
On lattice polytopes, convex matroid optimization,  
and degree sequences of hypergraphs 

Antoine Deza, McMaster 
 
 
 



                  

Linear optimization 

Given an n-dimensional vector b and an n x d matrix A 
find, in any, a d-dimensional vector x such that : 
  
Ax = b     Ax = b 

    x ≥ 0 
 

linear algebra    linear optimization 
 



                  

Linear optimization 

Given an n-dimensional vector b and an n x d matrix A 
find, in any, a d-dimensional vector x such that : 
  
Ax = b     Ax ≤ b 

 
linear algebra    linear optimization 
 
Can linear optimization be solved in strongly polynomial  
time? is listed by Smale (Fields Medal 1966) as one of  
the top mathematical problems for the XXI century 
 
Strongly polynomial : algorithm independent from 
 the input data length and polynomial in n and d.  



Given an n-dimensional vector b and an n x d (full row-rank) matrix A 
and a d-dimensional cost vector c, solve : { max cTx : Ax = b, x ≥ 0 } 
 
Simplex methods (Dantzig 1947): pivot-based, combinatorial, not 
proven to be polynomial, efficient in practice  
 
Ø  start from a feasible basis 
Ø  use a pivot rule 
Ø  find an optimal solution after a finite number of iterations 
Ø  most known pivot rules are known to be exponential  
     (worst case); efficient implementations exist 
 
 

Linear optimization algorithms  
simplex methods 



Given an n-dimensional vector b and an n x d (full row-rank) matrix A 
and a d-dimensional cost vector c, solve : { max cTx : Ax = b, x ≥ 0 } 
 
Interior Point Methods : 
path-following, polynomial, efficient in practice  
 
Ø  start from the analytic center 
Ø   follow the central path 
Ø   converge to an optimal solution in O(√nL) iterations 
      (L:  input data length) 
 
 

_ 

µmax cΤx − ln(b− Ax)i
i
∑

µ : central path parameter 
x ∈P : Ax ≤ b 

analytic  
center 

central 
path optimal 

solution 

c 

Linear optimization algorithms  
(central path following) interior point methods 



Diameter (of a polytope) :  

lower bound for the number of iterations for pivoting 
simplex methods 

Curvature (of the central path associated to a polytope) : 

large curvature indicates large number of iterations 
for path following interior point methods 

Linear optimization diameter and curvature  

analytic  
center 

central 
path optimal 

solution 

c 



Linear Optimization 

Given an n-dimensional vector b and an n x d matrix A 
find, in any, a d-dimensional vector x such that : 
  
Ax = b     Ax ≤ b 

 
linear algebra    linear optimization 
 
Can linear optimization be solved in strongly polynomial  
time? is listed by Smale (Fields Medal 1966) as one of  
the top mathematical problems for the XXI century 
 
Strongly polynomial : algorithm independent from 
 the input data length and polynomial in n and d. 
 
Interior point methods are not strongly polynomial  
[Allamigeon, Benchimol, Gaubert, Joswig 2018] 
 
(tropical counterexample to continuous Hirsch conjecture [Deza-Terlaky-Zinchenko 2008]) 
 



                  

Ø  Ising model (spin glasses)   
     maxcut, cut and metric polytopes   [Deza-Laurent 1997] 
 
Ø  a(d) : number of generalized retarded functions in quantum field theory 
    (number of real-time Green functions)  [Evans 1994] 
 

Discrete optimization and theoretical physics   



                  

Ø  Ising model (spin glasses)   
     maxcut, cut and metric polytopes   [Deza-Laurent 1997] 
 
Ø  a(d) : number of generalized retarded functions in quantum field theory 
    (number of real-time Green functions)  [Evans 1994] 
 
a(d) = number of regions of the arrangement formed by the 2d -1 
hyperplanes with {0,1}-valued normals in dimension d  
 
 
 

Discrete optimization and theoretical physics   



                  

Ø  Ising model (spin glasses)   
     maxcut, cut and metric polytopes   [Deza-Laurent 1997] 
 
Ø  a(d) : number of generalized retarded functions in quantum field theory 
    (number of real-time Green functions)  [Evans 1994] 
 
a(d) = number of regions of the arrangement formed by the 2d -1 
hyperplanes with {0,1}-valued normals in dimension d  
 
d = 2   2d -1 = 3 hyperplanes  
 
 
 

Discrete optimization and theoretical physics   



                  

Ø  Ising model (spin glasses)   
     maxcut, cut and metric polytopes   [Deza-Laurent 1997] 
 
Ø  a(d) : number of generalized retarded functions in quantum field theory 
    (number of real-time Green functions)  [Evans 1994] 
 
a(d) = number of regions of the arrangement formed by the 2d -1 
hyperplanes with {0,1}-valued normals in dimension d  
 
d = 2   2d -1 = 3 hyperplanes  
  
(0,1)  
 
 

Discrete optimization and theoretical physics   



                  

Ø  Ising model (spin glasses)   
     maxcut, cut and metric polytopes   [Deza-Laurent 1997] 
 
Ø  a(d) : number of generalized retarded functions in quantum field theory 
    (number of real-time Green functions)  [Evans 1994] 
 
a(d) = number of regions of the arrangement formed by the 2d -1 
hyperplanes with {0,1}-valued normals in dimension d  
 
d = 2   2d -1 = 3 hyperplanes  
  
(0,1)  
(1,0)  

      
 
 

Discrete optimization and theoretical physics   



                  

Ø  Ising model (spin glasses)   
     maxcut, cut and metric polytopes   [Deza-Laurent 1997] 
 
Ø  a(d) : number of generalized retarded functions in quantum field theory 
    (number of real-time Green functions)  [Evans 1994] 
 
a(d) = number of regions of the arrangement formed by the 2d -1 
hyperplanes with {0,1}-valued normals in dimension d  
 
d = 2   2d -1 = 3 hyperplanes  
  
(0,1)  
(1,0)  
(1,1)  

      
 
 

Discrete optimization and theoretical physics   



                  

Ø  Ising model (spin glasses)   
     maxcut, cut and metric polytopes   [Deza-Laurent 1997] 
 
Ø  a(d) : number of generalized retarded functions in quantum field theory 
    (number of real-time Green functions)  [Evans 1994] 
 
a(d) = number of regions of the arrangement formed by the 2d -1 
hyperplanes with {0,1}-valued normals in dimension d  
 
d = 2   2d -1 = 3 hyperplanes  
  
(0,1)  
(1,0)  
(1,1)  
 
Ø  a(2)=6       

    6 regions 

Discrete optimization and theoretical physics   



                  

Discrete optimization and theoretical physics   

Ø  Ising model (spin glasses)   
     maxcut, cut and metric polytopes   [Deza-Laurent 1997] 
 
Ø  a(d) : number of generalized retarded functions in quantum field theory 
    (number of real-time Green functions)  [Evans 1994] 
 
a(d) = number of regions of the arrangement formed by the 2d -1 
hyperplanes with {0,1}-valued normals in dimension d  
 
Ø  is a(d) ≥ d !  [Question by Evans] 

Ø  a(d) determined till d = 8 

Ø  how to estimate a(d) ? 
 

      
    a(d)  regions 



                  

Discrete optimization and theoretical physics   

Ø  Ising model (spin glasses)   
     maxcut, cut and metric polytopes   [Deza-Laurent 1997] 
 
Ø  a(d) : number of generalized retarded functions in quantum field theory 
    (number of real-time Green functions)  [Evans 1994] 
 
a(d) = number of regions of the arrangement formed by the 2d -1 
hyperplanes with {0,1}-valued normals in dimension d  
 
Ø  is a(d) ≥ d !  [Question by Evans] 

Ø  a(d) determined till d = 8 
 
Ø  how to estimate a(d) ? 

      
 
a(d)  regions  =>   a(d)  vertices 



                  

Discrete optimization and theoretical physics   

Ø  Ising model (spin glasses)   
     maxcut, cut and metric polytopes   [Deza-Laurent 1997] 
 
Ø  a(d) : number of generalized retarded functions in quantum field theory 
    (number of real-time Green functions)  [Evans 1994] 
 
a(d) = number of regions of the arrangement formed by the 2d -1 
hyperplanes with {0,1}-valued normals in dimension d  
 
Ø  is a(d) ≥ d !  [Question by Evans] 

Ø  a(d) determined till d = 8 
 
Ø  how to estimate a(d) ? 

Ø  a(d) vertices of the white whale    
                         a(2) = 6 



                  

Discrete optimization and theoretical physics   

Ø  Ising model (spin glasses)   
     maxcut, cut and metric polytopes   [Deza-Laurent 1997] 
 
Ø  a(d) : number of generalized retarded functions in quantum field theory 
    (number of real-time Green functions)  [Evans 1994] 
 
a(d) = number of regions of the arrangement formed by the 2d -1 
hyperplanes with {0,1}-valued normals in dimension d  
 
Ø  is a(d) ≥ d !  [Question by Evans] 

Ø  a(d) determined till d = 8 
 
Ø  how to estimate a(d) ? 

Ø  a(d) vertices of the white whale 
        a(3) = 32 





Diameter (of a polytope) :  

lower bound for the number of iterations for pivoting 
simplex methods 

Curvature (of the central path associated to a polytope) : 

large curvature indicates large number of iterations 
for path following interior point methods 

Linear optimization diameter and curvature  

analytic  
center 

central 
path optimal 

solution 

c 



Lattice polytopes with large diameter  

lattice (d,k)-polytope : convex hull of points drawn from {0,1,…,k}d  
 
diameter δ(P) of polytope P : smallest number such that any two 
vertices of P can be connected by a path with at most δ(P) edges 
 
δ(d,k): largest diameter over all lattice (d,k)-polytopes  
 
 
ex. δ(3,3) = 6 and is achieved  
by a truncated cube 

 



Lattice polytopes with large diameter  

lattice (d,k)-polytope : convex hull of points drawn from {0,1,…,k}d  
 
diameter δ(P) of polytope P : smallest number such that any two 
vertices of P can be connected by a path with at most δ(P) edges 
 
δ(d,k): largest diameter over all lattice (d,k)-polytopes  
 
 
Ø  δ(P) : lower bound for the worst case number of iterations required 

by pivoting methods (simplex) to optimize a linear function over P 

Ø  Hirsch conjecture : δ(P) ≤ n – d   (n  number of inequalities) 
     was disproved [Santos 2012] 
 
(δ(P) ≤ (n – d) log d - ...   [Kalai-Kleitman 1992, Todd 2014, Sukegawa 2019]) 

 



Lattice polytopes with large diameter  

lattice (d,k)-polytope : convex hull of points drawn from {0,1,…,k}d  
 
diameter δ(P) of polytope P : smallest number such that any two 
vertices of P can be connected by a path with at most δ(P) edges 
 
δ(d,k): largest diameter over all lattice (d,k)-polytopes  
 
 
Ø  δ(P) : lower bound for the worst case number of iterations required 

by pivoting methods (simplex) to optimize a linear function over P 

Ø  Hirsch conjecture : δ(P) ≤ n – d   (n  number of inequalities) 
     was disproved [Santos 2012] 
 

ü  no polynomial upper bound known for δ(P) 
ü  best current bound [Sukegawa 2019] 

 



δ(d,k): largest diameter of a convex hull of points drawn from {0,1,…,k}d  
 
upper bounds : 
 

 δ(d,1) ≤ d     [Naddef 1989] 
 

 δ(2,k) = O(k2/3)     [Balog-Bárány 1991] 
 

 δ(2,k) = 6(k/2π)2/3 +O(k1/3 log k)   [Thiele 1991]  
      [Acketa-Žunić 1995] 

 
 δ(d,k) ≤ kd     [Kleinschmid-Onn 1992] 

 
 δ(d,k) ≤ kd -  d/2             for k ≥ 2  [Del Pia-Michini 2016] 

 
 δ(d,k) ≤ kd -   2d/3  - (k - 3)    for k ≥ 3  [Deza-Pournin 2018] 

 

Lattice polytopes with large diameter  



δ(d,k): largest diameter of a convex hull of points drawn from {0,1,…,k}d  
 
lower bounds : 
 

 δ(d,1) ≥ d    [Naddef 1989] 
 

 δ(d,2) ≥   3d/2    [Del Pia-Michini 2016] 
 

 δ(d,k) = Ω(k2/3 d)    [Del Pia-Michini 2016] 
 

 δ(d,k) ≥  (k+1)d /2   for k < 2d  [Deza-Manoussakis-Onn 2018] 
 
 
 

Lattice polytopes with large diameter  



δ(d,k) 
                           k 

1 2 3 4 5 6 7 8 9 

d 

2 2 

3 3 

4 4 

5 5 

δ(d,1) = d    [Naddef 1989] 

Lattice polytopes with large diameter  



δ(d,k) 
                           k 

1 2 3 4 5 6 7 8 9 

d 

2 2 3 4 4 5 6 6 7 8 

3 3 

4 4 

5 5 

δ(d,1) = d    [Naddef 1989] 
δ(2,k) : close form   [Thiele 1991] [Acketa-Žunić 1995] 

  

Lattice polytopes with large diameter  



δ(d,k) 
                           k 

1 2 3 4 5 6 7 8 9 

d 

2 2 3 4 4 5 6 6 7 8 

3 3 4 

4 4 6 

5 5 7 

δ(d,1) = d    [Naddef 1989] 
δ(2,k) : close form   [Thiele 1991] [Acketa-Žunić 1995] 
δ(d,2) =   3d/2    [Del Pia-Michini 2016]   

Lattice polytopes with large diameter  



δ(d,k) 
                           k 

1 2 3 4 5 6 7 8 9 

d 

2 2 3 4 4 5 6 6 7 8 

3 3 4 6 7 9 

4 4 6 8 

5 5 7 

δ(d,1) = d    [Naddef 1989] 
δ(2,k) : close form   [Thiele 1991] [Acketa-Žunić 1995] 
δ(d,2) =   3d/2    [Del Pia-Michini 2016] 
δ(4,3)=8, δ(3,4)=7, δ(3,5)=9  [Deza-Pournin 2018], [Chadder-Deza 2017] 

  

Lattice polytopes with large diameter  



δ(d,k) 
                           k 

1 2 3 4 5 6 7 8 9 

d 

2 2 3 4 4 5 6 6 7 8 

3 3 4 6 7 9 10 

4 4 6 8 

5 5 7 10 

δ(d,1) = d    [Naddef 1989] 
δ(2,k) : close form   [Thiele 1991] [Acketa-Žunić 1995] 
δ(d,2) =   3d/2    [Del Pia-Michini 2016] 
δ(4,3)=8, δ(3,4)=7, δ(3,5)=9  [Deza-Pournin 2018], [Chadder-Deza 2017] 
δ(5,3)=10, δ(3,6)=10   [Deza-Deza-Guan-Pournin 2019]   

Lattice polytopes with large diameter  



δ(d,k) 
                           k 

1 2 3 4 5 6 7 8 9 

d 

2 2 3 4 4 5 6 6 7 8 

3 3 4 6 7 9 10 11+ 12+ 13+ 

4 4 6 8 10+ 12+ 14+ 16+ 17+ 18+ 

5 5 7 10 12+ 15+ 17+ 20+ 22+ 25+ 

Ø  Conjecture [Deza-Manoussakis-Onn 2018]   δ(d,k) ≤  (k+1)d /2 
 
and δ(d,k) is achieved, up to translation, by a Minkowski sum of primitive 
lattice vectors. The conjecture holds for all known entries of δ(d,k) 

Lattice polytopes with large diameter  



Q. What is δ(2,k) : largest diameter of a polygon which vertices are 
drawn form the k x k grid? 
 
A polygon can be associated to a set of vectors (edges) summing up to 
zero, and without a pair of positively multiple vectors  
 
 
 
 
 
 
 
 
 
δ(2,3) = 4 is achieved by the 8 vectors : (±1,0), (0,±1), (±1,±1) 

Lattice polygons with large diameter 



δ(2,2) = 2 ; vectors : (±1,0), (0,±1) 

Lattice polygons with large diameter 



δ(2,2) = 2 ; vectors : (±1,0), (0,±1) 

||x||1 ≤ 1 

Lattice polygons with large diameter 



δ(2,2) = 2 ; vectors : (±1,0), (0,±1) 
δ(2,3) = 4 ; vectors : (±1,0), (0,±1), (±1,±1) 

||x||1 ≤ 2 

Lattice polygons with large diameter 



δ(2,2) = 2 ; vectors : (±1,0), (0,±1) 
δ(2,3) = 4 ; vectors : (±1,0), (0,±1), (±1,±1) 
δ(2,9) = 8 ; vectors : (±1,0), (0,±1), (±1,±1), (±1,±2), (±2,±1) 

||x||1 ≤ 3 

Lattice polygons with large diameter 



2 !(!)
!

!!!
!

 
δ(2,k) =     for  k =         φ(p) : Euler totient function counting positive 

             integers less or equal to p relatively prime with p 
             φ(1) = φ(2) = 1, φ(3) = φ(4) = 2,… 

!!(!)
!

!!!
!

||x||1 ≤ p 

Lattice polygons with large diameter 



!!(!)
!

!!!
!

H1(2,p) : Minkowski sum generated by {x ∈ Z2 : ||x||1 ≤ p, gcd(x)=1, x ≻ 0} 
 
H1(2,p) has diameter δ(2,k) =    for k =   
 
 
Ex. H1(2,2) generated by (1,0), (0,1), (1,1), (1,-1)  (fits, up to translation, in 3x3 grid) 
 

    x ≻ 0 : first nonzero coordinate of x is nonnegative  

2 !(!)
!

!!!
!

 
 

||x||1 ≤ p 

Primitive polygons 



Hq(d,p) : Minkowski (x ∈ Zd : ||x||q ≤ p, gcd(x)=1, x ≻ 0) 
 

   x ≻ 0 : first nonzero coordinate of x is nonnegative  
 
 
Given a set G of m vectors (generators),  
Minkowski (G) : convex hull of all the 2m subsums of the m vectors in G 
 

  
v  Primitive zonotopes: Minkowski sum generated by short integer vectors 

which are pairwise linearly independent  

 
 

v  Note: convex hull of all the signed subsums of the vectors of 
Hq(d,p) is a generalization of the permutahedron of type Bd   

 

Primitive zonotopes 



Hq(d,p) : Minkowski (x ∈ Zd : ||x||q ≤ p, gcd(x)=1, x ≻ 0) 
 

   x ≻ 0 : first nonzero coordinate of x is nonnegative  
 
Ø  Hq(d, 1) : [0, 1]d cube for q ≠∞ 

Primitive zonotopes 



Hq(d,p) : Minkowski (x ∈ Zd : ||x||q ≤ p, gcd(x)=1, x ≻ 0) 
 

   x ≻ 0 : first nonzero coordinate of x is nonnegative  
 
Ø  H1(d,2) : permutahedron of type Bd   (up to a homothety) 

      H1(3,2) : great rhombicuboctahedron 

 
 

Primitive zonotopes 



Hq(d,p) : Minkowski (x ∈ Zd : ||x||q ≤ p, gcd(x)=1, x ≻ 0) 
 

   x ≻ 0 : first nonzero coordinate of x is nonnegative  
 
Ø  H∞(3,1) : truncated small rhombicuboctahedron 

Primitive zonotopes 



Hq(d,p) : Minkowski (x ∈ Zd : ||x||q ≤ p, gcd(x)=1, x ≻ 0) 
 

x ≻ 0 : first nonzero coordinate of x is nonnegative  
 

Hq(d,p)+ : Minkowski (x ∈ Z+
d : ||x||q ≤ p, gcd(x)=1) 

 

Positive primitive zonotopes 



Hq(d,p) : Minkowski (x ∈ Zd : ||x||q ≤ p, gcd(x)=1, x ≻ 0) 
 

x ≻ 0 : first nonzero coordinate of x is nonnegative  
 

Hq(d,p)+ : Minkowski (x ∈ Z+
d : ||x||q ≤ p, gcd(x)=1) 

   
 
Ø  H1(d,2)+ : Minkowski sum permutahedron + unit cube  (graphical zonotope) 
 
Ø  H∞(d,1)+ :  white whale   (hypergraphical zonotope) 

 a(d) = |H∞(d,1)+ | 
 

 number a(d) of generalized retarded functions in quantum field theory 
  is equal to the number of vertcies of H∞(d,1)+ 

 

 

Positive primitive zonotopes 



H∞(n,1)+  



v  lattice polytopes with large diameter 
 

Hq(d,p) : Minkowski (x ∈ Zd : ||x||q ≤ p, gcd(x)=1, x ≻ 0) 
 

   x ≻ 0 : first nonzero coordinate of x is nonnegative 
    

 
Ø  For k < 2d, Minkowski sum of a subset of the generators of H1(d,2) is, 
     up to translation, a lattice (d,k)-polytope with diameter  (k+1)d/2 

 
 

Primitive zonotopes 



δ(d,k) 
                           k 

1 2 3 4 5 6 7 8 9 

d 

2 2 3 4 4 5 6 6 7 8 

3 3 4 6 7 9 10 11+ 12+ 13+ 

4 4 6 8 10+ 12+ 14+ 16+ 17+ 18+ 

5 5 7 10 12+ 15+ 17+ 20+ 22+ 25+ 

Ø  Conjecture [Deza-Manoussakis-Onn 2018]   δ(d,k) ≤  (k+1)d /2 
 
and δ(d,k) is achieved, up to translation, by a Minkowski sum of primitive 
lattice vectors. The conjecture holds for all known entries of δ(d,k) 

Lattice polytopes with large diameter  
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 Search Hints

(Greetings from The On-Line Encyclopedia of Integer Sequences!)

A034997 Number of Generalized Retarded Functions in Quantum Field Theory. 1

2, 6, 32, 370, 11292, 1066044, 347326352, 419172756930 (list; graph; refs; listen; history; text; internal format)
OFFSET 1,1
COMMENTS a(d) is the number of parts into which d-dimensional space (x_1,...,x_d) is

split by a set of (2^d - 1) hyperplanes c_1 x_1 + c_2 x_2 + ...+ c_d x_d
=0 where c_j are 0 or +1 and we exclude the case with all c=0.

Also, a(d) is the number of independent real-time Green functions of Quantum
Field Theory produced when analytically continuing from Euclidean
time/energy (d+1 = number of energy/time variables). These are also known
as Generalized Retarded Functions.

The numbers up to d=6 were first produced by T. S. Evans using a Pascal
program, strictly as upper bounds only. M. van Eijck wrote a C program
using a direct enumeration of hyperplanes which confirmed these and
produced the value for d=7. Kamiya et al. showed how to find these numbers
and some associated polynomials using more sophisticated methods, giving
results up to d=7. T. S. Evans added the last number on Aug 01 2011 using
an updated version of van Eijck's program, which took 7 days on a standard
desktop computer.

REFERENCES Björner, Anders. "Positive Sum Systems", in Bruno Benedetti, Emanuele
Delucchi, and Luca Moci, editors, Combinatorial Methods in Topology and
Algebra. Springer International Publishing, 2015. 157-171.

M. van Eijck, Thermal Field Theory and Finite-Temperature Renormalisation
Group, PhD thesis, Univ. Amsterdam, 4th Dec. 1995.

LINKS Table of n, a(n) for n=1..8.
L. J. Billera, J. T. Moore, C. D. Moraites, Y. Wang and K. Williams, Maximal

unbalanced families, arXiv preprint arXiv:1209.2309 [math.CO], 2012. -
From N. J. A. Sloane, Dec 26 2012

Antoine Deza, George Manoussakis, Shmuel Onn, Primitive Zonotopes, Discrete
& Computational Geometry, 2017, p. 1-13. (See p. 5.)

T. S. Evans, N-point finite temperature expectation values at real times,
Nuclear Physics B 374 (1992) 340-370.

T. S. Evans, What is being calculated with Thermal Field Theory?, arXiv:hep-
ph/9404262 and in "Particle Physics and Cosmology: Proceedings of the
Ninth Lake Louise Winter School", World Scientific, 1995 (ISBN
9810221002).

H. Kamiya, A. Takemura and H. Terao, Ranking patterns of unfolding models of
codimension one, Advances in Applied Mathematics 47 (2011) 379 - 400.

EXAMPLE a(1)=2 because the point x=0 splits the real line into two parts, the
positive and negative reals.

H∞(d,1)+  
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Sloane OEI sequences 
H∞(d,1)+ vertices : A034997 = number of generalized retarded functions in 
quantum Field theory (determined till d =8) 
 
H∞(d,1) vertices : A009997 = number of regions of hyperplane arrangements 
with {-1,0,1}-valued normals in dimension d (determined till d =7) 
 
 
Estimating the number of vertices of H∞(d,1)+   (white whale) 
 
    d(d-1)/2  ≤ log2 | H∞(d,1)+ | ≤ d 2  [Billera et al 2012] 
 
    d(d-1)/2  ≤ log2 | H∞(d,1)+ | ≤ d(d-3)  [Deza-Pournin-Rakotonarivo 2019] 
 
 

Vertices of primitive zonotopes 



Sloane OEI sequences 
H∞(d,1)+ vertices : A034997 = number of generalized retarded functions in 
quantum Field theory (determined till d =8) 
 
H∞(d,1) vertices : A009997 = number of regions of hyperplane arrangements 
with {-1,0,1}-valued normals in dimension d (determined till d =7) 
 
 
Estimating the number of vertices of H∞(d,1)   (matroid optimization) 
 
     d ≤ log3 | H∞(d,1) | ≤ d(d-1)           [Melamed-Onn 2014]  
 

     d log d  ≤ log3 | H∞(d,1) | ≤  d(d-1)  [Deza-Onn-Manoussakis 2018] 
 
     d(d-1)/2  ≤ log3 | H∞(d,1) | ≤ d(d-2)  [Deza-Pournin-Rakotonarivo 2019] 
 
 

Computational determination of the  
number of vertices of primitive zonotopes 



Convex Matroid Optimization 

The optimal solution of max { f(Wx) : x ∈ S} is attained at a vertex of the 
projection integer polytope in Rd  : conv(WS) = Wconv(S)  
 
S : set of feasible point in Zn  (in the talk S ∈ {0,1} n ) 

W : integer d x n matrix   (W is {0,1,…, p}-valued) 
f : convex function from Rd  to R 
 
Q. What is the maximum number v(d,n) of vertices of conv(WS) when  
S ∈ {0,1} n and W is a {0,1}-valued d x n matrix ? 
 
obviously  v(d,n) ≤ |WS| = O(nd) 
in particular  v(2,n) = O(n2),  and v(2,n) = Ω(n0.5) 



[Melamed-Onn 2014] Given matroid S of order n and {0,1,…,p}-valued  
d x n matrix W, the maximum number m(d,p) of vertices of conv(WS) is 
independent of n and S 
 
Ex: maximum number m(2,1) of vertices of a planar projection conv(WS)  
of matroid S by a binary matrix W is attained by the following matrix and 
uniform matroid of rank 3 and order 8: 
 
 

 W = 
 
 
 
S = U(3,8) = 

                 
             

                                                                                  conv(WS)  

2 3 0 1 

1 

2 

3 

Convex Matroid Optimization 



Convex Matroid Optimization 

The optimal solution of max { f(Wx) : x ∈ S} is attained at a vertex of the 
projection integer polytope in Rd  : conv(WS) = Wconv(S)  
 
S : set of feasible point in Zn  (in the talk S ∈ {0,1} n ) 

W : integer d x n matrix   (W is mostly {0,1,…, p}-valued) 
f : convex function from Rd  to R 
 
Q. What is the maximum number v(d,n) of vertices of conv(WS) when  
S ∈ {0,1} n and W is a {0,1}-valued d x n matrix ? 
 
obviously  v(d,n) ≤ |WS| = O(nd) 
in particular  v(2,n) = O(n2),  and v(2,n) = Ω(n0.5) 
 
[Melamed-Onn 2014] Given matroid S of order n and {0,1,…,p}-valued  
d x n matrix W, the maximum number m(d,p) of vertices of conv(WS) is 
independent of n and S 



[Melamed-Onn 2014] Given matroid S of order n and {0,1,…,p}-valued  
d x n matrix W, the maximum number m(d,p) of vertices of conv(WS) is 
independent of n and S 
 
[Deza-Manoussakis-Onn 2018] Given matroid S of order n, {0,1,…,p}-
valued d x n matrix W, maximum number m(d,p) of vertices of conv(WS) 
is equal to the number of vertices of H∞(d,p) 
 

m(d,p) = | H∞(d,p) | 
 
 

Convex Matroid Optimization 
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[Melamed-Onn 2014] Given matroid S of order n and {0,1,…,p}-valued  
d x n matrix W, the maximum number m(d,p) of vertices of conv(WS) is 
independent of n and S 
 
[Deza-Manoussakis-Onn 2018] Given matroid S of order n, {0,1,…,p}-
valued d x n matrix W, maximum number m(d,p) of vertices of conv(WS) 
is equal to the number of vertices of H∞(d,p) 
 

m(d,p) = | H∞(d,p) | 
 

[Melamed-Onn 2014]          [Deza-Manoussakis-Onn 2018] 
 
d 2d ≤ m(d,1) ≤           d! 2d ≤ m(d,1) ≤          - f(d)  
 
24 ≤ m(3,1) ≤ 158          m(3,1) = 96  
64 ≤ m(4,1) ≤ 19840          m(4,1) = 5376   
  
m(2,1) = 8    
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Convex Matroid Optimization 

m(2,p) = 8 
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[Melamed-Onn 2014] Given matroid S of order n and {0,1,…,p}-valued  
d x n matrix W, the maximum number m(d,p) of vertices of conv(WS) is 
independent of n and S 
 
[Deza-Manoussakis-Onn 2018] Given matroid S of order n, {0,1,…,p}-
valued d x n matrix W, maximum number m(d,p) of vertices of conv(WS) 
is equal to the number of vertices of H∞(d,p) 
 

m(d,p) = | H∞(d,p) | 
 

[Melamed-Onn 2014]          [Deza-Pournin-Rakotonarivo 2019] 
 
d 2d ≤ m(d,1) ≤           3d(d-1)/2 ≤ m(d,1) ≤ 3d(d-2) 
 
24 ≤ m(3,1) ≤ 158          m(3,1) = 96  
64 ≤ m(4,1) ≤ 19840          m(4,1) = 5376   
  
m(2,1) = 8    

Convex Matroid Optimization 

m(2,p) = 8 



 
Dd : convex hull of the degree sequences of all hypergraphs on d nodes 

Dd  = H∞(d,1)+ 
 

Dd (k) : convex hull of the degree sequences of all k-uniform hypergraphs  
 on d nodes 

 
 

Primitive Zonotopes  
(degree sequences)  



 
Dd : convex hull of the degree sequences of all hypergraphs on d nodes 

Dd  = H∞(d,1)+ 
 

Dd (k) : convex hull of the degree sequences of all k-uniform hypergraphs  
 on d nodes 

 
Q: check whether x ∈ Dd (k) ∩ Zd  is the degree sequence of a k-uniform 
hypergraph. Necessary condition: sum of the coordinates of x is multiple of k. 
 
[Erdős-Gallai 1960]: for k = 2 (graphs) necessary condition is sufficient 
 
[Liu 2013] exhibited counterexamples (holes) for k = 3 (Klivans-Reiner Q.)  

Primitive Zonotopes  
(degree sequences)  



 
Dd : convex hull of the degree sequences of all hypergraphs on d nodes 

Dd  = H∞(d,1)+ 
 

Dd (k) : convex hull of the degree sequences of all k-uniform hypergraphs  
 on d nodes 

 
Q: check whether x ∈ Dd (k) ∩ Zd  is the degree sequence of a k-uniform 
hypergraph. Necessary condition: sum of the coordinates of x is multiple of k. 
 
[Erdős-Gallai 1960]: for k = 2 (graphs) necessary condition is sufficient 
 
[Liu 2013] exhibited counterexamples (holes) for k = 3 (Klivans-Reiner Q.)  
 
Ø  Answer to Colbourn-Kocay-Stinson Q. (1986)  
     Deciding whether a given integer sequence is the degree sequence of a  
     3-hypergraph is NP-complete [Deza-Levin-Meesum-Onn 2018] 

Primitive Zonotopes  
(degree sequences)  



δ(d,k): largest diameter over all lattice (d,k)-polytopes  
 
Ø  Conjecture : δ(d,k) ≤  (k+1)d/2   and δ(d,k)  is achieved, up to translation, 

by a Minkowski sum of primitive lattice vectors (holds for all known δ(d,k) ) 
  
 ⇒ δ(d,k) =  (k+1)d/2   for k < 2d 

 
Ø  m(d,p) = | H∞(d,p) |   (convex matroid optimization complexity) 
 
Ø  tightening of the bounds  for  m(d,1) = | H∞(d,1)+ |   
 
Ø  tightening of the bounds  for  a(d) = | H∞(d,1)+ |   (white whale) 

Ø  Answer to [Colbourn-Kocay-Stinson 1986] question: 
     Deciding whether a given integer sequence is the degree sequence of a  
     3-hypergraph is NP-complete [Deza-Levin-Meesum-Onn 2018] 

Primitive zonotopes, convex matroid optimization,  
and degree sequences of hypergraphs 



δ(d,k): largest diameter over all lattice (d,k)-polytopes  
 
Ø  Conjecture : δ(d,k) ≤  (k+1)d/2   and δ(d,k)  is achieved, up to translation, 

by a Minkowski sum of primitive lattice vectors (holds for all known δ(d,k) ) 
  
 ⇒ δ(d,k) =  (k+1)d/2   for k < 2d 

 
Ø  m(d,p) = | H∞(d,p) |   (convex matroid optimization complexity) 
 
Ø  tightening of the bounds  for  m(d,1) = | H∞(d,1)+ |   
 
Ø  tightening of the bounds  for  a(d) = | H∞(d,1)+ |   (white whale) 

Ø  Answer to [Colbourn-Kocay-Stinson 1986] question: 
     Deciding whether a given integer sequence is the degree sequence of a  
     3-hypergraph is NP-complete [Deza-Levin-Meesum-Onn 2018] 

Primitive zonotopes, convex matroid optimization,  
and degree sequences of hypergraphs 

ü  thank you 
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