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Goal is smooth convex optimization.

min f(x)

Main ingredients:
First-order (FO) oracle. Given x € X’ and a differentiable convex
function f : R" — R, return:

Vf(x) €e R" and f(x) € R
Linear optimization (LO) oracle. Given v € R", return:

argmin (v, x)
xeX
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Focus of our work is on the Conditional Gradients algorithm (CG)
[1], also known as the Frank-Wolfe algorithm (FW) [2].

Algorithm 1 Conditional Gradients algorithm.
Input: xo € X, stepsizes 1 ---7: € [0, 1].

1: fort =0to T do

20 vy = argmin,cy (VF(xe), x)
30 Xe1 = Xe + (Ve — Xe)

4: end for
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Advantages of CG.

First-order. Dimensionality of modern problems makes computing
second-order information infeasible.

Projection-free. Projection into certain feasible regions is
computationally expensive: Birkhoff polytope and flow polytope
are a few examples.

Sparse solutions. Solution is a convex combination of (a typically
sparse set of ) extreme points.
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Disadvantages of CG.

Sublinear convergence. For L-smooth and p-strongly convex f
when x* is in a face of X.

Example (CG Convergence.)

L-smooth and p-strongly convex f with x € R?, and x* in
boundary of X.

0 2000 4000 6000 8000 10000
t
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Linear convergence is achieved by allowing steps that decrease the
weight of bad vertices [3]. This has led to various CG variants:



Conditional Gradients
Linear convergence is achieved by allowing steps that decrease the

weight of bad vertices [3]. This has led to various CG variants:

Away-step Conditional Gradients (AFW)

Allow steps in the direction of:

x —argmax (Vf(x),y),
yes

where S is the active set of x.

Figure: Away-step CG (AFW)
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Pairwise CG Fully-Corrective CG

Figure: PFW Figure: FCFW
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Convergence rate for L-smooth p-strongly convex f.

Theorem (Convergence rate of AFW, PFW and FCFW.)

[4] Suppose that f is L-smooth p-strongly convex over a polytope
X, the number of steps T required to reach an e-optimal solution
to the minimization problem verifies,

L (D\?
T=0 ( () Iogl) ,
A\ 0 €
where D and 0 are the diameter and pyramidal width of polytope
X
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Example (CG Variant Convergence.)

L-smooth and pu-strongly convex f (L/u ~ 108) over the probability
simplex in R1% and x* a convex combination of 13 vertices.

10°
1072 ~—
107
|
> —6
g0 — G
1078 — AFW
1010 — PFW
— FCFW
1012 —
0 250 500 750 1000
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CG Global Acceleration.

However, we know that optimal methods for this class of functions
achieve an € solutionin T = O ( ﬁlog %) first-order calls [5, 6].

Can CG achieve these convergence rates globally?
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CG Global Acceleration.

However, we know that optimal methods for this class of functions
achieve an € solutionin T = O ( ﬁlog %) first-order calls [5, 6].

Can CG achieve these convergence rates globally?

Example ([7, 8] f(x) = ||x||> over unit simplex in R™.)

We know the optimal solution is given by x* = 1/n. CG can
incorporate at most one vertex in each iteration, if we start from a
vertex xg, in iteration t < n we have that:

1
t

Flxe) — F(x*) > %
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Considering iterations such that t < [n/2] and rearranging into a
linear convergence contraction we have:

T:Q<1Iog1>,
r €

log 2t
-

where r <25
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Considering iterations such that t < [n/2] and rearranging into a
linear convergence contraction we have:

T:Q<1Iog1>,
r €

Convergence rate of the CG variants for this problem

. R _ 1
instance: r = a5

log 2t
ra

where r <25

At best a global logarithmic improvement in the convergence rate,
therefore global acceleration in Nesterov’s sense is not
possible.
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solve the projection subproblems approximately [9].



Global Acceleration
00®0000

Conditional Gradient Sliding

Idea: Run Nesterov's Accelerated Gradient Descent, use CG to
solve the projection subproblems approximately [9].

Results:
@ Separate LO and FO oracle calls.

@ Globally optimal O <\/E|og %) calls to FO and
@) (LD2 + \/%Iog %) calls to LO oracles.

€

@ Convergence rates independent of the dimension n.
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Idea: Run Accelerated Proximal Method and solve proximal
problems with a linearly convergent CG [10].
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Catalyst Augmented AFW.

Idea: Run Accelerated Proximal Method and solve proximal
problems with a linearly convergent CG [10].

Results:
e O (w/l‘_T“ (%)2 log %) Calls to FO and LO oracles.

@ Convergence rates dependent of the dimension n.
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Summary

Complexity for L-smooth p-strongly convex f.

Algorithm LO Calls FO Calls

CG Variants O <ﬁ (%)2 log %) O <ﬁ (%)2 log %)
s | o(eEu) | of/Em)
Catalyst O(\/%ﬁ(%)ﬂog%) O(ﬁ(%)%og%)
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Summary

Complexity for L-smooth p-strongly convex f.

Algorithm LO Calls FO Calls

CG Variants O (L(5)10g) O (L(5)10g)
CGS 02+ /Liog?) 0 (y/L1og?)
Catalyst O (54 (2)%1082) | 0 (/52 (B) 108 1)

What we want:

o(yE)

o(yE)
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Objectives:

o Dimension independent global acceleration.
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Objectives:
. Di o ind I lobal leration.

o Dimension independent local acceleration.
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Locally Accelerated Conditional Gradients (LaCG).

What do we mean by local acceleration?

After a constant number of iterations, accelerate the convergence.
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LocaIIy Accelerated Conditional Gradients (LaCG).

The key ingredients is a Modified pnAGD algorithm [11].

Theorem (Convergence rate of pAGD.)

Let f be L-smooth and p-strongly convex and let {C;i}!_, be a
sequence of convex subsets of X such that C; C C;_q for all i and
x* € N{_yCj, then the pAGD achieves an e-optimal solution in:

ol

How do we build {C;}{_, in an efficient way?
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[12] CG: 3r > 0 (that depends only on f and X) s.t. if
Ix* — xk|| < r= x* € conv(S;) for all t > K, where S; is the
active set at iteration t.

X r*

So when we are inside the red semicircle and we use C; = S,
acceleration is possible.
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Naively, what we would like:
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Naively, what we would like:

But since the value of r is not known, we don’t know when to
switch from CG to pAGD.



Locally Accelerated Conditional Gradients
0000®000000000

Main ideas of LaCG:
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Main ideas of LaCG:

@ At each iteration perform a CG variant step and a 4AGD step

. AGD
over Cyy1 and select g1 = argmin{x"%, x//7"" }
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Main ideas of LaCG:

@ At each iteration perform a CG variant step and a 4AGD step

over Cty1 and select x¢11 = argmin{xﬁrc;l,xffch}

@ Every H iterations restart: use S; to update C; if a vertex was
added to S; since the last update.
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Main ideas of LaCG:

@ At each iteration perform a CG variant step and a 4AGD step

over Cty1 and select x¢11 = argmin{xﬁrc;l,xffch}

@ Every H iterations restart: use S; to update C; if a vertex was
added to S; since the last update.

@ After a constant burn-in phase, acceleration will be achieved.
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Convergence rate of LaCG.

Theorem (Convergence rate of LaCG.)

Let f be L-smooth and p-strongly convex and let r be the critical
radius, for:

9ol )

and K = 8L (%)2 log (%) then f(x;) — f(x*) < e
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Convergence rate of LaCG.

Theorem (Convergence rate of LaCG.)

Let f be L-smooth and p-strongly convex and let r be the critical
radius, for:

9ol )

(%)2 log (72(“)(0)_'6*)), then f(x:) — f(x*) < e

and K = 8L >
nr

In fact, we often observe faster convergence even for ||x; — x*|| > r
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If |lxr —x*[| > r

Algorithm LO Calls FO Calls
CG Variants @ (ﬁ (%)2 log %) O (i (%)2 log %)

CGS O (2 + /Liog?) 0 (\/L1og?)
Catalyst 10) (ﬁ(%flog%) ) (\/?(%)%og%)
LaCG O (£(5)10g?) O (L (%) 10g)

Table: Complexity for L-smooth p-strongly convex f.
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If [[xr —x*|| <r

Algorithm LO Calls FO Calls

CG Variants | O (£(2)%egt) | O(£(8) 1os?)
CGS O (L2 + /Liog?) o(\/Log?)
Caralyst | O (/5% (5)71o82) | 0 (/5= (5)"s )
LaCG K+0(\/Liogl) | K+0O(,/Liog})

Table: Complexity for L-smooth p-strongly convex f.

K is independent of ¢, so asymptotically optimal.
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Computational Results.

Despite the faster convergence rate after the burn-in phase,
how does LaCG perform with respect to other projection-free
algorithms?
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Simplex in R20% with L/, = 1000.

S0 o
L — AFW — — AFW
Z 1070 — LacG S0 — LaCG
= Catalyst AFW = Catalyst AFW
~ e Restart B e Restart
1107 1070
S 0.00 0.25 0.50 0.75 1.00 1.25 \S 0.0 0.5 1.0 15 2.0
x 10 x10?
00
£ s
< 50 Z
= S
g 25 X 25
0 0 - -
0.00 0.25 0.50 0.75 1.00 1.25 0.0 0.5 1.0 1.5 2.0 R
t x10° Time [s] x10?
Figure: Primal gap vs. iteration Figure: Primal gap vs. time

When close enough to xx (after burn-in phase), there is a
significant speedup in the convergence rate.
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/1 unit ball in R20% with [/u = 100.

10° 10°
— AFW
— LaCG
~ 10! - ~10-1 | .
Al atalyst AFW g —— Catalyst AFW
I e Restart e Restart
=102 1072
<
L0 1108
10 107
0.0 02 04 0.6 0.8 0.0 0.5 10 15 2.0 )
t x10° Time[s] x10?

Figure: Primal gap vs. iteration Figure: Primal gap vs. time
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Birkhoff polytope in R*®*% with L/; = 100.

107 10°

— AFW
107! — LaCG
—— Catalyst AFW
®  Restart

2
®  Restart 10

)/ (f(xo) = )

1073
10!
I
3 10
=
107
107
0 1 2 3 4 5 6 |
Timels] x10?

Figure: Primal gap vs. iteration Figure: Primal gap vs. time
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Video co-localization problem over flow polytope [13].

10° 10
— AFW — AFW
— LaCG _ 10! —
—— Catalyst AFW s 2 —— Catalyst AFW

e  Restart ®  Restart

6 0.0 0.5 1.0 1.5 2.0
t x10° Timels) x10?

Figure: Primal gap vs. iteration Figure: Primal gap vs. time
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Thank you
for your attention.
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