On lattice polytopes, convex matroid optimization, and degree sequences of hypergraphs

Antoine Deza, McMaster
Linear optimization

Given an \(n \)-dimensional vector \(b \) and an \(n \times d \) matrix \(A \) find, in any, a \(d \)-dimensional vector \(x \) such that:

\[
Ax = b
\]

\[
x \geq 0
\]
Linear optimization

Given an \(n \)-dimensional vector \(b \) and an \(n \times d \) matrix \(A \) find, in any, a \(d \)-dimensional vector \(x \) such that:

\[
Ax = b \\
Ax \leq b
\]

Linear algebra
Linear optimization

Can linear optimization be solved in *strongly polynomial* time? is listed by Smale (Fields Medal 1966) as one of the top mathematical problems for the XXI century.

Strongly polynomial: algorithm *independent* from the *input data length* and polynomial in \(n \) and \(d \).
Given an \(n \)-dimensional vector \(b \) and an \(n \times d \) (full row-rank) matrix \(A \) and a \(d \)-dimensional cost vector \(c \), solve: \[\{ \text{max } c^T x : Ax = b, \ x \geq 0 \} \]

Simplex methods (Dantzig 1947): pivot-based, combinatorial, *not proven to be polynomial*, efficient in practice

- start from a **feasible basis**
- use a **pivot rule**
- find an optimal solution after a **finite number** of iterations
- most known pivot rules are known to be **exponential**
 (worst case); **efficient** implementations exist
Linear optimization algorithms
(central path following) **interior point methods**

Given an \(n \)-dimensional vector \(b \) and an \(n \times d \) (full row-rank) matrix \(A \) and a \(d \)-dimensional cost vector \(c \), solve: \(\{ \text{max } c^T x : Ax = b, \ x \geq 0 \} \)

Interior Point Methods :
- path-following, **polynomial**, efficient in practice
 - start from the **analytic center**
 - follow the **central path**
 - converge to an optimal solution in \(O(\sqrt{nL}) \) iterations
 (\(L \): input data length)

\[
\text{max } c^T x - \mu \sum_i \ln(b - Ax)_i \\
\mu : \text{central path parameter} \ \\x \in \mathcal{P} : Ax \leq b
\]
Linear optimization diameter and curvature

Diameter *(of a polytope)*:

lower bound for the number of iterations for *pivoting simplex methods*

Curvature *(of the central path associated to a polytope)*:

large curvature indicates large number of iterations for *path following interior point methods*
Linear Optimization

Given an \(n \)-dimensional vector \(b \) and an \(n \times d \) matrix \(A \) find, in any, a \(d \)-dimensional vector \(x \) such that:

\[
Ax = b \quad \text{and} \quad Ax \leq b
\]

Linear algebra Linear optimization

Can linear optimization be solved in strongly polynomial time? It is listed by Smale (Fields Medal 1966) as one of the top mathematical problems for the XXI century.

Strongly polynomial: algorithm independent from the input data length and polynomial in \(n \) and \(d \).

Interior point methods are not strongly polynomial [Allamigeon, Benchimol, Gaubert, Joswig 2018]

(tropical counterexample to continuous Hirsch conjecture [Deza-Terlaky-Zinchenko 2008])
Discrete optimization and theoretical physics

- Ising model (spin glasses)
 maxcut, cut and metric polytopes [Deza-Laurent 1997]

- $a(d)$: number of generalized retarded functions in quantum field theory
 (number of real-time Green functions) [Evans 1994]
Discrete optimization and theoretical physics

- Ising model (spin glasses)
 maxcut, cut and metric polytopes [Deza-Laurent 1997]

- \(a(d) \): number of generalized retarded functions in quantum field theory
 (number of real-time Green functions) [Evans 1994]

\[a(d) = \text{number of regions of the arrangement formed by the } 2^d - 1 \]
\[\text{hyperplanes with } \{0,1\}\text{-valued normals in dimension } d \]
Discrete optimization and theoretical physics

- Ising model (spin glasses)
 maxcut, cut and metric polytopes [Deza-Laurent 1997]

- $a(d)$: number of generalized retarded functions in quantum field theory
 (number of real-time Green functions) [Evans 1994]

\[a(d) = \text{number of regions of the arrangement formed by the } 2^d - 1 \]
\[\text{hyperplanes with } \{0,1\}-\text{valued normals in dimension } d \]

\[d = 2 \quad \quad 2^d - 1 = 3 \text{ hyperplanes} \]

Discrete optimization and theoretical physics

- Ising model (spin glasses) maxcut, cut and metric polytopes
 [Deza-Laurent 1997]

- $a(d)$: number of generalized retarded functions in quantum field theory
 (number of real-time Green functions)
 [Evans 1994]

$a(d) =$ number of regions of the arrangement formed by the $2^d - 1$ hyperplanes with \{0,1\}-valued normals in dimension d

$d = 2 \quad 2^d - 1 = 3 \text{ hyperplanes}$

$(0,1)$
Discrete optimization and theoretical physics

- Ising model (spin glasses)
 maxcut, cut and metric polytopes [Deza-Laurent 1997]

- $a(d)$: number of generalized retarded functions in quantum field theory
 (number of real-time Green functions) [Evans 1994]

\[
a(d) = \text{number of regions of the arrangement formed by the } 2^d - 1 \\
\text{hyperplanes with } \{0,1\}-\text{valued normals in dimension } d
\]

- $d = 2 \quad 2^2 - 1 = 3 \text{ hyperplanes}

 (0,1)
 (1,0)
Discrete optimization and theoretical physics

- Ising model (spin glasses)
 maxcut, cut and metric polytopes [Deza-Laurent 1997]

- $a(d)$: number of generalized retarded functions in quantum field theory
 (number of real-time Green functions) [Evans 1994]

$a(d) = \text{number of regions of the arrangement formed by the } 2^d - 1 \text{ hyperplanes with } \{0,1\}\text{-valued normals in dimension } d$

$d = 2 \quad 2^d - 1 = 3 \text{ hyperplanes}$

(0,1)
(1,0)
(1,1)
Discrete optimization and theoretical physics

- Ising model (spin glasses)
 maxcut, cut and metric polytopes
 [Deza-Laurent 1997]

- \(a(d) \) : number of generalized retarded functions in quantum field theory
 (number of real-time Green functions)
 [Evans 1994]

\[a(d) = \text{number of regions of the arrangement formed by the } 2^d - 1 \]
\[\text{hyperplanes with } \{0,1\}\text{-valued normals in dimension } d \]

\[d = 2 \quad 2^d - 1 = 3 \text{ hyperplanes} \]

- \((0,1)\)
- \((1,0)\)
- \((1,1)\)

- \(a(2) = 6 \)

6 regions
Discrete optimization and theoretical physics

- Ising model (spin glasses) maxcut, cut and metric polytopes [Deza-Laurent 1997]

- a(d) : number of generalized retarded functions in quantum field theory (number of real-time Green functions) [Evans 1994]

\[a(d) = \text{number of regions of the arrangement formed by the } 2^d - 1 \text{ hyperplanes with } \{0,1\}-\text{valued normals in dimension } d \]

- is \(a(d) \geq d \) ! [Question by Evans]

- \(a(d) \) determined till \(d = 8 \)

- how to estimate \(a(d) \) ?
Discrete optimization and theoretical physics

- Ising model (spin glasses)
 maxcut, cut and metric polytopes [Deza-Laurent 1997]

- \(a(d)\) : number of generalized retarded functions in quantum field theory
 (number of real-time Green functions) [Evans 1994]

\[a(d) = \text{number of regions of the arrangement formed by the } 2^d - 1 \]
\[\text{hyperplanes with } \{0,1\}-\text{valued normals in dimension } d \]

- is \(a(d) \geq d\) ! [Question by Evans]

- \(a(d)\) determined till \(d = 8\)

- how to estimate \(a(d)\) ?

\[a(d) \text{ regions} \quad => \quad a(d) \text{ vertices} \]
Discrete optimization and theoretical physics

- Ising model (spin glasses)
 maxcut, cut and metric polytopes
 [Deza-Laurent 1997]

- $a(d)$: number of generalized retarded functions in quantum field theory
 (number of real-time Green functions)
 [Evans 1994]

$$a(d) = \text{number of regions of the arrangement formed by the } 2^d - 1 \text{ hyperplanes with } \{0,1\}\text{-valued normals in dimension } d$$

- is $a(d) \geq d$? [Question by Evans]

- $a(d)$ determined till $d = 8$

- how to estimate $a(d)$?

- $a(d)$ vertices of the *white whale*

- $a(2) = 6$
Discrete optimization and theoretical physics

- Ising model (spin glasses)
 maxcut, cut and metric polytopes [Deza-Laurent 1997]

- $a(d)$: number of generalized retarded functions in quantum field theory
 (number of real-time Green functions) [Evans 1994]

\[
a(d) = \text{number of regions of the arrangement formed by the } 2^d - 1 \text{ hyperplanes with } \{0,1\}-\text{valued normals in dimension } d
\]

- is $a(d) \geq d$! [Question by Evans]

- $a(d)$ determined till $d = 8$

- how to estimate $a(d)$?

- $a(d)$ vertices of the white whale

\[
a(3) = 32
\]
In pursuit of a white whale: On the real linear algebra of vectors of zeros and ones

We are interested in the real linear relations (the real matroid) on the set of all 0-1 n-vectors. This fundamental combinatorial object is behind questions arising over the past 50 years in a variety of fields, from economics, circuit theory and integer programming to quantum physics, and has connections to an 1893 problem of Hadamard. Yet there has been little real progress on some of the most basic questions.

Some applications seek the number of regions in \mathbb{R}^n that are determined by the $2^n - 1$ linear hyperplanes having 0-1 normals. This number, asymptotically 2^{n^2}, can be obtained exactly from the characteristic polynomial of the geometric lattice of all real subspaces spanned by these 0-1 vectors. These polynomials are known only through $n = 7$, while the number of regions is known through $n = 8$.

In his talk, Billera will discuss some recent advances in this area, including the proof that the characteristic polynomial of the geometric lattice of all real subspaces spanned by 0-1 vectors is an inhomogeneous cyclotomic polynomial. This result has applications in coding theory, quantum information, and combinatorial optimization.
Linear optimization diameter and curvature

Diameter (of a polytope):

lower bound for the number of iterations for *pivoting simplex methods*

Curvature (of the central path associated to a polytope):

large curvature indicates large number of iterations for *path following interior point methods*
Lattice polytopes with large diameter

lattice \((d,k)\)-polytope: convex hull of points drawn from \(\{0,1,\ldots,k\}^d\)

diameter \(\delta(P)\) of polytope \(P\): smallest number such that any two vertices of \(P\) can be connected by a path with at most \(\delta(P)\) edges

\(\delta(d,k)\): largest diameter over all lattice \((d,k)\)-polytopes

ex. \(\delta(3,3) = 6\) and is achieved by a truncated cube
Lattice polytopes with large diameter

lattice \((d,k)\)-polytope: convex hull of points drawn from \(\{0,1,\ldots,k\}^d\)

diameter \(\delta(P)\) of polytope \(P\): smallest number such that any two vertices of \(P\) can be connected by a path with at most \(\delta(P)\) edges

\(\delta(d,k)\): largest diameter over all lattice \((d,k)\)-polytopes

- \(\delta(P)\): lower bound for the worst case number of iterations required by *pivoting methods* (simplex) to optimize a linear function over \(P\)

- *Hirsch conjecture*: \(\delta(P) \leq n - d\) \((n \text{ number of inequalities})\) was *disproved* [Santos 2012]

\(\delta(P) \leq (n - d)^{\log d} \cdots\) [Kalai-Kleitman 1992, Todd 2014, Sukegawa 2019)]
Lattice polytopes with large diameter

lattice (d,k)-polytope: convex hull of points drawn from $\{0,1,\ldots,k\}^d$

diameter $\delta(P)$ of polytope P: smallest number such that any two vertices of P can be connected by a path with at most $\delta(P)$ edges

$\delta(d,k)$: largest diameter over all **lattice** (d,k)-polytopes

- $\delta(P)$: lower bound for the worst case number of iterations required by pivoting methods (simplex) to optimize a linear function over P

- **Hirsch conjecture**: $\delta(P) \leq n - d$ (n number of inequalities) was **disproved** [Santos 2012]

- no polynomial upper bound known for $\delta(P)$
- best current bound [Sukegawa 2019]
Lattice polytopes with large diameter

$\delta(d,k)$: largest *diameter* of a convex hull of points drawn from $\{0,1,\ldots,k\}^d$

upper bounds:

- $\delta(d,1) \leq d$
 [Naddef 1989]

- $\delta(2,k) = O(k^{2/3})$
 [Balog-Bárány 1991]

- $\delta(2,k) = 6(k/2\pi)^{2/3} + O(k^{1/3} \log k)$
 [Thiele 1991]
 [Acketa-Žunić 1995]

- $\delta(d,k) \leq kd$
 [Kleinschmid-Onn 1992]

- $\delta(d,k) \leq kd - \lceil d/2 \rceil$
 for $k \geq 2$
 [Del Pia-Michini 2016]

- $\delta(d,k) \leq kd - \lceil 2d/3 \rceil - (k - 3)$
 for $k \geq 3$
 [Deza-Pournin 2018]
Lattice polytopes with large diameter

$\delta(d,k)$: largest diameter of a convex hull of points drawn from $\{0,1,\ldots,k\}^d$

lower bounds:

$\delta(d,1) \geq d$ \hspace{2cm} [Naddef 1989]

$\delta(d,2) \geq \lfloor 3d/2 \rfloor$ \hspace{2cm} [Del Pia-Michini 2016]

$\delta(d,k) = \Omega(k^{2/3}d)$ \hspace{2cm} [Del Pia-Michini 2016]

$\delta(d,k) \geq \lfloor (k+1)d/2 \rfloor$ for $k < 2d$ \hspace{2cm} [Deza-Manoussakis-Onn 2018]
Lattice polytopes with large diameter

<table>
<thead>
<tr>
<th>$\delta(d,k)$</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>d</td>
<td>[\begin{array}{cccccccccc}2 & 2 \ 3 & 3 \ 4 & 4 \ 5 & 5 \end{array}]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$\delta(d,1) = d$

[Naddef 1989]
Lattice polytopes with large diameter

<table>
<thead>
<tr>
<th>$\delta(d,k)$</th>
<th>k</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
</tr>
</tbody>
</table>

$\delta(d,1) = d$

$\delta(2,k)$: close form

[Naddef 1989]

[Thiele 1991] [Acketa-Žunić 1995]
Lattice polytopes with large diameter

<table>
<thead>
<tr>
<th>$\delta(d,k)$</th>
<th>k</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 2 3 4 5 6 7 8 9</td>
</tr>
<tr>
<td>2</td>
<td>2 2 3 4 4 5 6 6 7 8</td>
</tr>
<tr>
<td>3</td>
<td>3 3 4</td>
</tr>
<tr>
<td>4</td>
<td>4 4 6</td>
</tr>
<tr>
<td>5</td>
<td>5 5 7</td>
</tr>
</tbody>
</table>

$\delta(d,1) = d$

$\delta(2,k) :$ close form

$\delta(d,2) = \lfloor 3d/2 \rfloor$

- [Naddef 1989]
- [Thiele 1991]
- [Acketa-Žunić 1995]
- [Del Pia-Michini 2016]
Lattice Polytopes with Large Diameter

<table>
<thead>
<tr>
<th>(\delta(d,k))</th>
<th>(k)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\delta(d,1)) = (d)</td>
<td>1</td>
</tr>
<tr>
<td>(\delta(2,k)) : close form</td>
<td>2</td>
</tr>
<tr>
<td>(\delta(d,2) = \left\lfloor \frac{3d}{2} \right\rfloor)</td>
<td>3</td>
</tr>
<tr>
<td>(\delta(4,3) = 8), (\delta(3,4) = 7), (\delta(3,5) = 9)</td>
<td>4</td>
</tr>
<tr>
<td>(\delta(5,5) = 7)</td>
<td>5</td>
</tr>
</tbody>
</table>

- \(\delta(d,1) = d\) [Naddef 1989]
- \(\delta(2,k)\) : close form [Thiele 1991] [Acketa-Žunić 1995]
- \(\delta(d,2) = \left\lfloor \frac{3d}{2} \right\rfloor\) [Del Pia-Michini 2016]
- \(\delta(4,3) = 8\), \(\delta(3,4) = 7\), \(\delta(3,5) = 9\) [Deza-Pournin 2018], [Chadder-Deza 2017]
Lattice polytopes with large diameter

<table>
<thead>
<tr>
<th>(\delta(d,k))</th>
<th>(k)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
</tr>
</tbody>
</table>

\(\delta(d,1) = d \)

\(\delta(2,k) \) : close form

\(\delta(d,2) = \lceil 3d/2 \rceil \)

\(\delta(4,3)=8, \delta(3,4)=7, \delta(3,5)=9 \)

\(\delta(5,3)=10, \delta(3,6)=10 \)

[\textit{Naddef 1989}]

[\textit{Thiele 1991}]

[\textit{Acketa-Žunić 1995}]

[\textit{Del Pia-Michini 2016}]

[\textit{Deza-Pournin 2018}], [\textit{Chadder-Deza 2017}]

[\textit{Deza-Deza-Guan-Pournin 2019}]
Lattice polytopes with large diameter

<table>
<thead>
<tr>
<th>$\delta(d,k)$</th>
<th>k</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
</tr>
</tbody>
</table>

- Conjecture [Deza-Manoussakis-Onn 2018] $\delta(d,k) \leq \lfloor (k+1)d / 2 \rfloor$

and $\delta(d,k)$ is achieved, up to translation, by a *Minkowski sum of primitive lattice vectors*. The conjecture holds for all known entries of $\delta(d,k)$.
Lattice polygons with large diameter

Q. What is $\delta(2,k)$: largest diameter of a polygon which vertices are drawn form the $k \times k$ grid?

A polygon can be associated to a set of vectors (edges) *summing up to zero*, and *without a pair of positively multiple vectors*.

\[\delta(2,3) = 4 \] is achieved by the 8 vectors: \((\pm1,0), (0,\pm1), (\pm1,\pm1)\)
Lattice polygons with large diameter

\[\delta(2,2) = 2 \; ; \text{vectors:} \; (\pm 1,0), (0,\pm 1) \]
Lattice polygons with large diameter

\[\delta(2,2) = 2 \; ; \text{vectors:} \; (\pm 1,0), (0,\pm 1) \]
Lattice polygons with large diameter

\[\delta(2,2) = 2 \; ; \text{vectors: } (\pm 1,0), (0,\pm 1) \]

\[\delta(2,3) = 4 \; ; \text{vectors: } (\pm 1,0), (0,\pm 1), (\pm 1,\pm 1) \]

\[||x||_1 \leq 2 \]
Lattice polygons with large diameter

\[\delta(2,2) = 2; \text{ vectors: } (\pm 1,0), (0,\pm 1) \]

\[\delta(2,3) = 4; \text{ vectors: } (\pm 1,0), (0,\pm 1), (\pm 1,\pm 1) \]

\[\delta(2,9) = 8; \text{ vectors: } (\pm 1,0), (0,\pm 1), (\pm 1,\pm 1), (\pm 1,\pm 2), (\pm 2,\pm 1) \]

\[||x||_1 \leq 3 \]
Lattice polygons with large diameter

\[\delta(2, k) = 2 \sum_{i=1}^{p} \varphi(i) \quad \text{for} \quad k = \sum_{i=1}^{p} i\varphi(i) \]

\(\varphi(p) : \textbf{Euler totient function} \) counting positive integers less or equal to \(p \) relatively prime with \(p \)

\(\varphi(1) = \varphi(2) = 1, \varphi(3) = \varphi(4) = 2, \ldots \)
$H_1(2,p)$: Minkowski sum generated by $\{x \in \mathbb{Z}^2 : ||x||_1 \leq p, \gcd(x)=1, x \succeq 0\}$

$H_1(2,p)$ has diameter $\delta(2,k) = 2 \sum_{i=1}^{p} \varphi(i)$ for $k = \sum_{i=1}^{p} i \varphi(i)$

Ex. $H_1(2,2)$ generated by $(1,0), (0,1), (1,1), (1,-1)$ (fits, up to translation, in 3x3 grid)

$x \succeq 0$: first nonzero coordinate of x is nonnegative
Primitive zonotopes

\[H_q(d,p) : \text{Minkowski} \quad (x \in \mathbb{Z}^d : \|x\|_q \leq p, \gcd(x)=1, x \succeq 0) \]

\[x \succeq 0 : \text{first nonzero coordinate of } x \text{ is nonnegative} \]

Given a set \(G \) of \(m \) vectors (generators),
\(\text{Minkowski} \ (G) : \text{convex hull of all the } 2^m \text{ subsums of the } m \text{ vectors in } G \)

- **Primitive zonotopes**: Minkowski sum generated by *short integer* vectors which are *pairwise linearly independent*

- **Note**: convex hull of all the *signed* subsums of the vectors of \(H_q(d,p) \) is a generalization of the permutahedron of type \(B_d \)
Primitive zonotopes

\[H_q(d, p) : \text{Minkowski}\ (x \in \mathbb{Z}^d : ||x||_q \leq p, \ \gcd(x)=1, \ x \succeq 0) \]

\[x \succeq 0 : \text{first nonzero coordinate of } x \text{ is nonnegative} \]

- \[H_q(d, 1) : [0, 1]^d \text{ cube for } q \neq \infty \]
Primitive zonotopes

\[H_q(d,p) : \text{Minkowski} \ (x \in \mathbb{Z}^d : ||x||_q \leq p, \text{gcd}(x)=1, \ x \geq 0) \]

\[x \geq 0 : \text{first nonzero coordinate of } x \text{ is nonnegative} \]

- \(H_1(d,2) : \text{permutahedron of type } B_d \ (\text{up to a homothety}) \)
- \(H_1(3,2) : \text{great rhombicuboctahedron} \)
Primitive zonotopes

\[H_q(d,p) : \text{Minkowski } (x \in \mathbb{Z}^d : ||x||_q \leq p, \gcd(x)=1, x \succeq 0) \]

\[x \succeq 0 : \text{first nonzero coordinate of } x \text{ is nonnegative} \]

\[H_\infty(3,1) : \text{truncated small rhombicuboctahedron} \]
Positive primitive zonotopes

\[H_q(d,p) : \text{Minkowski} (x \in \mathbb{Z}^d : ||x||_q \leq p, \gcd(x)=1, x \succ 0) \]

\[x \succ 0 : \text{first nonzero coordinate of } x \text{ is nonnegative} \]

\[H_q(d,p)^+ : \text{Minkowski} (x \in \mathbb{Z}_+^d : ||x||_q \leq p, \gcd(x)=1) \]
$H_q(d, p) : \text{Minkowski} \ (x \in \mathbb{Z}^d : \|x\|_q \leq p, \gcd(x)=1, \ x \succeq 0)$

$x \succeq 0 : \text{first nonzero coordinate of } x \text{ is nonnegative}$

$H_q(d, p)^+ : \text{Minkowski} \ (x \in \mathbb{Z}_+^d : \|x\|_q \leq p, \gcd(x)=1)$

- $H_1(d, 2)^+ : \text{Minkowski sum permutahedron} + \text{unit cube} \ (\text{graphical zonotope})$
- $H_\infty(d, 1)^+ : \text{white whale} \ (\text{hypergraphical zonotope})$

$$a(d) = |H_\infty(d, 1)^+|$$

number $a(d)$ of generalized retarded functions in quantum field theory is equal to the number of vertices of $H_\infty(d, 1)^+$
In pursuit of a white whale: On the real linear algebra of vectors of zeros and ones

We are interested in the real linear relations (the real matroid) on the set of all 0-1 n-vectors. This fundamental combinatorial object is behind questions arising over the past 50 years in a variety of fields, from economics, circuit theory and integer programming to quantum physics, and has connections to an 1893 problem of Hadamard. Yet there has been little real progress on some of the most basic questions.

Some applications seek the number of regions in \mathbb{R}^n that are determined by the 2^n-1 linear hyperplanes having 0–1 normals. This number, asymptotically 2^n^2, can be obtained exactly from the characteristic polynomial of the geometric lattice of all real subspaces spanned by these 0–1 vectors. These polynomials are known only through $n = 7$, while the number of regions is known through $n = 8$.
lattice polytopes with *large diameter*

\[H_q(d, p) : \text{Minkowski} \ (x \in \mathbb{Z}^d : \|x\|_q \leq p, \gcd(x)=1, \ x \succeq 0) \]

\[x \succeq 0 : \text{first nonzero coordinate of } x \text{ is nonnegative} \]

For \(k < 2d \), Minkowski sum of a subset of the generators of \(H_1(d, 2) \) is, up to translation, a lattice \((d, k)\)-polytope with diameter \(\lfloor (k+1)d/2 \rfloor \)
Lattice polytopes with large diameter

<table>
<thead>
<tr>
<th>$\delta(d,k)$</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>6</td>
<td>7</td>
<td>9</td>
<td>10</td>
<td>11+</td>
<td>12+</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>4</td>
<td>6</td>
<td>8</td>
<td>10+</td>
<td>12+</td>
<td>14+</td>
<td>16+</td>
<td>17+</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>5</td>
<td>7</td>
<td>10</td>
<td>12+</td>
<td>15+</td>
<td>17+</td>
<td>20+</td>
<td>22+</td>
</tr>
</tbody>
</table>

> Conjecture [Deza-Manoussakis-Onn 2018] \(\delta(d,k) \leq \lfloor (k+1)d/2 \rfloor \)

and \(\delta(d,k) \) is achieved, up to translation, by a *Minkowski sum of primitive lattice vectors*. The conjecture holds for all known entries of \(\delta(d,k) \)
A034997 Number of Generalized Retarded Functions in Quantum Field Theory.

2, 6, 32, 370, 11292, 1066044, 347326352, 419172756930

OFFSET 1,1

COMMENTS

a(d) is the number of parts into which d-dimensional space \((x_1, \ldots, x_d)\) is split by a set of \((2^d - 1)\) hyperplanes \(c_1 x_1 + c_2 x_2 + \ldots + c_d x_d = 0\) where \(c_j\) are 0 or +1 and we exclude the case with all \(c=0\).

Also, \(a(d)\) is the number of independent real-time Green functions of Quantum Field Theory produced when analytically continuing from Euclidean time/energy \((d+1 = \text{number of energy/time variables})\). These are also known as Generalized Retarded Functions.

The numbers up to \(d=6\) were first produced by T. S. Evans using a Pascal program, strictly as upper bounds only. M. van Eijck wrote a C program using a direct enumeration of hyperplanes which confirmed these and produced the value for \(d=7\). Kamiya et al. showed how to find these numbers and some associated polynomials using more sophisticated methods, giving results up to \(d=7\). T. S. Evans added the last number on Aug 01 2011 using an updated version of van Eijck's program, which took 7 days on a standard desktop computer.

REFERENCES

A034997 Number of Generalized Retarded Functions in Quantum Field Theory.

2, 6, 32, 370, 11292, 1066044, 347326352, 419172756930

OFFSET 1,1

COMMENTS

a(d) is the number of parts into which d-dimensional space \((x_1, \ldots, x_d) \) is split by a set of \(2^d - 1 \) hyperplanes \(c_1 x_1 + c_2 x_2 + \ldots + c_d x_d = 0 \) where \(c_j \) are 0 or +1 and we exclude the case with all \(c=0 \).

Also, \(a(d) \) is the number of independent real-time Green functions of Quantum Field Theory produced when analytically continuing from Euclidean time/energy \((d+1 = \text{number of energy/time variables}) \). These are also known as Generalized Retarded Functions.

The numbers up to \(d=6 \) were first produced by T. S. Evans using a Pascal program, strictly as upper bounds only. M. van Eijck wrote a C program using a direct enumeration of hyperplanes which confirmed these and produced the value for \(d=7 \). Kamiya et al. showed how to find these numbers and some associated polynomials using more sophisticated methods, giving results up to \(d=7 \). T. S. Evans added the last number on Aug 01 2011 using an updated version of van Eijck's program, which took 7 days on a standard desktop computer.

REFERENCES

T. S. Evans, N-point finite temperature expectation values at real times, Nuclear Physics B 374 (1992) 340-370.

Vertices of primitive zonotopes

Sloane OEI sequences

$H_\infty(d,1)^+$ vertices: A034997 = number of generalized retarded functions in quantum Field theory (determined till $d=8$)

$H_\infty(d,1)$ vertices: A009997 = number of regions of hyperplane arrangements with $\{-1,0,1\}$-valued normals in dimension d (determined till $d=7$)

Estimating the number of vertices of $H_\infty(d,1)^+$ (white whale)

\[
d(d-1)/2 \leq \log_2 |H_\infty(d,1)^+| \leq d^2 \quad \text{[Billera et al 2012]}
\]

\[
d(d-1)/2 \leq \log_2 |H_\infty(d,1)^+| \leq d(d-3) \quad \text{[Deza-Pournin-Rakotonarivo 2019]}
\]
Computational determination of the number of vertices of primitive zonotopes

Sloane OEIS sequences

$H_\infty(d,1)^+\ $vertices : A034997 = number of generalized retarded functions in quantum Field theory (determined till $d=8$)

$H_\infty(d,1)\ $vertices : A009997 = number of regions of hyperplane arrangements with $\{-1,0,1\}$-valued normals in dimension d (determined till $d=7$)

Estimating the number of vertices of $H_\infty(d,1)\ $ (matroid optimization)

\[
d \leq \log_3 | H_\infty(d,1) | \leq d(d-1) \quad [\text{Melamed-Onn 2014}]
\]

\[
d \log d \leq \log_3 | H_\infty(d,1) | \leq d(d-1) \quad [\text{Deza-Onn-Manoussakis 2018}]
\]

\[
d(d-1)/2 \leq \log_3 | H_\infty(d,1) | \leq d(d-2) \quad [\text{Deza-Pournin-Rakotonarivo 2019}]
\]
Convex Matroid Optimization

The optimal solution of \(\max \{ f(Wx) : x \in S \} \) is attained at a vertex of the projection integer polytope in \(\mathbb{R}^d : \text{conv}(WS) = W\text{conv}(S) \)

\(S \): set of feasible point in \(\mathbb{Z}^n \) (in the talk \(S \in \{0,1\}^n \))
\(W \): integer \(d \times n \) matrix (\(W \) is \(\{0,1,\ldots,p\} \)-valued)
\(f \): convex function from \(\mathbb{R}^d \) to \(\mathbb{R} \)

Q. What is the maximum number \(v(d,n) \) of vertices of \(\text{conv}(WS) \) when \(S \in \{0,1\}^n \) and \(W \) is a \(\{0,1\} \)-valued \(d \times n \) matrix?

obviously \(v(d,n) \leq |WS| = O(n^d) \)
in particular \(v(2,n) = O(n^2) \), and \(v(2,n) = \Omega(n^{0.5}) \)
[Melamed-Onn 2014] Given matroid S of order n and $\{0,1,\ldots,p\}$-valued $d \times n$ matrix W, the maximum number $m(d,p)$ of vertices of $\text{conv}(WS)$ is independent of n and S.

Ex: maximum number $m(2,1)$ of vertices of a planar projection $\text{conv}(WS)$ of matroid S by a binary matrix W is attained by the following matrix and uniform matroid of rank 3 and order 8:

$$W = \begin{pmatrix}
0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\
\vdots & \vdots \\
0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\
\end{pmatrix}$$

$$S = U(3,8) = \begin{pmatrix}
\vdots & \vdots \\
0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\
\end{pmatrix}$$

\[\text{conv}(WS)\]
Convex Matroid Optimization

The optimal solution of \(\max \{ f(Wx) : x \in S \} \) is attained at a vertex of the projection integer polytope in \(\mathbb{R}^d : \text{conv}(WS) = W\text{conv}(S) \)

\(S \) : set of feasible point in \(\mathbb{Z}^n \)
\(W \) : integer \(d \times n \) matrix
\(f \) : convex function from \(\mathbb{R}^d \) to \(\mathbb{R} \)

Q. What is the maximum number \(v(d,n) \) of vertices of \(\text{conv}(WS) \) when \(S \in \{0,1\}^n \) and \(W \) is a \(\{0,1\} \)-valued \(d \times n \) matrix?

obviously \(v(d,n) \leq |WS| = O(n^d) \)
in particular \(v(2,n) = O(n^2) \), and \(v(2,n) = \Omega(n^{0.5}) \)

[Melamed-Onn 2014] Given matroid \(S \) of order \(n \) and \(\{0,1,\ldots,p\} \)-valued \(d \times n \) matrix \(W \), the maximum number \(m(d,p) \) of vertices of \(\text{conv}(WS) \) is independent of \(n \) and \(S \)
Convex Matroid Optimization

[Melamed-Onn 2014] Given matroid S of order n and $\{0,1,\ldots,p\}$-valued $d \times n$ matrix W, the maximum number $m(d,p)$ of vertices of $\text{conv}(WS)$ is independent of n and S.

[Deza-Manoussakis-Onn 2018] Given matroid S of order n, $\{0,1,\ldots,p\}$-valued $d \times n$ matrix W, maximum number $m(d,p)$ of vertices of $\text{conv}(WS)$ is equal to the number of vertices of $H_\infty(d,p)$

$$m(d,p) = |H_\infty(d,p)|$$
Convex Matroid Optimization

[Melamed-Onn 2014] Given matroid S of order n and $\{0,1,\ldots,p\}$-valued $d \times n$ matrix W, the maximum number $m(d,p)$ of vertices of $\text{conv}(WS)$ is independent of n and S

[Deza-Manoussakis-Onn 2018] Given matroid S of order n, $\{0,1,\ldots,p\}$-valued $d \times n$ matrix W, maximum number $m(d,p)$ of vertices of $\text{conv}(WS)$ is equal to the number of vertices of $H_\infty(d,p)$

$$m(d,p) = | H_\infty(d,p) |$$

[Melamed-Onn 2014]

$$ d \ 2^d \leq m(d,1) \leq 2 \sum_{i=0}^{d-1} \binom{3^d - 3}{i}/2$$

$$24 \leq m(3,1) \leq 158$$

$$64 \leq m(4,1) \leq 19840$$

$m(2,1) = 8$

[Deza-Manoussakis-Onn 2018]

$$d! \ 2^d \leq m(d,1) \leq 2 \sum_{i=0}^{d-1} \binom{3^d - 3}{i}/2 - f(d)$$

$m(3,1) = 96$

$m(4,1) = 5376$

$m(2,p) = 8 \sum_{i=1}^{p} \varphi(i)$
Convex Matroid Optimization

[Melamed-Onn 2014] Given matroid S of order n and $\{0,1,\ldots,p\}$-valued $d \times n$ matrix W, the maximum number $m(d,p)$ of vertices of $\text{conv}(WS)$ is independent of n and S.

[Deza-Manoussakis-Onn 2018] Given matroid S of order n, $\{0,1,\ldots,p\}$-valued $d \times n$ matrix W, maximum number $m(d,p)$ of vertices of $\text{conv}(WS)$ is equal to the number of vertices of $H_\infty(d,p)$.

$$m(d,p) = |H_\infty(d,p)|$$

[Melamed-Onn 2014]
\[
d 2^d \leq m(d,1) \leq 2 \sum_{i=0}^{d-1} \binom{3^d - 3}{i}/2
\]

\[
24 \leq m(3,1) \leq 158
\]

\[
64 \leq m(4,1) \leq 19840
\]

\[
m(2,1) = 8
\]

[Deza-Pournin-Rakotonarivo 2019]
\[
3^{d(d-1)/2} \leq m(d,1) \leq 3^d(d^2-2)
\]

\[
m(3,1) = 96
\]

\[
m(4,1) = 5376
\]

\[
m(2,p) = 8 \sum_{i=1}^{p} \phi(i)
\]
Primitive Zonotopes
(degree sequences)

\(D_d\): convex hull of the degree sequences of all hypergraphs on \(d\) nodes
\[D_d = H_\infty(d,1)^+\]

\(D_d(k)\): convex hull of the degree sequences of all \(k\)-uniform hypergraphs on \(d\) nodes
Primitive Zonotopes
(degree sequences)

\[D_d : \text{convex hull of the degree sequences of all hypergraphs on } d \text{ nodes} \]
\[D_d = H_\infty(d,1)^+ \]

\[D_d(k) : \text{convex hull of the degree sequences of all } k\text{-uniform hypergraphs on } d \text{ nodes} \]

Q: check whether \(x \in D_d(k) \cap \mathbb{Z}^d \) is the degree sequence of a \(k\)-uniform hypergraph. Necessary condition: sum of the coordinates of \(x \) is multiple of \(k \).

[Erdős-Gallai 1960]: for \(k = 2 \) (graphs) necessary condition is sufficient

[Liu 2013] exhibited counterexamples (holes) for \(k = 3 \) (Klivans-Reiner Q.)
Primitive Zonotopes
(degree sequences)

$D_d : \text{convex hull of the degree sequences of all hypergraphs on } d \text{ nodes} \quad D_d = H_\infty (d,1)^+$

$D_d (k) : \text{convex hull of the degree sequences of all } k\text{-uniform hypergraphs on } d \text{ nodes}$

$Q: \text{check whether } x \in D_d (k) \cap \mathbb{Z}^d \text{ is the degree sequence of a } k\text{-uniform hypergraph. Necessary condition: sum of the coordinates of } x \text{ is multiple of } k.$

[Erdős-Gallai 1960]: for $k = 2$ (graphs) necessary condition is sufficient

[Liu 2013] exhibited counterexamples (holes) for $k = 3$ (Klivans-Reiner Q.)

- Answer to Colbourn-Kocay-Stinson Q. (1986)
 Deciding whether a given integer sequence is the degree sequence of a 3-hypergraph is NP-complete [Deza-Levin-Meesum-Onn 2018]
Primitive zonotopes, convex matroid optimization, and degree sequences of hypergraphs

δ(d,k): largest diameter over all lattice (d,k)-polytopes

- Conjecture: δ(d,k) ≤ ⌊(k+1)d/2⌋ and δ(d,k) is achieved, up to translation, by a Minkowski sum of primitive lattice vectors (holds for all known δ(d,k))

⇒ δ(d,k) = ⌊(k+1)d/2⌋ for k < 2d

- m(d,p) = | H∞(d,p) | (convex matroid optimization complexity)

- tightening of the bounds for m(d,1) = | H∞(d,1)⁺ |

- tightening of the bounds for a(d) = | H∞(d,1)⁺ | (white whale)

- Answer to [Colbourn-Kocay-Stinson 1986] question: Deciding whether a given integer sequence is the degree sequence of a 3-hypergraph is NP-complete [Deza-Levin-Meesum-Onn 2018]
Primitive zonotopes, convex matroid optimization, and degree sequences of hypergraphs

\(\delta(d,k) \): *largest diameter* over all lattice \((d,k)\)-polytopes

- Conjecture: \(\delta(d,k) \leq \lceil (k+1)d/2 \rceil \) and \(\delta(d,k) \) is achieved, up to translation, by a *Minkowski sum* of primitive lattice vectors (holds for all known \(\delta(d,k) \))

\[\Rightarrow \delta(d,k) = \lceil (k+1)d/2 \rceil \text{ for } k < 2d \]

- \(m(d,p) = |H_\infty(d,p)| \) (convex matroid optimization complexity)

- Tightening of the *bounds* for \(m(d,1) = |H_\infty(d,1)^+| \)

- Tightening of the *bounds* for \(a(d') = |H_\infty(d,1)^+| \) (*white whale*)

- Answer to [Colbourn-Kocay-Stinson 1986] question:
 Deciding whether a given integer sequence is the *degree sequence* of a 3-hypergraph is *NP-complete* [Deza-Levin-Meesum-Onn 2018]

✓ thank you
Algorithmic, combinatorial, and geometric aspects of linear optimization

