Locally Accelerated Conditional Gradients

Alejandro Carderera

Joint work with J. Diakonikolas and S. Pokutta Georgia Institute of Technology

alejandro.carderera@gatech.edu

July 29th, 2019

H. Milton Stewart School of Industrial and Engineering Systems

ocally Accelerated Conditional Gradients

References

Goal is smooth convex optimization.

 $\min_{x\in\mathcal{X}}f(x)$

Goal is smooth convex optimization.

 $\min_{x\in\mathcal{X}}f(x)$

Main ingredients: **First-order (FO) oracle.** Given $x \in \mathcal{X}$ and a differentiable convex function $f : \mathbb{R}^n \to \mathbb{R}$, return:

 $abla f(x) \in \mathbb{R}^n$ and $f(x) \in \mathbb{R}$

Linear optimization (LO) oracle. Given $v \in \mathbb{R}^n$, return:

 $\operatorname*{argmin}_{x \in \mathcal{X}} \left\langle v, x \right\rangle$

Focus of our work is on the *Conditional Gradients* algorithm (CG) [1], also known as the *Frank-Wolfe* algorithm (FW) [2].

Algorithm 1 Conditional Gradients algorithm.

Input: $x_0 \in \mathcal{X}$, stepsizes $\gamma_1 \cdots \gamma_t \in [0, 1]$.

1: for
$$t = 0$$
 to T do

2:
$$v_t = \operatorname{argmin}_{x \in \mathcal{X}} \langle \nabla f(x_t), x \rangle$$

$$3: \quad x_{t+1} = x_t + \gamma_t (v_t - x_t)$$

4: end for

Global Acceleration

Locally Accelerated Conditional Gradients

References

Advantages of CG.

Global Acceleration

Locally Accelerated Conditional Gradients

References

Advantages of CG.

First-order. Dimensionality of modern problems makes computing second-order information infeasible.

Global Acceleration

ocally Accelerated Conditional Gradients

References

Advantages of CG.

First-order. Dimensionality of modern problems makes computing second-order information infeasible.

Projection-free. Projection into certain feasible regions is computationally expensive: Birkhoff polytope and flow polytope are a few examples.

Advantages of CG.

Global Acceleration

ocally Accelerated Conditional Gradients

References

First-order. Dimensionality of modern problems makes computing second-order information infeasible.

Projection-free. Projection into certain feasible regions is computationally expensive: Birkhoff polytope and flow polytope are a few examples.

Sparse solutions. Solution is a convex combination of (a typically sparse set of) extreme points.

Global Acceleration

Locally Accelerated Conditional Gradients

References

Disadvantages of CG.

Global Acceleration

ocally Accelerated Conditional Gradients

References

Disadvantages of CG.

Sublinear convergence. For *L*-smooth and μ -strongly convex *f* when x^* is in a face of \mathcal{X} .

Global Acceleration

ocally Accelerated Conditional Gradients

References

Disadvantages of CG.

Sublinear convergence. For *L*-smooth and μ -strongly convex *f* when x^* is in a face of \mathcal{X} .

Example (CG Convergence.)

L-smooth and μ -strongly convex f with $x \in \mathbb{R}^2$, and x^* in boundary of \mathcal{X} .

Linear convergence is achieved by allowing steps that decrease the weight of *bad* vertices [3]. This has led to various CG variants:

Reference

Linear convergence is achieved by allowing steps that decrease the weight of *bad* vertices [3]. This has led to various CG variants:

Away-step Conditional Gradients (AFW)

Figure: Away-step CG (AFW)

Allow steps in the direction of:

$$x - \operatorname*{argmax}_{y \in \mathcal{S}} \langle \nabla f(x), y \rangle$$
,

where S is the active set of x.

ocally Accelerated Conditional Gradients

Pairwise CG

Fully-Corrective CG

Figure: PFW

Figure: FCFW

Global Acceleration

ocally Accelerated Conditional Gradients

References

Convergence rate for *L*-smooth μ -strongly convex *f*.

Theorem (Convergence rate of AFW, PFW and FCFW.)

[4] Suppose that f is L-smooth μ -strongly convex over a polytope \mathcal{X} , the number of steps T required to reach an ϵ -optimal solution to the minimization problem verifies,

$$\mathcal{T} = \mathcal{O}\left(rac{L}{\mu}\left(rac{D}{\delta}
ight)^2\lograc{1}{\epsilon}
ight),$$

where D and δ are the diameter and pyramidal width of polytope $\mathcal X$

ocally Accelerated Conditional Gradients

References

Example (CG Variant Convergence.)

L-smooth and μ -strongly convex $f(L/\mu \approx 10^8)$ over the probability simplex in \mathbb{R}^{100} , and x^* a convex combination of 13 vertices.

Global Acceleration

Locally Accelerated Conditional Gradients

References

CG Global Acceleration.

However, we know that optimal methods for this class of functions achieve an ϵ solution in $T = \mathcal{O}\left(\sqrt{\frac{L}{\mu}}\log\frac{1}{\epsilon}\right)$ first-order calls [5, 6].

Can CG achieve these convergence rates globally?

Global Acceleration

Locally Accelerated Conditional Gradients

References

CG Global Acceleration.

However, we know that optimal methods for this class of functions achieve an ϵ solution in $T = \mathcal{O}\left(\sqrt{\frac{L}{\mu}}\log\frac{1}{\epsilon}\right)$ first-order calls [5, 6].

Can CG achieve these convergence rates globally?

Example ([7, 8] $f(x) = ||x||^2$ over unit simplex in \mathbb{R}^n .)

We know the optimal solution is given by $x^* = 1/n$. CG can incorporate at most one vertex in each iteration, if we start from a vertex x_0 , in iteration t < n we have that:

$$f(x_t)-f(x^*)\geq \frac{1}{t}-\frac{1}{n}.$$

ocally Accelerated Conditional Gradients

Reference

Considering iterations such that $t \leq \lfloor n/2 \rfloor$ and rearranging into a linear convergence contraction we have:

$$T = \Omega\left(rac{1}{r}\lograc{1}{\epsilon}
ight),$$

where $r \leq 2 \frac{\log 2t}{2t}$.

References

Considering iterations such that $t \leq \lfloor n/2 \rfloor$ and rearranging into a linear convergence contraction we have:

$$T = \Omega\left(rac{1}{r}\lograc{1}{\epsilon}
ight),$$

where $r \leq 2 \frac{\log 2t}{2t}$.

Convergence rate of the CG variants for this problem instance: $r = \frac{1}{4t}$.

At best a global logarithmic improvement in the convergence rate, therefore **global acceleration in Nesterov's sense is not possible**.

Global Acceleration

Locally Accelerated Conditional Gradients

References

Conditional Gradient Sliding

Idea: Run Nesterov's Accelerated Gradient Descent, use CG to solve the projection subproblems approximately [9].

Global Acceleration

Locally Accelerated Conditional Gradients

References

Conditional Gradient Sliding

Idea: Run Nesterov's Accelerated Gradient Descent, use CG to solve the projection subproblems approximately [9].

Results:

- Separate LO and FO oracle calls.
- Globally optimal $\mathcal{O}\left(\sqrt{\frac{L}{\mu}}\log\frac{1}{\epsilon}\right)$ calls to FO and $\mathcal{O}\left(\frac{LD^2}{\epsilon} + \sqrt{\frac{L}{\mu}}\log\frac{1}{\epsilon}\right)$ calls to LO oracles.
- Convergence rates independent of the dimension *n*.

Global Acceleration

Locally Accelerated Conditional Gradients

References

Catalyst Augmented AFW.

Idea: Run Accelerated Proximal Method and solve proximal problems with a linearly convergent CG [10].

Global Acceleration

Locally Accelerated Conditional Gradients

References

Catalyst Augmented AFW.

Idea: Run Accelerated Proximal Method and solve proximal problems with a linearly convergent CG [10].

Results:

- $\mathcal{O}\left(\sqrt{\frac{L-\mu}{\mu}}\left(\frac{D}{\delta}\right)^2\log\frac{1}{\epsilon}\right)$ Calls to FO and LO oracles.
- Convergence rates dependent of the dimension *n*.

Global Acceleration

ocally Accelerated Conditional Gradients

References

Complexity for *L*-smooth μ -strongly convex *f*.

Algorithm	LO Calls	FO Calls
CG Variants	$\mathcal{O}\left(rac{L}{\mu} \left(rac{D}{\delta} ight)^2 \log rac{1}{\epsilon} ight)$	$\mathcal{O}\left(rac{L}{\mu} \left(rac{D}{\delta} ight)^2 \log rac{1}{\epsilon} ight)$
CGS	$\mathcal{O}\left(rac{LD^2}{\epsilon} + \sqrt{rac{L}{\mu}}\lograc{1}{\epsilon} ight)$	$\mathcal{O}\left(\sqrt{rac{L}{\mu}}\lograc{1}{\epsilon} ight)$
Catalyst	$\mathcal{O}\left(\sqrt{rac{L-\mu}{\mu}}\left(rac{D}{\delta} ight)^2\lograc{1}{\epsilon} ight)$	$\mathcal{O}\left(\sqrt{\frac{L-\mu}{\mu}}\left(\frac{D}{\delta} ight)^2\log\frac{1}{\epsilon} ight)$

Global Acceleration

ocally Accelerated Conditional Gradients

References

Complexity for *L*-smooth μ -strongly convex *f*.

Algorithm	LO Calls	FO Calls
CG Variants	$\mathcal{O}\left(rac{L}{\mu} \left(rac{D}{\delta} ight)^2 \log rac{1}{\epsilon} ight)$	$\mathcal{O}\left(\frac{L}{\mu}\left(\frac{D}{\delta} ight)^2\lograc{1}{\epsilon} ight)$
CGS	$\mathcal{O}\left(rac{LD^2}{\epsilon} + \sqrt{rac{L}{\mu}}\lograc{1}{\epsilon} ight)$	$\mathcal{O}\left(\sqrt{rac{L}{\mu}}\lograc{1}{\epsilon} ight)$
Catalyst	$\mathcal{O}\left(\sqrt{\frac{L-\mu}{\mu}}\left(\frac{D}{\delta} ight)^2\lograc{1}{\epsilon} ight)$	$\mathcal{O}\left(\sqrt{\frac{L-\mu}{\mu}}\left(\frac{D}{\delta} ight)^2\lograc{1}{\epsilon} ight)$
What we want:	$\mathcal{O}\left(\sqrt{rac{L}{\mu}}\lograc{1}{\epsilon} ight)$	$\mathcal{O}\left(\sqrt{rac{L}{\mu}}\lograc{1}{\epsilon} ight)$

Objectives:

• Dimension independent global acceleration.

Objectives:

- Dimension independent global acceleration.
- Dimension independent local acceleration.

Global Acceleration

Locally Accelerated Conditional Gradients

References

Locally Accelerated Conditional Gradients (LaCG).

What do we mean by local acceleration?

After a constant number of iterations, accelerate the convergence.

Locally Accelerated Conditional Gradients

References

Locally Accelerated Conditional Gradients (LaCG).

The key ingredients is a *Modified* μAGD algorithm [11].

Theorem (Convergence rate of μ AGD.)

Let f be L-smooth and μ -strongly convex and let $\{C_i\}_{i=0}^t$ be a sequence of convex subsets of \mathcal{X} such that $C_i \subseteq C_{i-1}$ for all i and $x^* \in \bigcap_{i=0}^t C_i$, then the μAGD achieves an ϵ -optimal solution in:

$$\mathcal{T} = \mathcal{O}\left(\sqrt{rac{L}{\mu}}\lograc{1}{\epsilon}
ight)$$

How do we build $\{C_i\}_{i=0}^t$ in an efficient way?

Locally Accelerated Conditional Gradients

References

[12] CG: $\exists r > 0$ (that depends only on f and \mathcal{X}) s.t. if $||x^* - x_{\mathcal{K}}|| \leq r \Rightarrow x^* \in conv(\mathcal{S}_t)$ for all $t \geq \mathcal{K}$, where \mathcal{S}_t is the active set at iteration t.

So when we are inside the red semicircle and we use $C_t = S_t$, acceleration is possible.

Naively, what we would like:

Naively, what we would like:

But since the value of r is not known, we don't know when to switch from CG to μ AGD.

Main ideas of LaCG:

Main ideas of LaCG:

• At each iteration perform a CG variant step and a μ AGD step over C_{t+1} and select $x_{t+1} = \operatorname{argmin}\{x_{t+1}^{CG}, x_{t+1}^{\mu AGD}\}$.

Main ideas of LaCG:

- At each iteration perform a CG variant step and a μ AGD step over C_{t+1} and select $x_{t+1} = \operatorname{argmin}\{x_{t+1}^{CG}, x_{t+1}^{\mu AGD}\}$.
- Every *H* iterations restart: use S_t to update C_t if a vertex was added to S_t since the last update.

Main ideas of LaCG:

- At each iteration perform a CG variant step and a μ AGD step over C_{t+1} and select $x_{t+1} = \operatorname{argmin}\{x_{t+1}^{CG}, x_{t+1}^{\mu AGD}\}$.
- Every *H* iterations restart: use S_t to update C_t if a vertex was added to S_t since the last update.
- After a constant **burn-in phase**, acceleration will be achieved.

Global Acceleration

Locally Accelerated Conditional Gradients

References

Convergence rate of LaCG.

Theorem (Convergence rate of LaCG.)

Let f be L-smooth and $\mu\text{-strongly convex}$ and let r be the critical radius, for:

$$t = \min\left\{\mathcal{O}\left(\frac{L}{\mu}\left(\frac{D}{\delta}\right)^2\log\frac{1}{\epsilon}\right), K + \mathcal{O}\left(\sqrt{\frac{L}{\mu}}\log\frac{1}{\epsilon}\right)\right\}$$

and $K = \frac{8L}{\mu}\left(\frac{D}{\delta}\right)^2\log\left(\frac{2(f(x_0) - f^*)}{\mu r^2}\right)$, then $f(x_t) - f(x^*) \le \epsilon$

Global Acceleration

Locally Accelerated Conditional Gradients

References

Convergence rate of LaCG.

Theorem (Convergence rate of LaCG.)

Let f be L-smooth and $\mu\text{-strongly convex}$ and let r be the critical radius, for:

$$t = \min\left\{\mathcal{O}\left(\frac{L}{\mu}\left(\frac{D}{\delta}\right)^2\log\frac{1}{\epsilon}\right), K + \mathcal{O}\left(\sqrt{\frac{L}{\mu}}\log\frac{1}{\epsilon}\right)\right\}$$

and $K = \frac{8L}{\mu}\left(\frac{D}{\delta}\right)^2\log\left(\frac{2(f(x_0) - f^*)}{\mu r^2}\right)$, then $f(x_t) - f(x^*) \le \epsilon$

In fact, we often observe faster convergence even for $\|x_t - x^*\| \ge r$

Global Acceleration

Locally Accelerated Conditional Gradients

References

Recap

If $||x_T - x^*|| \ge r$

Algorithm	LO Calls	FO Calls
CG Variants	$\mathcal{O}\left(rac{L}{\mu} \left(rac{D}{\delta} ight)^2 \log rac{1}{\epsilon} ight)$	$\mathcal{O}\left(\frac{L}{\mu}\left(\frac{D}{\delta} ight)^2\lograc{1}{\epsilon} ight)$
CGS	$\mathcal{O}\left(rac{LD^2}{\epsilon} + \sqrt{rac{L}{\mu}}\lograc{1}{\epsilon} ight)$	$\mathcal{O}\left(\sqrt{rac{L}{\mu}}\lograc{1}{\epsilon} ight)$
Catalyst	$\mathcal{O}\left(\sqrt{rac{L-\mu}{\mu}}\left(rac{D}{\delta} ight)^2\lograc{1}{\epsilon} ight)$	$\mathcal{O}\left(\sqrt{\frac{L-\mu}{\mu}}\left(\frac{D}{\delta} ight)^2\lograc{1}{\epsilon} ight)$
LaCG	$\mathcal{O}\left(rac{L}{\mu}\left(rac{D}{\delta} ight)^2\lograc{1}{\epsilon} ight)$	$\mathcal{O}\left(rac{L}{\mu}\left(rac{D}{\delta} ight)^2\lograc{1}{\epsilon} ight)$

Table: Complexity for L-smooth μ -strongly convex f.

Locally Accelerated Conditional Gradients

Recap

If $||x_T - x^*|| \le r$

Algorithm	LO Calls	FO Calls
CG Variants	$\mathcal{O}\left(rac{L}{\mu} \left(rac{D}{\delta} ight)^2 \log rac{1}{\epsilon} ight)$	$\mathcal{O}\left(rac{L}{\mu} \left(rac{D}{\delta} ight)^2 \log rac{1}{\epsilon} ight)$
CGS	$\mathcal{O}\left(rac{LD^2}{\epsilon} + \sqrt{rac{L}{\mu}}\lograc{1}{\epsilon} ight)$	$\mathcal{O}\left(\sqrt{rac{L}{\mu}}\lograc{1}{\epsilon} ight)$
Catalyst	$\mathcal{O}\left(\sqrt{\frac{L-\mu}{\mu}}\left(\frac{D}{\delta} ight)^2\lograc{1}{\epsilon} ight)$	$\mathcal{O}\left(\sqrt{\frac{L-\mu}{\mu}}\left(\frac{D}{\delta} ight)^2\lograc{1}{\epsilon} ight)$
LaCG	$\mathcal{K} + \mathcal{O}\left(\sqrt{rac{L}{\mu}}\lograc{1}{\epsilon} ight)$	$\mathcal{K} + \mathcal{O}\left(\sqrt{rac{L}{\mu}}\lograc{1}{\epsilon} ight)$

Table: Complexity for *L*-smooth μ -strongly convex *f*.

K is independent of ϵ , so asymptotically optimal.

Global Acceleration

Locally Accelerated Conditional Gradients

References

Computational Results.

Despite the faster convergence rate after the burn-in phase, how does LaCG perform with respect to other projection-free algorithms?

Global Acceleratior 0000000 Locally Accelerated Conditional Gradients

References

Simplex in \mathbb{R}^{2000} with $L/\mu = 1000$.

Figure: Primal gap vs. iteration

Figure: Primal gap vs. time

When close enough to x* (after burn-in phase), there is a significant speedup in the convergence rate.

Global Acceleration

Locally Accelerated Conditional Gradients

References

ℓ_1 unit ball in \mathbb{R}^{2000} with $L/\mu = 100$.

Figure: Primal gap vs. iteration

Figure: Primal gap vs. time

Global Acceleration

Locally Accelerated Conditional Gradients

References

Birkhoff polytope in $\mathbb{R}^{40\times40}$ with $L/\mu = 100$.

Figure: Primal gap vs. iteration

Figure: Primal gap vs. time

Video co-localization problem over flow polytope [13].

Figure: Primal gap vs. iteration

Figure: Primal gap vs. time

Thank you for your attention.

Global Acceleration

ocally Accelerated Conditional Gradients

References

References I

- Boris Teodorovich Polyak. "Minimization methods in the presence of constraints". In: *Itogi Nauki i Tekhniki. Seriya*" Matematicheskii Analiz" 12 (1974), pp. 147–197.
- Marguerite Frank and Philip Wolfe. "An algorithm for quadratic programming". In: Naval research logistics quarterly 3.1-2 (1956), pp. 95–110.
- [3] Dan Garber and Elad Hazan. "Faster rates for the frank-wolfe method over strongly-convex sets". In: 32nd International Conference on Machine Learning, ICML 2015. 2015.
- [4] Simon Lacoste-Julien and Martin Jaggi. "On the Global Linear Convergence of Frank-Wolfe Optimization Variants". In: Advances in Neural Information Processing Systems 28. 2015, pp. 496–504.
- [5] Arkadii Semenovich Nemirovsky and David Borisovich Yudin.
 "Problem complexity and method efficiency in optimization". In: Wiley-Interscience Series in Discrete Mathematics 15 (1983).

Global Acceleration

References

References II

- [6] Y Nesterov. "A method of solving a convex programming problem with convergence rate $O(\frac{1}{k^2})$ ". In: Soviet Math. Dokl. Vol. 27. 1983.
- [7] Guanghui Lan. "The complexity of large-scale convex programming under a linear optimization oracle". In: *arXiv preprint arXiv:1309.5550* (2013).
- [8] Martin Jaggi. "Revisiting Frank-Wolfe: Projection-free sparse convex optimization.". In: *ICML* (1). 2013, pp. 427–435.
- [9] Guanghui Lan and Yi Zhou. "Conditional gradient sliding for convex optimization". In: SIAM Journal on Optimization 26.2 (2016), pp. 1379–1409.
- [10] Hongzhou Lin, Julien Mairal, and Zaid Harchaoui. "A universal catalyst for first-order optimization". In: Advances in neural information processing systems. 2015, pp. 3384–3392.

Global Acceleration

ocally Accelerated Conditional Gradients

References

References III

- [11] Alejandro C., Jelena Diakonikolas, and Sebastian Pokutta.
 "Locally Accelerated Conditional Gradients". In: arXiv preprint arXiv:1906.07867 (2019).
- Jacques Guélat and Patrice Marcotte. "Some comments on Wolfe's 'away step'". In: Mathematical Programming 35.1 (1986), pp. 110–119.
- [13] Armand Joulin, Kevin Tang, and Li Fei-Fei. "Efficient image and video co-localization with frank-wolfe algorithm". In: European Conference on Computer Vision. Springer. 2014, pp. 253–268.