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A general stochastic optimization problem

F : X × Rm → R

ξ is a random variable taking values in Rm

min
x∈X

Eξ[ F (x , ξ) ]
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A general stochastic optimization problem

F : X × Rm → R

ξ is a random variable taking values in Rm

min
x∈X

Eξ[ F (x , ξ) ]

Example:

Supervised Machine Learning: One sees samples (z , y) ∈ Rn × R
of labeled data from some (joint) distribution, and one aims to find
a function f ∈ F in a hypothesis class F that minimizes the
expected loss E(z,y)[`(f (z), y)], where ` : R× R→ R+ is some
loss function. Then X = F , m = n + 1, ξ = (z , y), and

F (f , (z , y)) = `(f (z), y).
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ξ is a random variable taking values in Rm

min
x∈X

Eξ[ F (x , ξ) ]

Example:

(News) Vendor Problem: (News) Vendor buys some units of a
product (newspapers) from supplier at cost of c > 0 dollars/unit;
at most u units available. Stochastic demand for product. Product
sold at price p > c dollars/unit. End of day, vendor can return
unsold product to supplier at r < c dollars/unit. Find number of
units to buy to maximize (minimize) the expected profit (loss).
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Eξ[ F (x , ξ) ]

Example:

(News) Vendor Problem: (News) Vendor buys some units of a
product (newspapers) from supplier at cost of c > 0 dollars/unit;
at most u units available. Stochastic demand for product. Product
sold at price p > c dollars/unit. End of day, vendor can return
unsold product to supplier at r < c dollars/unit. Find number of
units to buy to maximize (minimize) the expected profit (loss).
m = 1, X = [0, u],

F (x , ξ) = cx − p min{x , ξ} − r max{x − ξ, 0}.
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ξ is a random variable taking values in Rm

min
x∈X

Eξ[ F (x , ξ) ]

Solve the problem only given access to n i.i.d. samples of ξ.

Natural idea: Given samples ξ1, . . . , ξn ∈ Rd , solve the
deterministic problem

min
x∈X

1

n

n∑
i=1

F (x , ξi )

Stochastic optimizers call this sample average approximation
(SAA); machine learners call this empirical risk minimization.
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Concrete Problem

F (x , ξ) = ξT x

X ⊆ Rd is a compact set (e.g., polytope, integer points in a
polytope). So m = d .

ξ ∼ N(µ,Σ).

min
x∈X

Eξ[ F (x , ξ) ] = min
x∈X

Eξ[ ξT x ] = min
x∈X

µT x
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X ⊆ Rd is a compact set (e.g., polytope, integer points in a
polytope). So m = d .

ξ ∼ N(µ,Σ).

min
x∈X

Eξ[ F (x , ξ) ] = min
x∈X

Eξ[ ξT x ] = min
x∈X

µT x

Solve the problem only given access to n i.i.d. samples of ξ.
Important: µ is unknown.

Sample Average Approximation (SAA):

min
x∈X

1

n

n∑
i=1

F (x , ξi ) = min
x∈X

ξ
T
x

where ξ := 1
n

∑n
i=1 ξ

i .
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A quick tour of Statistical Decision Theory

Set of states of nature, modeled by a set Θ.

Set of possible actions to take, modeled by A.

In a particular state of nature θ ∈ Θ, the performance of any
action a ∈ A, is evaluated by a loss function L(θ, a). Goal: choose
action to minimize loss.

(Partial/Incomplete) Information about θ is obtained through a
random variable y taking values in a sample space χ. The
distribution of y depends on the particular state of nature θ,
denoted by Pθ.
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Set of states of nature, modeled by a set Θ.

Set of possible actions to take, modeled by A.

In a particular state of nature θ ∈ Θ, the performance of any
action a ∈ A, is evaluated by a loss function L(θ, a). Goal: choose
action to minimize loss.

(Partial/Incomplete) Information about θ is obtained through a
random variable y taking values in a sample space χ. The
distribution of y depends on the particular state of nature θ,
denoted by Pθ.

Decision Rule: Takes y ∈ χ as input and reports an action a ∈ A.
Denote by δ : χ→ A.
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Our problem cast as statistical decision problem

X ⊆ Rd is a compact set. ξ ∼ N(µ, I ).

min
x∈X

Eξ[ F (x , ξ) ] = min
x∈X

Eξ[ ξT x ] = min
x∈X

µT x

States of Nature: Θ = Rd = {all possible µ ∈ Rd}.

Set of Actions: X ⊆ Rd .
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min
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Eξ[ F (x , ξ) ] = min
x∈X

Eξ[ ξT x ] = min
x∈X

µT x

States of Nature: Θ = Rd = {all possible µ ∈ Rd}.
Set of Actions: X ⊆ Rd .

Loss function:

L(µ̄, x̄) = Eξ∼N(µ̄,I )[ F (x̄ , ξ) ]−minx∈X Eξ∼N(µ̄,I )[ F (x , ξ) ]

= µ̄T x̄ − µ̄T x(µ̄)

Sample Space: χ = Rd × Rd × . . .× Rd︸ ︷︷ ︸
n times

Decision Rule: δ : χ→ X .

SAA: δ(ξ1, . . . , ξn) ∈ arg max{ξT x : x ∈ X}
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Decision Rules
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How does one decide between decision rules?

States of nature Θ, Actions A, Loss function L : Θ×A → R,
Sample space χ with distributions {Pθ : θ ∈ Θ}.

Given a decision rule δ : χ→ A, define the risk function of this
decision rule as:

Rδ(θ) := Ey∼Pθ
[ L(θ, δ(y)) ]

We say that a decision rule δ′ dominates a decision rule δ if
Rδ′(θ) ≤ Rδ(θ) for all θ ∈ Θ, and Rδ′(θ

∗) < Rδ(θ
∗) for some

θ∗ ∈ Θ.

If a decision rule δ is not dominated by any other decision rule, we
say that δ is admissible. Otherwise, it is inadmissible.
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Is the Sample Average Approximation (SAA) rule admissible?
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Admissibility in stochastic optimization

Stochastic optimization setup:

F : X × Rm → R, ξ is a R.V. in Rm

min
x∈X

Eξ[ F (x , ξ) ]

Want to solve with access to n i.i.d. samples of ξ.
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F : X × Rm → R, ξ is a R.V. in Rm

min
x∈X

Eξ[ F (x , ξ) ]

Want to solve with access to n i.i.d. samples of ξ.
Statistical decision theory view:
ξ ∼ N(µ, I ); states of nature Θ = Rm = {all possible µ ∈ Rm}.
Set of actions A = X , Sample space χ = Rd × Rd × . . .× Rd︸ ︷︷ ︸

n times
Loss function
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Inadmissibility of SAA: Stein’s Paradox

L(µ̄, x̄) = Eξ∼N(µ̄,I )[ F (x̄ , ξ) ]−min
x∈X

Eξ∼N(µ̄,I )[ F (x , ξ) ]

Sample Average Approximation (SAA) can be inadmissible!!

F (x , ξ) = ‖x − ξ‖2, X = Rd , ξ ∼ N(µ, I ).

min
x∈Rd

Eξ[ F (x , ξ) ] = min
x∈Rd

Eξ[ ‖x − ξ‖2 ]

12 / 19



Inadmissibility of SAA: Stein’s Paradox

L(µ̄, x̄) = Eξ∼N(µ̄,I )[ F (x̄ , ξ) ]−min
x∈X

Eξ∼N(µ̄,I )[ F (x , ξ) ]

Sample Average Approximation (SAA) can be inadmissible!!

min
x∈Rd
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Optimal solution: x(µ̄) = µ̄, Optimal value: V[ ξ ] = d .

L(µ̄, x̄) = ‖x̄ − µ̄‖2.
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L(µ̄, x̄) = ‖x̄ − µ̄‖2.

Sample Average Approximation (SAA):

min
x∈Rd

1

n

n∑
i=1

‖x − ξi‖2

δSAA(ξ1, . . . , ξn) = ξ :=
n∑

i=1

ξi .
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Inadmissibility of SAA: Stein’s Paradox

L(µ̄, x̄) = Eξ∼N(µ̄,I )[ F (x̄ , ξ) ]−min
x∈X

Eξ∼N(µ̄,I )[ F (x , ξ) ]

Sample Average Approximation (SAA) can be inadmissible!!

min
x∈Rd

Eξ∼N(µ,I )[ ‖x − ξ‖2 ]

Generalized to arbitrary convex quadratic function with uncertain
linear term in Davarnia and Cornuéjols 2018. Follow-up work from
a Bayesian perspective in Davarnia, Kocuk and Cornuéjols 2018.
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A class of problems with no Stein’s paradox

THEOREM Basu-Nguyen-Sun 2018
Consider the problem of optimizing an uncertain linear objective
ξ ∼ N(µ, I ) over a fixed compact set X ⊆ Rd :

min
x∈X

Eξ∼N(µ,I )[ ξT x ]

The Sample Average Approximation (SAA) rule is admissible.
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Main technical ideas/tools

Sufficient Statistic: P = {Pθ : θ ∈ Θ} family of distributions for
r.v. y in sample space χ. Sufficient statistic for this family is a
function T : χ→ τ such that the conditional probability
P(y |T = t) does not depend on θ.
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Sufficient Statistic: P = {Pθ : θ ∈ Θ} family of distributions for
r.v. y in sample space χ. Sufficient statistic for this family is a
function T : χ→ τ such that the conditional probability
P(y |T = t) does not depend on θ.

FACT:

χ = Rd × . . .× Rd︸ ︷︷ ︸
n times

, P = {N(µ, I )× . . .× N(µ, I )︸ ︷︷ ︸
n times

: µ ∈ Rd},

i.e., (ξ1, . . . , ξn) ∈ χ are i.i.d samples from the normal distribution
N(µ, I ). Then T (ξ1 . . . , ξn) = ξ := 1

n

∑n
i=1 ξ

i is a sufficient
statistic for P.
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Main technical ideas/tools

For any decision rule δ, define the function

F (µ) = Rδ(µ)− RδSAA(µ).

Suffices to show that there exists µ̂ ∈ Rd such that F (µ̂) > 0.

First observe: F (0) = 0.

Then compute ∇2F (0); show it has a strictly positive eigenvalue.
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Main technical ideas/tools
For any decision rule δ, define the function

F (µ) = Rδ(µ)− RδSAA(µ).

Suffices to show that there exists µ̂ ∈ Rd such that F (µ̂) > 0.

First observe: F (0) = 0.

Then compute ∇2F (0); show it has a strictly positive eigenvalue.

Use a fact from probability theory that for any Lebesgue integrable
function f : Rn → Rd , the map

µ 7→ Ey∈N(µ,Σ) [ f (y) ] :=

∫
Rd

f (y) exp

(
−1

2
(y−µ)TΣ−1(y−µ)

)
dy

has derivatives of all orders and these can be computed by taking
the derivative under the integral sign.
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Open Questions

I What about nonlinear objectives over compact feasible
regions? For example, what if F (x , ξ) = xTQx + ξT x for
some fixed PSD matrix Q, and X is a compact (convex) set?

I What about piecewise linear objectives F (x , ξ)? Recall News
Vendor Problem.

I Objectives coming from machine learning problems, such as
neural network training with squared or logistic loss
(admissibility of “empirical risk minimization”). Maybe this
depends on the hypothesis class that is being learnt?

I METATHEOREM (from Gérard Cornuéjols): Admissible if and
only if feasible region is bounded !?
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THANK YOU !

Questions/Comments ?
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