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Algorithmic and geometric aspects of 
combinatorial and continuous optimization 



linear optimization 

Given an n-dimensional vector b and an n x d (full row-rank) matrix A 
find, in any, a d-dimensional vector x such that : 
  
Ax = b     Ax = b 

    x ≥ 0 
 

linear algebra    linear optimization 
 
 
“Can linear optimization be solved in strongly polynomial time?”  
is listed by Smale (Fields Medal 1966) as one of the top problems for 
the XXI century 
 
Polynomial : execution time bounded by a polynomial in n, d, and 
input data length L  



linear optimization 

Given an n-dimensional vector b and an n x d (full row-rank) matrix A 
find, in any, a d-dimensional vector x such that : 
  
Ax = b     Ax = b 

    x ≥ 0 
 

linear algebra    linear optimization 
 
 
“Can linear optimization be solved in strongly polynomial time?”  
is listed by Smale (Fields Medal 1966) as one of the top problems for 
the XXI century 
 
Strongly polynomial : polynomial time; number of arithmetic 
operations bounded by a polynomial in the dimension of the problem 
(independent from the input data length L) 



linear optimization algorithms 

Given an n-dimensional vector b and an n x d (full row-rank) matrix A 
and a d-dimensional cost vector c, solve : { max cTx : Ax = b, x ≥ 0 } 
 
Simplex methods (Dantzig 1947) pivot-based, combinatorial, not 
proven to be polynomial, efficient in practice  
 
Ellipsoid methods (Khachiyan 1979)  
polynomial ⇒ linear optimization is polynomial time solvable  
 
Interior point methods (Karmarkar 1984) 
path-following, polynomial, efficient in practice  
 
Primal-dual interior point (Kojima-Mizuno-Yoshise 1989) 
 
Criss-cross (Terlaky 1983, Wang 1985, Chang 1979) 
Volumetric (Vaidya-Atkinson 1993, Anstreicher 1997) 
Monotonic build-up simplex (Anstreicher-Terlaky 1994) 
….. 



Given an n-dimensional vector b and an n x d (full row-rank) matrix A 
and a d-dimensional cost vector c, solve : { max cTx : Ax = b, x ≥ 0 } 
 
Simplex methods (Dantzig 1947): pivot-based, combinatorial, not 
proven to be polynomial, efficient in practice  
 
Ø  start from a feasible basis 
Ø  use a pivot rule 
Ø  find an optimal solution after a finite number of iterations 
Ø  most known pivot rules are known to be exponential  
     (worst case); efficient implementations exist 
 
 

linear optimization algorithms  
simplex methods 



Given an n-dimensional vector b and an n x d (full row-rank) matrix A 
and a d-dimensional cost vector c, solve : { max cTx : Ax = b : x ≥ 0 } 
 
Simplex methods (Dantzig 1947): pivot-based, combinatorial, not 
proven to be polynomial, efficient in practice  
 
Ø  start from a feasible basis 
Ø  use a pivot rule 
Ø  find an optimal solution after a finite number of iterations 
Ø  most known pivot rules are known to be exponential  
     (worst case)  nevertheless efficient  
      implementations exist 
 
 

linear optimization algorithms  
simplex methods 



Klee-Minty 1972: edge-path followed by the simplex method with 
Dantzig’s rule visits the 2d vertices of a combinatorial cube (n = 2d)  
⇒ 2d - 1 pivots required to reach the optimum 
  
Zadeh 1973 : bad network problems  
 
Zadeh 1980 : deformed products and least entered rule 
 
Amenta-Ziegler 1999 : deformed products  
 
Friedmann 2011 : least entered rule is superpolynomial 
 
Surveys : Terlaky-Zhang 1993, Ziegler 2004, Meunier 2013 
 
 
… Avis-Friedmann 2016…  
 

linear optimization algorithms  
simplex methods 



Linear Optimization? 

Zadeh’s offer (Ziegler 2004)  
(Avis’ postface to Zadeh 1980 report, 2009 reprint) 



David Avis, Norman Zadeh, Oliver Friedmann, Russ Caflish (IPAM 2011) 



Given an n-dimensional vector b and an n x d (full row-rank) matrix A 
and a d-dimensional cost vector c, solve : { max cTx : Ax = b, x ≥ 0 } 
 
Interior Point Methods : 
path-following, polynomial, efficient in practice  
 
Ø  start from the analytic center 
Ø   follow the central path 
Ø   converge to an optimal solution in O(√nL) iterations 
      (L:  input data length) 
 
 

_ 

µmax cΤx − ln(b− Ax)i
i
∑

µ : central path parameter 
x ∈P : Ax ≤ b 

analytic  
center 

central 
path optimal 

solution 

c 

Linear optimization algorithms  
(central path following) interior point methods 



Tardos 1985: algorithm polynomial in n, d, and LA (size of A) 
⇒ strongly polynomial for minimum cost flow, bipartite matching etc. 
… Orlin 1986, Kitahara-Mizuno 2011, Mizuno 2014, Mizuno-Sukegawa-
Deza 2015... 
 
Ye 2011 : strongly polynomial simplex for Markov Decision Problem 
 
Vavasis-Ye 1996 : O(d 3.5 log(d χA)) primal-dual interior point method  
…Megiddo-Mizuno-Tsuchiya 1998, Monteiro-Tsuchiya 2003… 
 
Bonifas-Summa-Eisenbrand-Hähnle-Niemeier 2014: O(d 4ΔA

2 log(d ΔA)) 
diameter         (ΔA  largest sub-determinant norm; Dyer-Frieze 1994) 
 
Dadush-Hähnle 2015: O(d 3/δA log(d/δA)) expected (shadow vertex) 
simplex pivots  (δA  curvature ; 1/δA

 ≤ d ΔA
2 ) 

 
…. 

linear optimization  
(some) combinatorial and geometric parameters  



Diameter (of a polytope) :  

lower bound for the number of iterations for pivoting 
simplex methods 

Curvature (of the central path associated to a polytope) : 

large curvature indicates large number of iterations 
for path following interior point methods 

linear optimization diameter and curvature  

analytic  
center 

central 
path optimal 

solution 

c 



Polytope P defined by n inequalities in dimension d 

   n = 5 : inequalities 
   d = 2 : dimension 

v  polytope : bounded polyhedron 

linear optimization : diameter and curvature  



Polytope P defined by n inequalities in dimension d 

   n = 5 : inequalities 
   d = 2 : dimension 

linear optimization : diameter and curvature  



P 

Polytope P defined by n inequalities in dimension d 

   n = 5 : inequalities 
   d = 2 : dimension 

linear optimization : diameter and curvature  



vertex v1 

vertex v2 

Diameter δ(P): smallest number such that any two vertices (v1,v2)  
can be connected by a path with at most δ(P) edges 

P 

   n = 5 : inequalities 
   d = 2 : dimension 
δ(P) = 2 : diameter 

linear optimization : diameter and curvature  



Diameter δ(P): smallest number such that any two vertices  
can be connected by a path with at most δ(P) edges 
 

Hirsch Conjecture 1957 :  δ(P) ≤ n - d 

P 

   n = 5 : inequalities 
   d = 2 : dimension 
δ(P) = 2 : diameter 

linear optimization : diameter and curvature  



Diameter δ(P): smallest number such that any two vertices  
can be connected by a path with at most δ(P) edges 
 

Hirsch Conjecture 1957 :  δ(P) ≤ n - d 
 

Ø  disproved by Santos 2012 using construction with n = 2d 

P 

   n = 5 : inequalities 
   d = 2 : dimension 
δ(P) = 2 : diameter 

linear optimization : diameter and curvature  



λc(P): total curvature of the primal central path of { max cTx : x ∈ P } 

c 

P 

   n = 5 : inequalities 
   d = 2 : dimension 

v  λc(P): redundant inequalities count 

linear optimization : diameter and curvature  



λc(P): total curvature of the primal central path of { max cTx : x ∈ P } 
 
λ(P): largest total curvature λc(P) over of all possible c 

c 

P 

   n = 5 : inequalities 
   d = 2 : dimension 

linear optimization : diameter and curvature  



λc(P): total curvature of the primal central path of { max cTx : x ∈ P } 
 
λ(P): largest total curvature λc(P) over of all possible c 
 
Continuous analogue of Hirsch Conjecture:   λ(P) = O(n) 
(Deza-Terlaky-Zinchenko 2008) 

c 

P 

   n = 5 : inequalities 
   d = 2 : dimension 

v  Dedieu-Shub 2005 hypothesis : λ(P) = O(d) 

linear optimization : diameter and curvature  



λc(P): total curvature of the primal central path of { max cTx : x ∈ P } 
 
λ(P): largest total curvature λc(P) over of all possible c 
 
Continuous analogue of Hirsch Conjecture:   λ(P) = O(n) 
(Deza-Terlaky-Zinchenko 2008) 

c 

P 

   n = 5 : inequalities 
   d = 2 : dimension 

v  Dedieu-Shub 2005 hypothesis : λ(P) = O(d) 
v  Deza-Terlaky-Zinchenko 2008 : polytope such that: λ(P) = Ω(2d) 

linear optimization : diameter and curvature  



λc(P): total curvature of the primal central path of { max cTx : x ∈ P } 
 
λ(P): largest total curvature λc(P) over of all possible c 
 
Continuous analogue of Hirsch Conjecture:   λ(P) = O(n) 
(Deza-Terlaky-Zinchenko 2008) 
 
Ø  disproved by Allamigeon-Benchimol-Gaubert-Joswig 2014 

c 

P 

   n = 5 : inequalities 
   d = 2 : dimension 

linear optimization : diameter and curvature  



Dedieu-Shub 2005 hypothesised λ(P) = O(d) 
 Dedieu-Malajovich-Shub 2005 proved it is true on average 
 (de Loera-Sturmfels-Vinzant 2012) 

 
Deza-Terlaky-Zinchenko 2008: P with exponential λ(P) and n = Ω(2d) 
 
Continuous analogue of Hirsch Conjecture: λ(P) = O(poly(n,d)) 
 
Allamigeon-Benchimol-Gaubert-Joswig 2014 : linear optimization instance 
(2n ≈ 3d) for which central-path following methods require Ω(2d/2) iterations  
 
⇒ path-following interior-point methods are not strongly polynomial  
 
Result obtained using tropical geometry, which reduces the complexity 
analysis to a combinatorial problem 

linear optimization : diameter and curvature  



Arrangement A defined by n hyperplanes in dimension d 

   n = 5 : hyperplanes 
   d = 2 : dimension 

linear optimization : diameter and curvature  



Simple arrangement:  
n > d and any d hyperplanes intersect at a unique distinct point 

   n = 5 : hyperplanes 
   d = 2 : dimension 

linear optimization : diameter and curvature  



For a simple arrangement, the number of bounded cells I = 
 

1−⎛ ⎞
⎜ ⎟
⎝ ⎠

n
d

   n = 5 : hyperplanes 
   d = 2 : dimension 
     I = 6 : bounded cells 

P1 

P2 

P3 

P4 

P6 P5 

linear optimization : diameter and curvature  



λc(A) : average value of λc(Pi) over the bounded cells Pi of A: 
 
 
λc(A) =                                   with  I = 
 
 

1
( )

i

i
i

Pλ
=

=
∑
I

c

I
n−1
d

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

c 

P1 

P3 

P2 

P6 

   n = 5 : hyperplanes 
   d = 2 : dimension 
     I = 6 : bounded cells 

v  λc(Pi): redundant inequalities count 

P5 

P4 

linear optimization : diameter and curvature  



λc(A) : average value of λc(Pi) over the bounded cells Pi  of A: 
 
 λ(A) : largest value of λc(A) over all possible c 

P1 

P3 

P2 

P6 

c 

   n = 5 : hyperplanes 
   d = 2 : dimension 
     I = 6 : bounded cells 

P5 

P4 

linear optimization : diameter and curvature  



λc(A) : average value of λc(Pi) over the bounded cells Pi  of A: 
 
 λ(A) : largest value of λc(A) over all possible c 
 
Dedieu-Malajovich-Shub 2005:         λ(A) ≤ 2   d 
 
(de Loera-Sturmfels-Vinzant 2012) 

P1 

P3 

P2 

P6 

c 

   n = 5 : hyperplanes 
   d = 2 : dimension 
     I = 6 : bounded cells 

π

P5 

P4 

v  A : simple arrangement 

linear optimization : diameter and curvature  



δ(A) : average diameter of a bounded cell of A: 

P1 

P3 

P2 

P6 

P4 

P5 

   n = 5 : hyperplanes 
   d = 2 : dimension 
     I = 6 : bounded cells 

v  A : simple arrangement 

linear optimization : diameter and curvature  



δ(A) : average diameter of a bounded cell of A: 
 
 
δ(A) =                                   with  I = 
 
 

1
( )

i

i
i

Pδ
=

=
∑
I

I

P1 

P3 

P2 

P6 

1−⎛ ⎞
⎜ ⎟
⎝ ⎠

n
d

P4 

P5 

   n = 5 : hyperplanes 
   d = 2 : dimension 
     I = 6 : bounded cells 

v  δ(A): average diameter ≠ diameter of A  
     ex: δ(A)= 1.333… 

linear optimization : diameter and curvature  



δ(A) : average diameter of a bounded cell of A: 
 
 
δ(A) =                                   with  I = 
 
 

1
( )

i

i
i

Pδ
=

=
∑
I

I

P1 

P3 

P2 

P6 

1−⎛ ⎞
⎜ ⎟
⎝ ⎠

n
d

P4 

P5 

   n = 5 : hyperplanes 
   d = 2 : dimension 
     I = 6 : bounded cells 

v  δ(Pi): only active inequalities count 

linear optimization : diameter and curvature  



P1 

P3 

P2 

P6 

P4 

P5 

   n = 5 : hyperplanes 
   d = 2 : dimension 
     I = 6 : bounded cells 

δ(A) : average diameter of a bounded cell of A: 
 

Conjecture :  δ(A) ≤ d 
(Deza-Terlaky-Zinchenko 2008)  

    
(discrete analogue of Dedieu-Malajovich-Shub result) 

linear optimization : diameter and curvature  



 Terlaky-Mut 2014 : Sonnevend curvature  

δ(P) ≤ n – d ? Hirsch conjecture (1957) 
                                               Santos 2012 

δ(A) ≤ d ?   Deza-Terlaky-Zinchenko 2008 λ(A) ≤ 2   d     Dedieu-Malajovich-Shub 2005  

λ(P) ≤ 2   n  Poly(n,d)? Deza-Terlaky-Zinchenko 2008 
                 Allamigeon-Benchimol-Gaubert-Joswig 2014 

π

π

linear optimization : diameter and curvature  



Hirsch bound  δ(P) ≤ n - d implies   δ(A) ≤ d   

Hirsch conjecture holds for d = 2 :   δ(A) ≤ 2  

Hirsch conjecture holds for d = 3 :   δ(A) ≤ 3 
 
Larman 1970, Barnette 1974  δ(P) ≤ 
(Labbé-Manneville-Santos 2015) 

Kalai-Kleitman 1992    δ(P) ≤   

Todd 2014     δ(P) ≤ 

Sukegawa-Kitahara 2015  δ(P) ≤  
 
Sukegawa 2016, 2018 
Borgwardt-de Loera-Finhold 2016 (Hirsch holds for transportation polytopes)  
….. 

1
1

+

−

n
n

1
1

+

−

n
n

1
1

+

−

n
n

log( )− dn d

log 2+dn

n2d /12

(n−d )log(d−1)

linear optimization : diameter and curvature  



  
dimension 2                δ(A) =                      
 
dimension 3                    δ(A) asympotically equal to 3                                                                      
                                                                                          
dimension d               d                  ≤  δ(A)  
 
                                                                      Deza-Xie 2009 

- -1⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

/n d n
d d

v  Haimovich’s probabilistic analysis of shadow-vertex simplex method, Borgwardt 1987 
v  Forge-Ramírez Alfonsín 2001: counting k-face cells of A*  

2 / 2
( 1)( 2)

⎡ ⎤⎢ ⎥
− −

n
n n

  
A*  cyclic arrangement (mainly consists of cubical cells) 

linear optimization : diameter and curvature  



Diameter (of a polytope) :  

lower bound for the number of iterations   
for the simplex method (pivoting methods) 
 
lower bound : (1+ ε) (n – d)    upper bound:   

Curvature (of the central path associated to a polytope) : 

large curvature indicates large number of iteration 
for central path following interior point methods  
 
lower bound : Ω(2d/2)  with 2n ≈ 3d     upper bound:   
 

Allamigeon-Benchimol-Gaubert-Joswig 2018 exponential lower bound 
for λ(P) contrasts with the belief that a polynomial upper bound for 
δ(P) might exist, e.g. δ(P)  ≤ d (n – d)/2 

log( )− dn d

1
2π

−⎛ ⎞
⎜ ⎟
⎝ ⎠

n
d

d

linear optimization : diameter and curvature  



Δ(d,n) : largest diameter over all d-dimensional polytopes with n facets  

Δ(d,n) 
n – d 

4 5 6 7 8 

d 

4 4 5 5 [6,7] 7+ 

5 4 5 6 [7,9] 7+ 

6 4 5 [6,7] [7,9] 8+ 

7 4 5 [6,7] [7,10] 8+ 

Δ(4,10) = 5, Δ(5,11) = 6  Goodey 1972 

linear optimization : diameter and curvature  



Δ(d,n) 
n – d 

4 5 6 7 8 

d 

4 4 5 5 6 7+ 

5 4 5 6 [7,8] 7+ 

6 4 5 6 [7,9] 8+ 

7 4 5 6 [7,10] 8+ 

Δ(4,11) = Δ (6,12) = 6  Bremner-Schewe 2011 

linear optimization : diameter and curvature  

Δ(d,n) : largest diameter over all d-dimensional polytopes with n facets  



Δ(d,n) 
n – d 

4 5 6 7 8 

d 

4 4 5 5 6 7 

5 4 5 6 7 [7,9] 

6 4 5 6 [7,8] [8,11] 

7 4 5 6 [7,9] [8,12] 

Δ(4,12) = Δ (5,12) = 7   Bremner-Deza-Hua-Schewe 2013 

linear optimization : diameter and curvature  

Δ(d,n) : largest diameter over all d-dimensional polytopes with n facets  



Characterize all combinatorial types of paths of length k 
 
Find necessary conditions for a (chirotope of a) polytope to admit  
an embedding of a k-path on its boundary (without shortcuts) 
 
If no such (chirotope of a) polytope exists:  Δ (d, n) ≠ k  

Δ(d,n) : largest diameter over all d-dimensional polytopes with n facets  

Polytopes & Diameter  



a vertex path of a simple polytope becomes a simplicial facet path 

1 

3 

2 

in the dual setting 

Polytopes & Diameter  



1 

3 

2 

4 

(1, 4) 

a vertex path of a simple polytope becomes a simplicial facet path 

in the dual setting 

Polytopes & Diameter  



1 

3 

2 

4 

(1, 4)  (2, 5) 

5 

a vertex path of a simple polytope becomes a simplicial facet path 

in the dual setting 

Polytopes & Diameter  



1 

3 

2 

4 

(1, 4)  (2, 5)  (3, 6) 

5 
6 

a vertex path of a simple polytope becomes a simplicial facet path 

in the dual setting 

Polytopes & Diameter  



1 

3 

2 

4 

(1, 4)  (2, 5)  (3, 6)  …     (10, 12)  (9, 13) 

5 
6 

7 

2 

13 

12 

10 

9 

4 

8 

3 

a vertex path of a simple polytope becomes a simplicial facet path 

in the dual setting 
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1 

3 

2 

4 

(1, 4)  (2, 5)  (3, 6)  …     (10, 12)  (9, 13) 

5 
6 

7 

2 

13 

12 

10 

9 

4 

8 

3 
revisit  3 

revisit  2  

a vertex path of a simple polytope becomes a simplicial facet path 

in the dual setting 

Polytopes & Diameter  



1 

3 

2 

4 

(1, 4)  (2, 5)  (3, 6)  …     (10, 12)  (9, 13) 

5 
6 

7 

2 

13 

12 

10 

9 

4 

8 

3 
revisit  3 

revisit  2 

drop  11 

a vertex path of a simple polytope becomes a simplicial facet path 

in the dual setting 

Polytopes & Diameter  



generating non-revisiting path from restricted growth strings 

[1, 2, 3, 1, 4, 3, 5, 4, 6] length k 
d symbols 

Polytopes & Diameter  



[1, 2, 3, 1, 4, 3, 5, 4, 6] 

obtainable from set partitionings 

{ { 1, 4 }, { 2 }, { 3, 6 }, { 5, 8 }, { 7 }, { 9 } } k elements 
d subsets 

generating non-revisiting path from restricted growth strings 

length k 
d symbols 

Polytopes & Diameter  



[1, 2, 3, 1, 4, 3, 5, 4, 6] 

obtainable from set partitionings 

{ { 1, 4 }, { 2 }, { 3, 6 }, { 5, 8 }, { 7 }, { 9 } } k elements 
d subsets 

generating non-revisiting path from restricted growth strings 

length k 
d symbols 

k ⎫⎧
⎨ ⎬
⎩ ⎭d

restricted growth strings to check 

Polytopes & Diameter  



generating revisiting path from non-revisiting path (by identifying all 
possible revisits in a non-revisiting path, and avoiding introducing 
an extra edge)  

a 

x x 

a 

b 

Polytopes & Diameter  



upper bounds on the number of revisits and drops to consider 

for paths length k involving i revisits and j drops: 

i – j = k + d – n 

0 ≤ i ≤ k - d 

0 ≤ j ≤ n – 2d 

Polytopes & Diameter  



chirotope χ is a function from Er to { –, 0, + } 
 (E = { 1, …, n }, r = d + 1) 

 
(simplicial polytope) chirotope ⇒ χ : Er → { –, + } (for rank r tuples) 
 
geometric interpretation: 
χ determines the orientation of a set of vertices 

1 
2 

3 

5 

4 

chirotopes 
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chirotopes 

chirotope χ is a function from Er to { –, 0, + } 
 (E = { 1, …, n }, r = d + 1) 

 
(simplicial polytope) chirotope ⇒ χ : Er → { –, + } (for rank r tuples) 
 
geometric interpretation: 
χ determines the orientation of a set of vertices 

1 
2 

3 

5 

4 
χ (1, 2, 3, 4) = + 

χ (1, 2, 3, 5) = – 

Polytopes & Diameter  



necessary condition for a (chirotope of a) polytope 

 
χ alternates (swap switches the sign) 
χ satisfies the 3-term Grassmann-Plücker relations 

Polytopes & Diameter  



 
χ alternates (swap switches the sign) 
χ satisfies the 3-term Grassmann-Plücker relations 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

−
∈

2r
E

σ

for every 

σ∉4321 ,,, xxxx

necessary condition for a (chirotope of a) polytope 
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χ alternates (swap switches the sign) 
χ satisfies the 3-term Grassmann-Plücker relations 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

−
∈

2r
E

σ

for every 

σ∉4321 ,,, xxxx

),,(),,( 4321 xxxx σχσχ
),,(),,( 2431 xxxx σχσχ
),,(),,( 3241 xxxx σχσχ

one positive, one negative 

necessary condition for a (chirotope of a) polytope 

Polytopes & Diameter  



for any given k-path 
 
satisfies the Grassmann-Plücker constraints 
embeds the k-path on the boundary of a polytope (without shortcut ) 

necessary condition for a (chirotope of a) polytope 

Polytopes & Diameter  



for any given k-path 
 
satisfies the Grassmann-Plücker constraints 
embeds the k-path on the boundary of a polytope (without shortcut ) 

use a satisfiability solver 

⇔ chirotope sign 
plus / minus 

SAT variable 
true / false 

necessary condition for a (chirotope of a) polytope 
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for any given k-path 
 
satisfies the Grassmann-Plücker constraints 
embeds the k-path on the boundary of a polytope (without shortcut ) 

necessary condition for a (chirotope of a) polytope 

use a satisfiability solver 

⇔ chirotope sign 
plus / minus 

SAT variable 
true / false 

1
16

1 4
− +⎛ ⎞⎛ ⎞

⎜ ⎟⎜ ⎟−⎝ ⎠⎝ ⎠

n n d
d
constraints 
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1 

2 

3 

5 

4 (1, 2, 4) forms a facet on the boundary 

embeds the k-path on the boundary of a polytope 

every element of path complex lies on the boundary (i.e. no 
‘facet’ cuts through the interior of the polytope) 

as do (2, 3, 4) and (2, 3, 5) 

but (1, 2, 3) is not a facet 

Polytopes & Diameter  



1 

2 

3 

5 

4 

embeds the k-path on the boundary of a polytope 

every element of path complex lies on the boundary (i.e. no 
‘facet’ cuts through the interior of the polytope) 

(1, 2, 3) is not a facet because 

    χ(1, 2, 3, 4) = +1 ≠ -1 = χ(1, 2, 3, 5)  

require χ(F, x) = χ(F, y) for all x, y      F ∉

1 1

1 1
1 1
( , ) ( , ) ( , ) ( , )i i i i

i i
F x F x F x F xχ χ χ χ

− − − −

+ +
= =

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟∨¬ ∨ ¬ ∨
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
∧ ∧n d n d

in CNF form for the SAT solvers 
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ensure that the k-path is a shortest path (i.e. no other shorter paths) 

embed the k-path on the boundary of a polytope without shortcut 
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embed the k-path on the boundary of a polytope without shortcut 

ensure that the k-path is a shortest path (i.e. no other shorter paths) 
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ensure that the k-path is a shortest path (i.e. no other shorter paths) 

embed the k-path on the boundary of a polytope without shortcut 
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(4,12) 8δ ≠

# revisits / drops # completed 

0 160 

1 1258 

2 5168 

3 7398 

4 1512 
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δ(d, n) 
n – d 

4 5 6 7 8 

d 

4 4 5 5 6 7 

5 4 5 6 7 [7,9] 

6 4 5 6 [7,8] [8,11] 

7 4 5 6 [7,9] [8,12] 

δ(4,12) = δ(5,12) = 7    Bremner-D.-Hua-Schewe (2013) 

recent progresses 
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Pivot path: 123 - 234 – 345 – 456 – 467 
 

Column presentation: 
123 
423 
453 
456 
476 

 
1st column changes (replaced by next available number) 

2nd column changes (replaced by next available number)… 
 

{1,2,3,2,…} 
 

1 in position 1 
2 in positions 2 and 4 

3 in position 3 
 

[{1},{2,4},{3}….] 
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