polytopes
contained in \BbbR d, and our goal is to prove Theorem 1.1. Let us first introduce some
notation and make a few remarks. Since P and Q are compact subsets of \BbbR d, there
exists a point p in P and a point q in Q whose distance is equal to d(P,Q). Let
fP denote the unique face of P that contains p in its relative interior and fQ dentoe
the unique face of Q that contains q in its relative interior. We remark that fP and
fQ are contained in two parallel hyperplanes orthogonal to p  - q. This situation is
illustrated in Figure 1, where P and Q are two 0/1-polytopes, fP is the diagonal of
the unit cube, and fQ is a diagonal of one of its square faces.

We now consider dim(fP ) + 1 vertices of fP that we label by u0 to udim(fP ) such
that the vectors from u1  - u0 to udim(fP )  - u0 are linearly independent. Similarly,

Q

P

p

q

Fig. 1. Two 0/1-polytopes P and Q and points p and q such that d(P,Q) is equal to d(p, q).
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2646 A. DEZA, S. ONN, S. POKUTTA, AND L. POURNIN

pick a family from v0 to vdim(fQ) of vertices of fQ such that the vectors from v1  - v0

to vdim(fQ)  - v0 are linearly independent. Consider the set

S =
\Bigl\{ 
ui  - u0 : 1\leq i\leq dim(fP )

\Bigr\} 
\cup 
\Bigl\{ 
vi  - v0 : 1\leq i\leq dim(fQ)

\Bigr\} 
and extract from it a subset of linearly independent vectors from w1 to wr that span
the same subspace of \BbbR d as S. Observe that r is at most d  - 1 because these vectors
are linearly independent and all of them are orthogonal to p - q. Further denote by
w0 the difference u0 - v0. Since fP and fQ are contained ino two parallel hyperplanes
orthogonal to p - q, the scalar product (x - y)\cdot (p - q), where x belongs to fP and y
to fQ, does not depend on which points x and y are chosen in fP and fQ.

As a consequence, the equality

d(p, q) =
(p - q)\cdot (p - q)

\| p - q\| 

can be rewritten as

d(p, q) =w0\cdot (p - q)

\| p - q\| 
.(2.1)

We will express the quotient in the right-hand side of (2.1) using the vectors wi.
In order to do that, consider the r\times r matrix M whose term in row i and column j
is wi\cdot wj , the column vector b whose coordinates are from w0 \cdot w1 to w0 \cdot wr, and the
matrix Mi obtained from M by replacing column i with b.

Lemma 2.1. The distance between P and Q satisfies

d(P,Q) =w0\cdot a

\| a\| 
,

where

a=det(M)w0  - 
r\sum 

i=1

det(Mi)w
i.

Proof. Observe that p  - q belongs to the space spanned by vectors from w0 to
wr. Hence, there exist r+ 1 coefficients \alpha 0 to \alpha r such that

p - q=

r\sum 
i=0

\alpha iw
i.(2.2)

Let j be an integer such that 1\leq j \leq r. As wj is orthogonal to p - q,

r\sum 
i=0

\alpha i(w
i\cdot wj) = 0.(2.3)

Since p - q is nonzero and orthogonal to the vectors from w1 to wr, it cannot be
a linear combination of these vectors. It immediately follows that \alpha 0 is nonzero, and
we can denote, for each integer i such that 1\leq i\leq r,

\beta i = - \alpha i

\alpha 0
.(2.4)
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KISSING POLYTOPES 2647

With this notation, (2.3) can be rewritten as

r\sum 
i=1

\beta i(w
i\cdot wj) =w0\cdot wj ,

and the linear system obtained by letting j range between 1 and r is

M\beta = b,

where \beta is the column vector whose coordinates are from \beta 1 to \beta r. Observe that M
has rank r since the vectors wi are linearly independent and that its determinant is
therefore nonzero. As a consequence, according to Cramer's rule,

\beta i =
det(Mi)

det(M)
,

and, by (2.4), one can rewrite (2.2) as

\lambda (p - q) = det(M)w0  - 
r\sum 

i=0

det(Mi)w
i,(2.5)

where

\lambda =
det(M)

\alpha 0
.

Finally, observe that (2.1) can be rewritten as

d(p, q) =w0\cdot \lambda (p - q)

\| \lambda (p - q)\| 
.

Combining this with (2.5) proves the lemma.

Now observe that when P and Q are rational polytopes, the vectors from w0 to
wr all have rational coordinates. In particular, we recover the following remark from
Lemma 2.1. This remark is also a consequence of a more general result due to Vavasis
[14] that was further improved in [5].

Remark 2.2. If P and Q are rational polytopes, then d(P,Q)2 is rational.

We are now ready to prove the announced lower bound on the distance of P and
Q in the case when both P and Q are lattice polytopes.

Theorem 2.3. If P and Q are disjoint lattice (d, k)-polytopes, then

d(P,Q)\geq 1

k2d - 1
\surd 
d
3d
.

Proof. According to Lemma 2.1,

d(P,Q) =
w0\cdot a
\| a\| 

,(2.6)

where

a=det(M)w0  - 
r\sum 

i=1

det(Mi)w
i.(2.7)
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2648 A. DEZA, S. ONN, S. POKUTTA, AND L. POURNIN

Assuming that P and Q are lattice (d, k)-polytopes, the vectors from w0 to wr

have integer coordinates. It then follows from (2.7) that all the coordinates of a
are integers. By the assumption that P and Q are disjoint, the numerator in the
right-hand side of (2.6) is then at least 1. As a consequence,

d(P,Q)\geq 1

\| a\| 
.(2.8)

Since both P and Q are lattice (d, k)-polytopes, the vectors wi are all contained
in the hypercube [ - k, k]d. Hence, the absolute value of each entry in the matrices M
and Mi is at most dk2, and by Hadamard's inequality,

| det(Mi)| \leq drk2rr
r
2

for all i. Moreover, the same inequality holds when Mi is replaced by M in the
left-hand side. Plugging this into (2.7) yields

| ai| \leq (r+ 1)drk2r+1r
r
2 .

It follows that

\| a\| \leq (r+ 1)d
2r+1

2 k2r+1r
r
2 ,

and according to (2.8),

d(P,Q)\geq 1

(r+ 1)d
2r+1

2 k2r+1r
r
2

.

Finally, recall that r is at most d - 1. Hence, this implies

d(P,Q)\geq 1

k2d - 1d
3d
2

,

which completes the proof.

Note that the distance between the origin of \BbbR d and the (d  - 1)-dimensional
standard simplex is equal to 1/

\surd 
d. It turns out that the distance between the origin

and any lattice polytope contained in the positive orthant [0,+\infty [d but that does not
contain the origin is at least this value.

Lemma 2.4. If P is a lattice polytope contained in [0,+\infty [d\setminus \{ 0\} , then

d(0, P )\geq 1\surd 
d
.

Proof. Consider a point p in P such that d(0, P ) is equal to d(0, p). Observe that
all the vertices x of P satisfy \| x\| 1 \geq 1. As any point in P is a convex combination of
vertices of P , it follows that \| p\| 1 \geq 1. However, by the Cauchy--Schwarz inequality,
\| p\| 1 is at most

\surd 
d\| p\| 2, which proves the lemma.

3. Upper bounds. In this section, k is fixed, and we consider two positive
integers \sigma and \delta . Most of this section is devoted to proving the following theorem.

Theorem 3.1. If \delta is at least 4, then there exist two lattice (d, k)-polytopes P and
Q, where d is equal to \delta (\sigma + 1), such that

d(P,Q)\leq 
\surd 
\delta \sigma \bigl( 

k(\delta  - 1)
\bigr) \sigma .(3.1)

Before we explicitly build two polytopes that allow us to establish Theorem 3.1,
we prove the main result of the section as a consequence of this theorem.
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D
ow

nl
oa

de
d 

12
/1

5/
24

 to
 1

30
.1

13
.1

11
.2

10
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



KISSING POLYTOPES 2649

Theorem 3.2. Consider a number \alpha in ]0,1[. For any large enough d, there exist
two disjoint lattice (d, k)-polytopes P and Q such that

d(P,Q)\leq 1

kd\alpha d(1 - \alpha )d\alpha .

Proof. Let \beta be a number in the interval ]\alpha ,1[. Assume that

d\geq 8
1

1 - \beta ,(3.2)

and denote \left\{     
\sigma =

\bigl\lfloor 
d\beta 
\bigr\rfloor 
and

\delta =

\biggl\lfloor 
d

\sigma + 1

\biggr\rfloor 
.

(3.3)

Observe that \sigma is at least 1. In addition, (3.2) can be rewritten as

d\geq 8d\beta .

As d\beta is at least 1, it follows that

d\geq 4d\beta + 4,

and as a consequence, \delta is at least 4.
According to Theorem 3.1, under these conditions on \sigma and \delta , there exist two

lattice (\delta (\sigma + 1), k)-polytopes P and Q such that

d(P,Q)\leq 
\surd 
\delta \sigma \bigl( 

k(\delta  - 1)
\bigr) \sigma .(3.4)

However, by (3.3), d is at least (\sigma + 1)\delta . Therefore, P and Q are also lattice
(d, k)-polytopes. Moreover, replacing \sigma and \delta in the right-hand side of (3.4) by their
expressions as functions of d and \beta yields

d(P,Q)\leq 

\sqrt{} 
\lfloor d\beta \rfloor 

\Bigl\lfloor 
d

\lfloor d\beta \rfloor +1

\Bigr\rfloor 
k\lfloor d\beta \rfloor 

\Bigl( \Bigl\lfloor 
d

\lfloor d\beta \rfloor +1

\Bigr\rfloor 
 - 1
\Bigr) \lfloor d\beta \rfloor .(3.5)

Now observe that the right-hand side of (3.5) behaves like
\surd 
d

kd\beta d(1 - \beta )d\beta 

as d goes to infinity. Since \alpha is less than \beta ,
\surd 
d

kd\beta d(1 - \beta )d\beta <
1

kd\alpha d(1 - \alpha )d\alpha 

when d is large enough. Hence, the right-hand side of (3.5) is less than

1

kd\alpha d(1 - \alpha )d\alpha 

for any large enough d, as desired.

Taking \alpha equal to 1/2 in the statement of Theorem 3.2 results in Theorem 1.2.
In turn, Theorem 1.2 implies the upper bound stated by Theorem 1.3 on the smallest
possible facial distance of a lattice (d, k)-polytope as follows.
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2650 A. DEZA, S. ONN, S. POKUTTA, AND L. POURNIN

Theorem 3.3. For any positive k and large enough d,

min\Phi (P )\leq 1\bigl( 
k
\surd 
d
\bigr) \surd d

,

where the minimum is over all the lattice (d, k)-polytopes P .

Proof. Consider the two polytopes P and Q provided by Theorem 1.2. If P and Q
are contained in distinct parallel hyperplanes, both P and Q are faces of conv(P \cup Q).
Hence, by definition of the facial distance,

\Phi 
\bigl( 
conv(P \cup Q)

\bigr) 
\leq d(P,Q),

which implies the desired bound. If P and Q are not contained in parallel hyperplanes,
this bound can still be derived from the observation that the distance between P and
Q is also the distance between a face F of P and a face G of Q contained in two
parallel hyperplanes, both of which are still lattice (d, k)-polytopes. These faces are
identified by considering a point p in P and a point q in Q whose distance is equal to
d(P,Q). These points belong to the relative interior of a face F of P and a face G of
Q, each of which is contained in a hyperplane orthogonal to p - q, as desired.

From now on, we denote \delta (\sigma + 1) by d. Let us proceed to build two lattice
(d, k)-polytopes \sansP and \sansQ that allow us to prove Theorem 3.1.

Denote by a the vector from \BbbZ \sigma +1 whose coordinate i is

ai =
\bigl( 
k(1 - \delta )

\bigr) i - 1
.

A vector x in \BbbR d can be built from any vector x in \BbbR \sigma +1 by taking

xi = x\lfloor (i - 1)/\delta \rfloor +1

for every integer i. Equivalently,

x= (x1, . . . , x1\underbrace{}  \underbrace{}  
\delta times

, x2, . . . , x2\underbrace{}  \underbrace{}  
\delta times

, . . . , x\sigma +1, . . . , x\sigma +1\underbrace{}  \underbrace{}  
\delta times

).

Denote by \sansP the convex hull of the lattice points x contained in the hypercube
[0, k]d that satisfy a\cdot x= 0. Likewise, denote by \sansQ the convex hull of the lattice points
x in [0, k]d such that a\cdot x = 1. In order to prove that \sansP and \sansQ satisfy the inequality
(3.1), we will exhibit a point in \sansP and a point in \sansQ whose distance is at most the
right-hand side of this inequality. Consider the (\sigma + 1)\times (\sigma + 1) matrix

M\sansP =

\left[        

0 A A \cdot \cdot \cdot A
0 B C \cdot \cdot \cdot C

0 0 B
.. .

...
...

...
. . .

. . . C
0 0 \cdot \cdot \cdot 0 B

\right]        ,

where \left\{   A= (\delta  - 1)k/\delta ,
B = 1/\delta , and
C =A+B.

Recall that we identify the points from \BbbR \sigma +1 to the vector of their coordinates.
In particular, the columns of M\sansP are points from \BbbR \sigma +1.
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KISSING POLYTOPES 2651

Proposition 3.4. If x is a column of M\sansP , then x belongs to \sansP .

Proof. Let x denote the column i of M\sansP . Observe that, if i is equal to 1, then
a\cdot x is equal to 0, and, in particular, x belongs to \sansP . Now assume that i is at least 2,
and consider an integer s such that 1 \leq s \leq \delta . Denote by us the lattice point in the
hypercube [0, k]d whose coordinates are given by

us
j =

\left\{   k if 1\leq j \leq \delta (i - 1) and
\bigl( 
(j  - 1) mod \delta 

\bigr) 
+ 1 \not = s,

1 if \delta < j \leq \delta i and
\bigl( 
(j  - 1) mod \delta 

\bigr) 
+ 1= s, and

0 otherwise.

Note that us is a point in \sansP because a\cdot us is equal to 0. As the barycenter of the
points us when s ranges from 1 to \delta is precisely x, this proves the proposition.

Now consider the (\sigma + 1)\times (\sigma + 1) matrix M\sansQ obtained from M\sansP by adding 1/\delta 
to all of the entries in the first row as follows:

M\sansQ =

\left[        

B C C \cdot \cdot \cdot C
0 B C \cdot \cdot \cdot C

0 0 B
.. .

...
...

...
. . .

. . . C
0 0 \cdot \cdot \cdot 0 B

\right]        .

Proposition 3.5. If x is a column of M\sansQ , then x belongs to \sansQ .

Proof. Let x be the column i of M\sansQ . Consider an integer s such that 1 \leq s \leq \delta ,
and denote by vj the lattice point in [0, k]d whose coordinates are

vsj =

\left\{   k if 1\leq j \leq \delta (i - 1) and
\bigl( 
(j  - 1) mod \delta 

\bigr) 
+ 1 \not = s,

1 if 1\leq j \leq \delta i and
\bigl( 
(j  - 1) mod \delta 

\bigr) 
+ 1= s, and

0 otherwise.

By construction, a\cdot vs = 1, and vs is a point in \sansQ . The proposition then follows
from the observation that x is the barycenter of the points from v1 to v\delta .

For any integer i such that 0 \leq i \leq \sigma , we denote the column i+ 1 of the matrix
M\sansP by pi and the column i+ 1 of M\sansQ by qi.

Assume that \delta is at least 3, and consider the points

p=

\Biggl( 
1 - \theta 

\bigl( 
k(\delta  - 1)

\bigr) \sigma  - 1\bigl( 
k(\delta  - 1) - 1

\bigr) \bigl( 
k(\delta  - 1)

\bigr) \sigma 
\Biggr) 
p0 +

\sigma \sum 
i=1

\theta \bigl( 
k(\delta  - 1)

\bigr) i pi(3.6)

and

q=

\Biggl( 
k(\delta  - 1) + 1

k(\delta  - 1)
 - \theta 

\bigl( 
k(\delta  - 1)

\bigr) \sigma  - 1\bigl( 
k(\delta  - 1) - 1

\bigr) \bigl( 
k(\delta  - 1)

\bigr) \sigma 
\Biggr) 
q0 +

\sigma \sum 
i=1

\theta (1 + ( - 1)i)\bigl( 
k(\delta  - 1)

\bigr) i qi,(3.7)

where

\theta =

\bigl( 
k(1 - \delta ) - 1

\bigr) \bigl( 
k(1 - \delta )

\bigr) \sigma  - 1\bigl( 
k(1 - \delta )

\bigr) \sigma  - 1
.

These points are defined as linear combinations of the columns of M\sansP and M\sansQ .
If \delta is at least 4, they are convex combinations of these columns.
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2652 A. DEZA, S. ONN, S. POKUTTA, AND L. POURNIN

Proposition 3.6. If \delta is at least 4, then p is a convex combination of the columns
of M\sansP , and q is a convex combination of the columns of M\sansQ .

Proof. It suffices to show that the coefficients in the right-hand sides of (3.6) and
(3.7) are nonnegative and sum to 1. Assume that \delta is at least 4. In that case, \theta is
nonzero, and its inverse is expressed as

1

\theta 
=

1

k(\delta  - 1) + 1

\Biggl( 
k(\delta  - 1) +

1\bigl( 
k(1 - \delta )

\bigr) \sigma  - 1

\Biggr) 
.(3.8)

Since \sigma is positive, \bigm| \bigm| \bigm| \bigm| \bigm| 1\bigl( 
k(1 - \delta )

\bigr) \sigma  - 1

\bigm| \bigm| \bigm| \bigm| \bigm| \leq 1.(3.9)

It follows from (3.8) and (3.9) that 1/\theta , and therefore \theta are positive numbers.
Hence, all the coefficients in the right-hand sides of (3.6) and (3.7) are nonnegative,
except possibly for the coefficient of p0 in (3.6) and the coefficient of q0 in (3.7).
However, observe that according to (3.8),

1

\theta 
\geq 1

k(\delta  - 1) + 1

\Biggl( 
k(\delta  - 1) - 1\bigl( 

k(\delta  - 1)
\bigr) \sigma  - 1

\Biggr) 
,

and, as a consequence,

\theta \leq 
\bigl( 
k(\delta  - 1) + 1

\bigr) \bigl( 
k(\delta  - 1)

\bigr) \sigma  - 1\bigl( 
k(\delta  - 1)

\bigr) \sigma  - 1
.

It follows that the coefficient of p0 in the right-hand side of (3.6) is at least

1 - k(\delta  - 1) + 1\bigl( 
k(\delta  - 1) - 1

\bigr) 
k(\delta  - 1)

.

This expression is positive when k(\delta  - 1) is greater than 2. Hence, the coefficient
of p0 in the right-hand side of (3.6) is positive when k is at least 4. Likewise, the
coefficient of q0 in the right-hand side of (3.7) is at least

1

k(\delta  - 1)
+ 1 - k(\delta  - 1) + 1\bigl( 

k(\delta  - 1) - 1
\bigr) 
k(\delta  - 1)

,

which is positive as well when k(\delta  - 1) is greater than 2. Now observe that

\sigma \sum 
i=1

1\bigl( 
k(\delta  - 1)

\bigr) i =
\bigl( 
k(\delta  - 1)

\bigr) \sigma  - 1\bigl( 
k(\delta  - 1) - 1

\bigr) \bigl( 
k(\delta  - 1)

\bigr) \sigma .
Therefore, the coefficients in the right-hand side of (3.6) sum to 1, and the coef-

ficients in the right-hand side of (3.7) sum to

k(\delta  - 1) + 1

k(\delta  - 1)
+

\sigma \sum 
i=1

\theta \bigl( 
k(1 - \delta )

\bigr) i .
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KISSING POLYTOPES 2653

Finally, observe that

\sigma \sum 
i=1

\theta \bigl( 
k(1 - \delta )

\bigr) i = \theta 

\bigl( 
k(1 - \delta )

\bigr) \sigma  - 1\bigl( 
k(1 - \delta ) - 1

\bigr) \bigl( 
k(1 - \delta )

\bigr) \sigma =
1

k(1 - \delta )
.

Hence, the coefficients in the right-hand side of (3.7) also sum to 1.

We are now ready to bound the distance between \sansP and \sansQ . Note that the following
theorem immediately implies Theorem 3.1.

Theorem 3.7. If \delta is at least 4, then

d(\sansP ,\sansQ )\leq 
\surd 
\delta \sigma \bigl( 

k(\delta  - 1)
\bigr) \sigma .

Proof. According to Propositions 3.4, 3.5, and 3.6, the points p and q are con-
tained in \sansP and \sansQ , respectively. As a consequence,

d(\sansP ,\sansQ )\leq d(p, q).

Now observe that, by construction,

d(p, q) =
\surd 
\delta d(p, q).

Hence, it suffices to show that

d(p, q)\leq 
\surd 
\sigma \bigl( 

k(\delta  - 1)
\bigr) \sigma .

By (3.6) and (3.7), the first coordinate of q - p is

q1  - p1 =
k(\delta  - 1) + 1

\delta k(\delta  - 1)
 - \theta 

\bigl( 
k(\delta  - 1)

\bigr) \sigma  - 1

\delta 
\bigl( 
k(\delta  - 1) - 1

\bigr) \bigl( 
k(\delta  - 1)

\bigr) \sigma 
+

\theta 

\delta 

\sigma \sum 
i=1

1\bigl( 
k(\delta  - 1)

\bigr) i + k(\delta  - 1) + 1

\delta 

\sigma \sum 
i=1

\theta \bigl( 
k(1 - \delta )

\bigr) i .
However, since

\sigma \sum 
i=1

1\bigl( 
k(\delta  - 1)

\bigr) i =
\bigl( 
k(\delta  - 1)

\bigr) \sigma  - 1\bigl( 
k(\delta  - 1) - 1

\bigr) \bigl( 
k(\delta  - 1)

\bigr) \sigma 
and

\sigma \sum 
i=1

\theta \bigl( 
k(1 - \delta )

\bigr) i = 1

k(1 - \delta )
,

it follows that the first coordinate of q - p is equal to 0. According to (3.6) and (3.7)
again, for any integer j satisfying 1\leq j \leq \sigma ,

qj+1  - pj+1 =
1

\delta 

\theta \bigl( 
k(1 - \delta )

\bigr) j +
k(\delta  - 1) + 1

\delta 

\sigma \sum 
i=j+1

\theta \bigl( 
k(1 - \delta )

\bigr) i .
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2654 A. DEZA, S. ONN, S. POKUTTA, AND L. POURNIN

However,

\sigma \sum 
i=j+1

1\bigl( 
k(1 - \delta )

\bigr) i = 1 - 
\bigl( 
k(1 - \delta )

\bigr) \sigma  - j

(k(\delta  - 1) + 1
\bigr) \bigl( 
k(1 - \delta )

\bigr) \sigma ,
and as a consequence,

qj+1  - pj+1 =
\theta 

\delta 
\bigl( 
k(1 - \delta )

\bigr) \sigma =
k(\delta  - 1) + 1

\delta k(1 - \delta )
\Bigl( 
1 - 

\bigl( 
k(1 - \delta )

\bigr) \sigma \Bigr) .
This quantity can be bounded as

| qj+1  - pj+1| \leq 
1

(\delta  - 1)
\Bigl( \bigl( 

k(\delta  - 1)
\bigr) \sigma  - 1

\Bigr) \leq 1\bigl( 
k(\delta  - 1)

\bigr) \sigma ,
and therefore,

d(p, q)\leq 
\surd 
\sigma \bigl( 

k(\delta  - 1)
\bigr) \sigma ,

which completes the proof

4. Special cases. From now on, we denote the smallest possible distance be-
tween two disjoint lattice (d, k)-polytopes by \varepsilon (d, k). In this section, we focus on
certain relevant special cases. The upper bounds stated in section 3 imply that \varepsilon (d, k)
decreases exponentially fast with d, but these bounds only hold when d is large enough.
We will prove a different bound that holds for all d at least 2, according to which \varepsilon (d,1)
is at most inverse linear as a function of d. We shall see in section 5 that this bound
on \varepsilon (d,1) is tight when d is equal to 2 or 3.

Lemma 4.1. For any d at least 2,

\varepsilon (d,1)\leq 1\sqrt{} 
d(d - 1)

.

Proof. Let P be the diagonal of [0,1]d that is incident to the origin of \BbbR d. Denote
by Q the (d - 2)-dimensional simplex whose vertices are the points x of \BbbR d such that
one of the first d  - 1 coordinates of x is equal to 1 and all of its other coordinates
are equal to 0. Note that P and Q are disjoint as the only point in P whose last
coordinate is equal to 0 is the origin of \BbbR d. The point p of \BbbR d with all coordinates
equal to 1/d belongs to P . The centroid of Q is the point q whose last coordinate is
0 and whose other coordinates are all equal to 1/(d - 1). Since

d(p, q) =
1\sqrt{} 

d(d - 1)
,

this proves the lemma. The construction is illustrated in Figure 2.

We complement Lemma 4.1 by showing that \varepsilon (d, k) is at most inverse linear as a
function of d and as a function of k for all d and k at least 2.

Lemma 4.2. For any k and d at least 2,

\varepsilon (d, k)\leq 1

(d - 1)k
.
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KISSING POLYTOPES 2655

Q

P

x4 = 0

x4 = 1

Fig. 2. The construction of Lemma 4.1 when d is equal to 4. The cube at the top is the facet
of [0,1]4 made of the points x such that x4 = 0, and the cube at the bottom is the opposite facet.

Proof. Let P denote the point of \BbbR d with all coordinates equal to 1. Further
denote by Q the (d - 1)-dimensional simplex whose vertices are the origin of \BbbR d and
all the points such that one of the first d - 1 coordinates is equal to k  - 1 and all of
the other coordinates are equal to k. Observe that the barycenter of the facet of Q
that does not contain the origin is the point x such that the last coordinate of x is k
and all of its other coordinates are k - 1/(d - 1). Now denote

\lambda =
(d - 1)(dk - 1)

1 + (d - 1)k(dk - 2)
,

and consider the point q equal to \lambda x. Note that 0\leq \lambda \leq 1 when both k and d are at
least 2, and, in that case, q is contained in Q. In addition,

qi = 1 - k

(d - 1)k2 +
\bigl( 
(d - 1)k - 1

\bigr) 2
when 1\leq i\leq d - 1 and

qd = 1+
(d - 1)k - 1

(d - 1)k2 +
\bigl( 
(d - 1)k - 1

\bigr) 2 .
As a consequence, the distance of P and q is

d(P, q) =
1\sqrt{} 

(d - 1)k2 +
\bigl( 
(d - 1)k - 1

\bigr) 2 .
It therefore suffices to observe that

1\sqrt{} 
(d - 1)k2 +

\bigl( 
(d - 1)k - 1

\bigr) 2 \leq 1

(d - 1)k

when k\geq 2 in order to complete the proof.

Let us now turn our attention to the case when the dimensions of P and Q are
fixed independently on the dimension of the ambient space as, for example, when P
and Q are two line segments that live in a higher dimensional space. We recall that
the dimension of a subset of \BbbR d is defined as the dimension of its affine hull.
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Table 1
A few values of 1/\varepsilon (d, k).

k

d 1 2 3 4 5 6

2
\surd 
2

\surd 
5

\surd 
13 5

\surd 
41

\surd 
61

3
\surd 
6 5

\surd 
2

\surd 
299

4 3
\surd 
2

5
\surd 
58

Lemma 4.3. For any two disjoint lattice (d, k)-polytopes P and Q,

d(P,Q)\geq \varepsilon 
\bigl( 
dim(P \cup Q), k

\bigr) 
.

Proof. The proof is by induction on d - dim(P \cup Q). If this quantity is equal to
0, then the result is immediate. Let us assume that d is greater than the dimension
of P \cup Q. In that case, there exists a hyperplane H of \BbbR d that contains P and Q.
Identify \BbbR d - 1 with the subspace of \BbbR d spanned by the first d - 1 coordinates. We can
assume that the vectors orthogonal to H do not belong to \BbbR d - 1 by using, if needed, an
adequate permutation of the coordinates of \BbbR d. Now consider the orthogonal projec-
tion \pi : \BbbR d \rightarrow \BbbR d - 1. Since the vectors orthogonal to H do not belong to \BbbR d - 1, the
restriction of \pi to H is a bijection between H and \BbbR d - 1. Moreover, \pi (\BbbZ d \cap H) is a
subset of \BbbZ d - 1. Hence, \pi (P ) and \pi (Q) are two disjoint lattice (d - 1, k)-polytopes,
and the dimensions of \pi (P )\cup \pi (Q) and P \cup Q coincide. In particular,

d - 1 - dim
\bigl( 
\pi (P )\cup \pi (Q)

\bigr) 
= d - dim

\bigl( 
P \cup Q

\bigr) 
 - 1.

By induction,

d
\bigl( 
\pi (P ), \pi (Q)

\bigr) 
\geq \varepsilon 
\Bigl( 
dim

\bigl( 
\pi (P )\cup \pi (Q)

\bigr) 
, k
\Bigr) 
= \varepsilon 
\bigl( 
dim(P \cup Q), k

\bigr) 
.(4.1)

Finally, observe that the distance between two points in H is always at least the
distance between their images by \pi . Therefore,

d(P,Q)\geq d
\bigl( 
\pi (P ), \pi (Q)

\bigr) 
,

and combining this with (4.1) proves the lemma.

We will see in section 5 that \varepsilon (3,1) is equal to 1/
\surd 
6 (see, for instance, Table 1)

and that this distance is achieved between a diagonal of the cube [0,1]3 and a diagonal
of one of its square faces. An immediate consequence of Lemma 4.3 is that this holds
independently on the dimension of the ambient space.

Theorem 4.4. The smallest possible distance between two disjoint line segments
whose vertices belong to \{ 0,1\} d is 1/

\surd 
6.

5. Computational aspects. In this section, we are interested in computing the
explicit value of \varepsilon (d, k), the smallest between two disjoint lattice (d, k)-polytopes. A
strategy is to enumerate all possible pairs of disjoint lattice (d, k)-polytopes. Let us
give some properties that allow us to reduce the search space.

By its definition, \varepsilon (d, k) is a nonincreasing function of d for all fixed k. We can
prove the following stronger statement.
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KISSING POLYTOPES 2657

Theorem 5.1. \varepsilon (d, k) is a decreasing function of d for all fixed k.

Proof. Let us identify \BbbR d - 1 with the subspace of \BbbR d spanned by the first d - 1
coordinates. Consider two lattice (d - 1, k)-polytopes P and Q such that d(P,Q) is
equal to \varepsilon (d - 1, k). Now consider the map \phi :\BbbR d - 1 \rightarrow \BbbR d such that \phi (x) is the point
of \BbbR d obtained from x by changing its last coordinate to 1.

Now consider the lattice (d, k)-polytope

Q\prime = conv
\bigl( 
\phi (P )\cup Q

\bigr) 
.

Consider a point p in P and a point q in Q whose distance is equal to \varepsilon (d - 1, k).
By construction, both q and \phi (p) belong to Q\prime . Let \lambda be a number in [0,1], and
denote by \delta the squared distance between the points p and \lambda \phi (p)+(1 - \lambda )q. It should
be noted that \delta coincides with d(p, q)2 when \lambda is equal to 0. Observe that

\delta = (1 - \lambda )2d(p, q)2 + \lambda 2.

Differentiating this equality with respect to \lambda yields

\partial \delta 

\partial \lambda 
= 2\lambda 

\Bigl( 
1 + d(p, q)2

\Bigr) 
 - 2d(p, q)2.

Note that this derivative is negative for all \lambda close enough to 0. In particular, one
can find a value of \lambda such that \delta is less than d(p, q)2. As \delta is the squared distance
between p and a point in Q\prime , this shows that

d(P,Q\prime )<d(p, q).

Since the right-hand side of this inequality is equal to \varepsilon (d - 1, k) and its left-hand
side is at least \varepsilon (d, k), this proves the lemma.

According to the following theorem, in order to compute \varepsilon (d, k) by enumerating
all possible pairs of lattice (d, k)-polytopes, one only needs to consider pairs of disjoint
simplices whose dimensions sum to d - 1.

Theorem 5.2. There exist two lattice (d, k)-polytopes P and Q such that
(i) d(P,Q) is equal to \varepsilon (d, k),
(ii) both P and Q are simplices,
(iii) dim(P ) + dim(Q) is equal to d - 1, and
(iv) the affine hulls of P and Q are disjoint.

Proof. Consider two disjoint lattice (d, k)-polytopes P and Q whose distance is
\varepsilon (d, k). Among all such pairs of polytopes, we choose P and Q in such a way that
the sum of the number of their vertices is as small as possible. We shall prove that P
and Q then satisfy assertions (ii) and (iii) in the statement of the theorem.

Consider a point p in P and a point q in Q such that d(p, q) is equal to d(P,Q).
According to Carath\'eodory's theorem, p is a convex combination of a set SP of at
most dim(P )+1 affinely independent vertices of P . Moreover, we can choose SP such
that all the points it contains have a positive coefficient in that convex combination.
Equivalently, p lies in the relative interior of conv(SP ). In that case, \varepsilon (d, k) is achieved
as the distance between conv(SP ) and Q. It then follows from the above choice for
P and Q that SP must be precisely the vertex set of P . As a consequence, P is a
simplex that contains p in its relative interior. By the same argument, Q is also a
simplex, and q lies in its relative interior, which proves assertion (ii).
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2658 A. DEZA, S. ONN, S. POKUTTA, AND L. POURNIN

Let us now turn our attention to assertion (iii). Observe that if dim(P )+dim(Q)
is less than d - 1, then dim(P \cup Q) is at most d - 1, and by Lemma 4.3, the distance
between P and Q is at least \varepsilon (d - 1, k), which contradicts Theorem 5.1 because d(P,Q)
is equal to \varepsilon (d, k). This shows that dim(P ) + dim(Q) is at least d - 1. Let us now
show that the opposite inequality holds.

By convexity, one can associate a positive number \alpha u with each point u in SP \cup SQ

in such a way that these numbers collectively satisfy\left\{       
\sum 
u\in SP

\alpha uu= p,\sum 
u\in SP

\alpha u = 1,

and the same equalities hold when SP is replaced by SQ and p by q. Now consider a
vertex vP of P and a vertex vQ of Q. As P and Q are simplices, the sets

S\prime 
P =

\Bigl\{ 
u - vP : u\in SP \setminus \{ vP \} 

\Bigr\} 
and

S\prime 
Q =

\Bigl\{ 
u - vQ : u\in SQ\setminus \{ vQ\} 

\Bigr\} 
are linearly independent. Further observe that all the vectors they contain are or-
thogonal to p - q. As a consequence, these vectors collectively span a linear subspace
M of \BbbR d of dimension at most d - 1. Assume for contradiction that the dimensions
of P and Q sum to at least d. In that case, the dimensions of the subspaces of M
spanned by S\prime 

P and S\prime 
Q also sum to at least d, and the intersection of these subspaces

has dimension at least one. Consider a nonzero point x in that intersection. This
point can be expressed as a linear combination of the points from S\prime 

P ; that is, one can
associate each point u in SP \setminus \{ vP \} with a number \beta u such that\sum 

u\in SP \setminus \{ vP \} 

\beta u(u - vP ) = x.

As x is nonzero, the coefficients in the left-hand side of this equality cannot all
be equal to zero. For any u in SP , denote \gamma u = \beta u when u \not = vP , and

\gamma u = - 
\sum 

u\in SP \setminus \{ vP \} 

\beta u

when u= vP . With this notation, \sum 
u\in SP

\gamma u = 0(5.1)

and \sum 
u\in SP

\gamma uu= x.(5.2)

Likewise, one can associate each point u in SQ with a number \gamma u such that (5.1)
and (5.1) still hold when replacing SP by SQ.
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Now consider the number

\lambda =min

\biggl\{ 
\alpha u

\gamma u
: u\in SP \cup SQ, \gamma u > 0

\biggr\} 
.

It follows from this choice for \lambda that the point p  - \lambda x is still contained in P
because the coefficients of the resulting affine combination of SP all remain nonnega-
tive. Likewise, q  - \lambda x still belongs to Q. Further observe that the distance between
p - \lambda x and q  - \lambda x is still \varepsilon (d, k). However, also by our choice for \lambda , at least one of
the coefficients in the expression of p - \lambda x as a convex combination of SP or in the
expression of q  - \lambda x as a convex combination of SQ must vanish. In other words,
\varepsilon (d, k) is achieved by a pair of disjoint lattice simplices whose combined number of
vertices is less than that of P and Q. This contradicts the assumption that P and
Q have the smallest combined number of vertices among the pairs of disjoint lattice
(d, k)-polytopes, whose distance is equal to \varepsilon (d, k), and proves assertion (iii).

Finally, observe that the affine hulls of P and Q are contained in two hyperplanes
of \BbbR d orthogonal to p - q. These hyperplanes are disjoint because they are parallel,
and one of them contains p while the other contains q. Hence, (iv) holds.

Using Theorem 5.2, one can compute \varepsilon (d, k). This is done in practice by generat-
ing all the subsets of at most d points from \{ 0,1, . . . , k\} d, by computing the dimension
of their affine hull, and by discarding the subsets such that this dimension is less by at
least 2 than the number of points they contain. Then, all the pairs of the remaining
subsets whose dimensions sum to d - 1 are considered, and the distance of their con-
vex hulls is computed. The requirement that the dimensions of the considered pairs
sum to d - 1 can be enforced without loss of generality thanks to Theorem 5.2. This
procedure can be further sped up by computing up to the symmetries of [0, k]d. This
allowed us to determine the values of \varepsilon (d, k), whose inverses are reported in Table 1.

Let us describe two lattice (d, k)-polytopes that achieve each of the values of
\varepsilon (d, k) reported in Table 1. The distance of the origin of \BbbR 2 to the diagonal of [0,1]2

that does not contain the origin is equal to \varepsilon (2,1). For all the other values of k
considered in Table 1 in the two-dimensional case, \varepsilon (2, k) is achieved by the point
(1,1) and the line segment with vertices (0,0) and (k, k - 1). These configurations are
depicted at the top of Figure 3 when k is equal to 1, 2, or 3.

Pairs of line segments whose distance are \varepsilon (3,1), \varepsilon (3,2), and \varepsilon (3,3) are shown at
the bottom of Figure 3. As already mentioned, \varepsilon (3,1) is achieved by a diagonal of

Fig. 3. Two lattice polytopes P and Q such that d(P,Q) is equal to \varepsilon (2, k) (top) and to \varepsilon (3, k)
(bottom) when k is equal to 1, to 2, or to 3 (from left to right).
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the cube [0,1]3 and a diagonal of a square face. In addition, the line segment with
vertices (0,0,0) and (1,2,2) is at distance \varepsilon (3,2) of the segment with vertices (0,1,2)
and (2,2,1). Similarly, the line segment with vertices (0,0,0) and (2,3,3) is at distance
\varepsilon (3,3) from the segment with vertices (0,1,2) and (3,2,0). In four dimensions, \varepsilon (4,1)
is achieved between the diagonal of the hypercube [0,1]4 incident to the origin and the
triangle with vertices (0,0,0,1), (0,1,1,0), and (1,0,1,0). In five dimensions, \varepsilon (5,1)
is achieved between the diagonal of the hypercube [0,1]5 incident to the origin and
the tetrahedron with vertices (0,0,0,1,1), (0,0,1,0,1), (0,1,1,1,0), and (1,1,0,0,0).
In the configurations we have just described, \varepsilon (d,1) is always achieved by a diagonal
of the hypercube and a (d  - 2)-dimensional simplex. It should be noted that these
simplices are not standard, and these configurations are therefore different from the
ones that we used in the proof of Lemma 4.1.

6. Estimates in terms of encoding length. We finally turn our attention to
bounding d(P,Q) in the case when P and Q are rational polytopes. In practice, the
parameter that quantifies the size of a rational polytope is its binary encoding input
data length. This parameter is the number L of bits required to represent a rational
polytope P using either a system of linear inequalities whose set of solutions is P , or
a set of points whose convex hull is P . Note, however, that L depends on the choice
of a representation for P and may grow large in the case when the representation is
redundant. Therefore, we will follow the terminology from [13] and use the vertex
and facet complexities of P for our analysis. Let us introduce these quantities. If \alpha 
and \beta are two relatively prime integers such that \beta is positive, the size of \alpha /\beta is

size

\biggl( 
\alpha 

\beta 

\biggr) 
= 1+

\bigl\lceil 
log2(| \alpha | + 1)

\bigr\rceil 
+
\bigl\lceil 
log2(\beta + 1)

\bigr\rceil 
.

In turn, the size of a vector a from \BbbR d with rational coordinates is

size(a) = d+

d\sum 
i=1

size(ai).

In other words, the size of a vector with rational coordinates is the number of its
coordinates plus the sum of the sizes of these coordinates.

If P is a rational polytope, then its vertices have rational coordinates, and the
vertex complexity of P is the smallest number \nu (P ) such that \nu (P ) is at least d and
the size of any vertex of P is at most \nu (P ). Still under the assumption that P is a
rational polytope, the facet complexity of P is the smallest number \varphi (P ) such that
\varphi (P ) is at least d, and there exists a family of vectors a1 to an from \BbbQ d and a family
of rational numbers b1 to bn such that P can be described as

P =
\bigl\{ 
x\in \BbbR d : \forall i\in \{ 1, . . . , d\} , ai\cdot x\leq bi

\bigr\} 
,

and for all i satisfying 1\leq i\leq n,

size(ai) + size(bi)\leq \varphi (P ).

The following is proven in [13] (see Theorem 10.2 therein).

Theorem 6.1. If P is rational, then \nu (P )\leq 4d2\varphi (P ) and \varphi (P )\leq 4d2\nu (P ).

The size of a matrix can be defined in the same spirit as the size of a vector;
that is, if M is a matrix with rational coefficients, then size(M) is the number of
coefficients in M plus the sum of the sizes of these coefficients.

The following statement is Theorem 3.2 from [13].
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KISSING POLYTOPES 2661

Theorem 6.2. If M is a square matrix with rational coefficients, then

size
\bigl( 
det(M)

\bigr) 
\leq 2 size(M).

We now state two propositions that allow us to bound the sizes of rational numbers
or vectors. The first one is given as Exercise 1.3.5 in [7].

Proposition 6.3. If a and b are two vectors from \BbbQ d, then

size

\Biggl( 
d\sum 

i=1

ai

\Biggr) 
\leq 2

d\sum 
i=1

size(ai)

and

size(a\cdot b)\leq 2 size(a) + 2size(b).

The second proposition, whose proof is straightforward, provides the smallest
possible positive rational number with a given size.

Proposition 6.4. If x is a positive rational number, then

4

2size(x)
\leq x\leq 2size(x)

4
.

We are ready to give lower bounds on the distance of two disjoint rational poly-
topes P and Q in terms of their binary encoding input data length. In the statement
of the following theorem and its proof, we denote

\nu (P,Q) =max
\bigl\{ 
\nu (P ), \nu (Q)

\bigr\} 
and

\varphi (P,Q) =max
\bigl\{ 
\varphi (P ),\varphi (Q)

\bigr\} 
.

Theorem 6.5. If P and Q are disjoint rational polytopes, then

d(P,Q)\geq 8

24\nu (P,Q)(2d)4
(6.1)

and

d(P,Q)\geq 8

24\varphi (P,Q)(2d)6
.(6.2)

Proof. In this proof, we consider the vectors from w0 to wr as well as the matrices
M andM1 toMr that were associated to P and Q at the beginning of section 2. Recall
that the vectors from w0 to wr are obtained by subtracting from one another two
vertices of P , two vertices of Q, or a vertex of P and a vertex of Q. As a consequence,
it follows from the first inequality in the statement of Proposition 6.3 that

size
\bigl( 
wi
\bigr) 
\leq 2\nu (P,Q).

for every integer i satisfying 0\leq i\leq r. In turn, for any two integers i and j satisfying
0\leq i\leq j \leq r, it follows from Proposition 6.3 that

size
\bigl( 
wi\cdot wj

\bigr) 
\leq 4\nu (P,Q),
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and by Theorem 6.2,

size
\bigl( 
det(M)

\bigr) 
\leq 8r2\nu (P,Q).

In addition, the same inequality holds when replacing M by any of the matrices
M1 to Mr. Now consider the vector

a=det(M)w0  - 
r\sum 

i=1

det(Mi)w
i,

and observe that ai is the scalar product of the vector from \BbbR r+1 whose coordinates
are det(M) and det(M1) to det(Mr) with the vector whose coordinates are w0

i and
 - w1

i to  - wr
i . Therefore, by Proposition 6.3,

size(a)\leq 2d(8r2 + 1)(r+ 1)\nu (P,Q)

and

size
\bigl( 
w0\cdot a

\bigr) 
\leq 4
\bigl( 
d(8r2 + 1)(r+ 1) + 1

\bigr) 
\nu (P,Q).

However, recall that r is at most d - 1. Hence,

size(a)\leq 16d4\nu (P,Q)(6.3)

and

size
\bigl( 
w0\cdot a

\bigr) 
\leq 32d4\nu (P,Q).

In turn, according to Lemma 2.1 and Proposition 6.4,

d(P,Q)\geq 4

232d4\nu (P,Q)\| a\| 
.(6.4)

It also follows from (6.3) and Proposition 6.3 that

size
\bigl( 
\| a\| 2

\bigr) 
\leq 64d4\nu (P,Q)

and therefore, by Proposition 6.4,

\| a\| 2 \leq 264d
4\nu (P,Q)

4
.(6.5)

The desired lower bound on the distance of P andQ in terms of \nu (P,Q) is obtained
by combining the inequalities (6.4) and (6.5). Finally, recall that Theorem 6.1 allows
us to upper bound \nu (P,Q) by a function of \varphi (P,Q). Using this bound on \nu (P,Q) in
the denominator of the right-hand side of (6.1) proves (6.2).

We can upper bound the smallest possible distance of two disjoint rational poly-
topes in terms of the same parameters. Such bounds can be easily derived from
Theorem 3.2. It should be noted that these bounds no longer depend on k or d. In
particular, the following theorem is obtained using two 0/1-polytopes whose dimen-
sion gets arbitrarily large, and even though we do not use the dependence on k, their
distance decreases exponentially fast with their binary encoding length.
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Theorem 6.6. For any number \alpha in the interval ]0,1[ and any positive number
N , there exist two disjoint rational polytopes P and Q such that both \nu (P,Q) and
\varphi (P,Q) are at least N and the distance of P and Q satisfies

d(P,Q)\leq 1\biggl( 
\nu (P,Q)

4

\biggr) (1 - \alpha )
\bigl( 

\nu (P,Q)
4

\bigr) \alpha 
and

d(P,Q)\leq 1\biggl( 
\varphi (P,Q)

16

\biggr) 1 - \alpha 
3

\bigl( 
\varphi (P,Q)

16

\bigr) \alpha 
3
.

Proof. The theorem is proved by rewriting Theorem 3.2 in terms of the binary
encoding input data length of P and Q. Indeed, consider a positive integer N , and
assume that d is at least N and large enough for Theorem 3.2 to hold when k is
equal to 1. Consider the two polytopes P and Q provided by the theorem in that
case. Recall that by definition of the vertex and facet complexities, both \nu (P,Q) and
\varphi (P,Q) are at least d. Hence, both str at least N , as desired. Moreover, both \nu (P )
and \nu (Q) are at most 4d as the coordinates of the vertices of P and Q are 0 or 1, and
the sizes of these two numbers are 2 and 3. Hence, \nu (P,Q) is at most 4d and \varphi (P,Q)
is at most 16d3 according to Theorem 6.1, which can be rewritten as

d\geq \nu (P,Q)

4

and

d\geq 
\biggl( 
\varphi (P,Q)

16

\biggr) 1
3

.

Bounding d using these two inequalities in the denominator of the upper bound
on d(P,Q) from Theorem 3.2 proves the theorem.
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