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Goal is smooth convex optimization.

min
x∈X

f (x)

Main ingredients:
First-order (FO) oracle. Given x ∈ X and a differentiable convex
function f : Rn → R, return:

∇f (x) ∈ Rn and f (x) ∈ R

Linear optimization (LO) oracle. Given v ∈ Rn, return:

argmin
x∈X

〈v , x〉
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Focus of our work is on the Conditional Gradients algorithm (CG)
[1], also known as the Frank-Wolfe algorithm (FW) [2].

Algorithm 1 Conditional Gradients algorithm.

Input: x0 ∈ X , stepsizes γ1 · · · γt ∈ [0, 1].

1: for t = 0 to T do
2: vt = argminx∈X 〈∇f (xt), x〉
3: xt+1 = xt + γt(vt − xt)
4: end for



Conditional Gradients Global Acceleration Locally Accelerated Conditional Gradients References

Advantages of CG.

First-order. Dimensionality of modern problems makes computing
second-order information infeasible.

Projection-free. Projection into certain feasible regions is
computationally expensive: Birkhoff polytope and flow polytope
are a few examples.

Sparse solutions. Solution is a convex combination of (a typically
sparse set of) extreme points.
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Disadvantages of CG.

Sublinear convergence. For L-smooth and µ-strongly convex f
when x∗ is in a face of X .

Example (CG Convergence.)

L-smooth and µ-strongly convex f with x ∈ R2, and x∗ in
boundary of X .
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Linear convergence is achieved by allowing steps that decrease the
weight of bad vertices [3]. This has led to various CG variants:

Away-step Conditional Gradients (AFW)
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Figure: Away-step CG (AFW)

Allow steps in the direction of:

x − argmax
y∈S

〈∇f (x), y〉 ,

where S is the active set of x .
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Pairwise CG
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Fully-Corrective CG
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Convergence rate for L-smooth µ-strongly convex f .

Theorem (Convergence rate of AFW, PFW and FCFW.)

[4] Suppose that f is L-smooth µ-strongly convex over a polytope
X , the number of steps T required to reach an ε-optimal solution
to the minimization problem verifies,

T = O
(
L

µ

(
D

δ

)2

log
1

ε

)
,

where D and δ are the diameter and pyramidal width of polytope
X
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Example (CG Variant Convergence.)

L-smooth and µ-strongly convex f (L/µ ≈ 108) over the probability
simplex in R100, and x∗ a convex combination of 13 vertices.
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CG Global Acceleration.

However, we know that optimal methods for this class of functions

achieve an ε solution in T = O
(√

L
µ log 1

ε

)
first-order calls [5, 6].

Can CG achieve these convergence rates globally?

Example ([7, 8] f (x) = ‖x‖2 over unit simplex in Rn.)

We know the optimal solution is given by x∗ = 1/n. CG can
incorporate at most one vertex in each iteration, if we start from a
vertex x0, in iteration t < n we have that:

f (xt)− f (x∗) ≥ 1

t
− 1

n
.
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Considering iterations such that t ≤ bn/2c and rearranging into a
linear convergence contraction we have:

T = Ω

(
1

r
log

1

ε

)
,

where r ≤ 2 log 2t
2t .

Convergence rate of the CG variants for this problem
instance: r = 1

4t .

At best a global logarithmic improvement in the convergence rate,
therefore global acceleration in Nesterov’s sense is not
possible.
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Conditional Gradient Sliding

Idea: Run Nesterov’s Accelerated Gradient Descent, use CG to
solve the projection subproblems approximately [9].

Results:

Separate LO and FO oracle calls.

Globally optimal O
(√

L
µ log 1

ε

)
calls to FO and

O
(
LD2

ε +
√

L
µ log 1

ε

)
calls to LO oracles.

Convergence rates independent of the dimension n.
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Catalyst Augmented AFW.

Idea: Run Accelerated Proximal Method and solve proximal
problems with a linearly convergent CG [10].

Results:

O
(√

L−µ
µ

(
D
δ

)2
log 1

ε

)
Calls to FO and LO oracles.

Convergence rates dependent of the dimension n.
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Summary

Complexity for L-smooth µ-strongly convex f .

Algorithm LO Calls FO Calls

CG Variants O
(
L
µ

(
D
δ

)2
log 1

ε

)
O
(
L
µ

(
D
δ

)2
log 1

ε

)
CGS O

(
LD2

ε +
√

L
µ log 1

ε

)
O
(√

L
µ log 1

ε

)
Catalyst O

(√
L−µ
µ

(
D
δ

)2
log 1

ε

)
O
(√

L−µ
µ

(
D
δ

)2
log 1

ε

)

What we want: O
(√

L
µ log 1

ε

)
O
(√

L
µ log 1

ε

)
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Objectives:

Dimension independent global acceleration.
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Objectives:

Dimension independent global acceleration.

Dimension independent local acceleration.
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Locally Accelerated Conditional Gradients (LaCG).

What do we mean by local acceleration?

X x∗

x0

Accelerated

Unaccelerated

After a constant number of iterations, accelerate the convergence.
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Locally Accelerated Conditional Gradients (LaCG).

The key ingredients is a Modified µAGD algorithm [11].

Theorem (Convergence rate of µAGD.)

Let f be L-smooth and µ-strongly convex and let {Ci}ti=0 be a
sequence of convex subsets of X such that Ci ⊆ Ci−1 for all i and
x∗ ∈ ∩ti=0Ci , then the µAGD achieves an ε-optimal solution in:

T = O
(√

L

µ
log

1

ε

)

How do we build {Ci}ti=0 in an efficient way?
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[12] CG: ∃r > 0 (that depends only on f and X ) s.t. if
‖x∗ − xK‖ ≤ r ⇒ x∗ ∈ conv (St) for all t ≥ K , where St is the
active set at iteration t.

X x∗
r

So when we are inside the red semicircle and we use Ct = St ,
acceleration is possible.
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Naively, what we would like:

X x∗

CG
µAGD

x0

But since the value of r is not known, we don’t know when to
switch from CG to µAGD.



Conditional Gradients Global Acceleration Locally Accelerated Conditional Gradients References

Naively, what we would like:

X x∗

CG
µAGD

x0

But since the value of r is not known, we don’t know when to
switch from CG to µAGD.



Conditional Gradients Global Acceleration Locally Accelerated Conditional Gradients References

Main ideas of LaCG:

At each iteration perform a CG variant step and a µAGD step
over Ct+1 and select xt+1 = argmin{xCGt+1, x

µAGD
t+1 }.

Every H iterations restart: use St to update Ct if a vertex was
added to St since the last update.

After a constant burn-in phase, acceleration will be achieved.
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Convergence rate of LaCG.

Theorem (Convergence rate of LaCG.)

Let f be L-smooth and µ-strongly convex and let r be the critical
radius, for:

t = min

{
O
(
L

µ

(
D

δ

)2

log
1

ε

)
,K +O

(√
L

µ
log

1

ε

)}

and K = 8L
µ

(
D
δ

)2
log
(
2(f (x0)−f ∗)

µr2

)
, then f (xt)− f (x∗) ≤ ε

In fact, we often observe faster convergence even for ‖xt − x∗‖ ≥ r
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Recap

If ‖xT − x
∗‖ ≥ r

Algorithm LO Calls FO Calls

CG Variants O
(
L
µ

(
D
δ

)2
log 1

ε

)
O
(
L
µ

(
D
δ

)2
log 1

ε

)
CGS O

(
LD2

ε +
√

L
µ log 1

ε

)
O
(√

L
µ log 1

ε

)
Catalyst O

(√
L−µ
µ

(
D
δ

)2
log 1

ε

)
O
(√

L−µ
µ

(
D
δ

)2
log 1

ε

)
LaCG O

(
L
µ

(
D
δ

)2
log 1

ε

)
O
(
L
µ

(
D
δ

)2
log 1

ε

)
Table: Complexity for L-smooth µ-strongly convex f .
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log 1

ε
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(
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δ

)2
log 1

ε
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L
µ log 1

ε
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L
µ log 1

ε

)
Table: Complexity for L-smooth µ-strongly convex f .

K is independent of ε, so asymptotically optimal.
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Computational Results.

Despite the faster convergence rate after the burn-in phase,
how does LaCG perform with respect to other projection-free
algorithms?
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Simplex in R2000 with L/µ = 1000.
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Figure: Primal gap vs. iteration
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When close enough to x∗ (after burn-in phase), there is a
significant speedup in the convergence rate.
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`1 unit ball in R2000 with L/µ = 100.
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Birkhoff polytope in R40x40 with L/µ = 100.
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Video co-localization problem over flow polytope [13].
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Thank you
for your attention.
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