Locally Accelerated Conditional Gradients

Alejandro Carderera

Joint work with J. Diakonikolas and S. Pokutta
Georgia Institute of Technology

alejandro.carderera@gatech.edu

July 29th, 2019
Goal is smooth convex optimization.

\[
\min_{x \in \mathcal{X}} f(x)
\]
Goal is smooth convex optimization.

\[
\min_{x \in \mathcal{X}} f(x)
\]

Main ingredients:
First-order (FO) oracle. Given \(x \in \mathcal{X} \) and a differentiable convex function \(f : \mathbb{R}^n \rightarrow \mathbb{R} \), return:

\[\nabla f(x) \in \mathbb{R}^n \text{ and } f(x) \in \mathbb{R} \]

Linear optimization (LO) oracle. Given \(v \in \mathbb{R}^n \), return:

\[\arg \min_{x \in \mathcal{X}} \langle v, x \rangle \]
Focus of our work is on the Conditional Gradients algorithm (CG) [1], also known as the Frank-Wolfe algorithm (FW) [2].

Algorithm 1 Conditional Gradients algorithm.

Input: $x_0 \in \mathcal{X}$, stepsizes $\gamma_1 \cdots \gamma_T \in [0, 1]$.

1: **for** $t = 0$ to T **do**
2: $v_t = \arg\min_{x \in \mathcal{X}} \langle \nabla f(x_t), x \rangle$
3: $x_{t+1} = x_t + \gamma_t(v_t - x_t)$
4: **end for**
Advantages of CG.

First-order. Dimensionality of modern problems makes computing second-order information infeasible.

Projection-free. Projection into certain feasible regions is computationally expensive: Birkhoff polytope and flow polytope are a few examples.

Sparse solutions. Solution is a convex combination of (a typically sparse set of) extreme points.
Advantages of CG.

First-order. Dimensionality of modern problems makes computing second-order information infeasible.
Advantages of CG.

First-order. Dimensionality of modern problems makes computing second-order information infeasible.

Projection-free. Projection into certain feasible regions is computationally expensive: Birkhoff polytope and flow polytope are a few examples.
Advantages of CG.

First-order. Dimensionality of modern problems makes computing second-order information infeasible.

Projection-free. Projection into certain feasible regions is computationally expensive: Birkhoff polytope and flow polytope are a few examples.

Sparse solutions. Solution is a convex combination of (a typically sparse set of) extreme points.
Disadvantages of CG.
Disadvantages of CG.

Sublinear convergence. For L-smooth and μ-strongly convex f when x^* is in a face of \mathcal{X}.
Disadvantages of CG.

Sublinear convergence. For \(L \)-smooth and \(\mu \)-strongly convex \(f \) when \(x^* \) is in a face of \(\mathcal{X} \).

Example (CG Convergence.)

\(L \)-smooth and \(\mu \)-strongly convex \(f \) with \(x \in \mathbb{R}^2 \), and \(x^* \) in boundary of \(\mathcal{X} \).
Linear convergence is achieved by allowing steps that decrease the weight of *bad* vertices [3]. This has led to various CG variants:
Linear convergence is achieved by allowing steps that decrease the weight of *bad* vertices [3]. This has led to various CG variants:

Away-step Conditional Gradients (AFW)

Allow steps in the direction of:

\[x - \arg\max_{y \in S} \langle \nabla f(x), y \rangle, \quad y \in S \]

where \(S \) is the active set of \(x \).

Figure: Away-step CG (AFW)
Pairwise CG

Fully-Corrective CG

Figure: PFW

Figure: FCFW
Convergence rate for L-smooth μ-strongly convex f.

Theorem (Convergence rate of AFW, PFW and FCFW.)

[4] Suppose that f is L-smooth μ-strongly convex over a polytope \mathcal{X}, the number of steps T required to reach an ϵ-optimal solution to the minimization problem verifies,

$$T = O\left(\frac{L}{\mu} \left(\frac{D}{\delta}\right)^2 \log \frac{1}{\epsilon}\right),$$

where D and δ are the diameter and pyramidal width of polytope \mathcal{X}.
Example (CG Variant Convergence.)

L-smooth and μ-strongly convex f ($L/\mu \approx 10^8$) over the probability simplex in \mathbb{R}^{100}, and x^* a convex combination of 13 vertices.
However, we know that optimal methods for this class of functions achieve an ϵ solution in $T = O\left(\sqrt{\frac{L}{\mu}} \log \frac{1}{\epsilon}\right)$ first-order calls [5, 6]. Can CG achieve these convergence rates **globally**?
However, we know that optimal methods for this class of functions achieve an ϵ solution in $T = \mathcal{O}\left(\sqrt{\frac{L}{\mu}} \log \frac{1}{\epsilon}\right)$ first-order calls [5, 6].

Can CG achieve these convergence rates \textit{globally}?

Example ([7, 8] $f(x) = \|x\|^2$ over unit simplex in \mathbb{R}^n.)

We know the optimal solution is given by $x^* = 1/n$. CG can incorporate at most one vertex in each iteration, if we start from a vertex x_0, in iteration $t < n$ we have that:

$$f(x_t) - f(x^*) \geq \frac{1}{t} - \frac{1}{n}.$$
Considering iterations such that \(t \leq \lfloor n/2 \rfloor \) and rearranging into a linear convergence contraction we have:

\[
T = \Omega \left(\frac{1}{r} \log \frac{1}{\epsilon} \right),
\]

where \(r \leq 2 \frac{\log 2t}{2t} \).
Considering iterations such that $t \leq \lfloor n/2 \rfloor$ and rearranging into a linear convergence contraction we have:

$$T = \Omega \left(\frac{1}{r} \log \frac{1}{\epsilon} \right),$$

where $r \leq 2 \frac{\log 2t}{2t}$.

Convergence rate of the CG variants for this problem instance: $r = \frac{1}{4t}$.

At best a global logarithmic improvement in the convergence rate, therefore global acceleration in Nesterov’s sense is not possible.
Idea: Run Nesterov’s Accelerated Gradient Descent, use CG to solve the projection subproblems approximately [9].
Conditional Gradient Sliding

Idea: Run Nesterov’s Accelerated Gradient Descent, use CG to solve the projection subproblems approximately [9].

Results:
- Separate LO and FO oracle calls.
- Globally optimal \(O \left(\sqrt{\frac{L}{\mu}} \log \frac{1}{\epsilon} \right) \) calls to FO and \(O \left(\frac{LD^2}{\epsilon} + \sqrt{\frac{L}{\mu}} \log \frac{1}{\epsilon} \right) \) calls to LO oracles.
- Convergence rates independent of the dimension \(n \).
Catalyst Augmented AFW.

Idea: Run Accelerated Proximal Method and solve proximal problems with a linearly convergent CG [10].
Catalyst Augmented AFW.

Idea: Run Accelerated Proximal Method and solve proximal problems with a linearly convergent CG [10].

Results:

- $O \left(\sqrt{\frac{L-\mu}{\mu}} \left(\frac{D}{\delta} \right)^2 \log \frac{1}{\epsilon} \right)$ Calls to FO and LO oracles.
- Convergence rates dependent of the dimension n.
Summary

Complexity for L-smooth μ-strongly convex f.

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>LO Calls</th>
<th>FO Calls</th>
</tr>
</thead>
<tbody>
<tr>
<td>CG Variants</td>
<td>$\mathcal{O}\left(\frac{L}{\mu} \left(\frac{D}{\delta}\right)^2 \log \frac{1}{\epsilon}\right)$</td>
<td>$\mathcal{O}\left(\frac{L}{\mu} \left(\frac{D}{\delta}\right)^2 \log \frac{1}{\epsilon}\right)$</td>
</tr>
<tr>
<td>CGS</td>
<td>$\mathcal{O}\left(\frac{LD^2}{\epsilon} + \sqrt{\frac{L}{\mu}} \log \frac{1}{\epsilon}\right)$</td>
<td>$\mathcal{O}\left(\sqrt{\frac{L}{\mu}} \log \frac{1}{\epsilon}\right)$</td>
</tr>
<tr>
<td>Catalyst</td>
<td>$\mathcal{O}\left(\sqrt{\frac{L-\mu}{\mu}} \left(\frac{D}{\delta}\right)^2 \log \frac{1}{\epsilon}\right)$</td>
<td>$\mathcal{O}\left(\sqrt{\frac{L-\mu}{\mu}} \left(\frac{D}{\delta}\right)^2 \log \frac{1}{\epsilon}\right)$</td>
</tr>
</tbody>
</table>
Summary

Complexity for L-smooth μ-strongly convex f.

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>LO Calls</th>
<th>FO Calls</th>
</tr>
</thead>
<tbody>
<tr>
<td>CG Variants</td>
<td>$O\left(\frac{L}{\mu} \left(\frac{D}{\delta}\right)^2 \log \frac{1}{\epsilon}\right)$</td>
<td>$O\left(\frac{L}{\mu} \left(\frac{D}{\delta}\right)^2 \log \frac{1}{\epsilon}\right)$</td>
</tr>
<tr>
<td>CGS</td>
<td>$O\left(\frac{L D^2}{\epsilon} + \sqrt{\frac{L}{\mu}} \log \frac{1}{\epsilon}\right)$</td>
<td>$O\left(\sqrt{\frac{L}{\mu}} \log \frac{1}{\epsilon}\right)$</td>
</tr>
<tr>
<td>Catalyst</td>
<td>$O\left(\sqrt{\frac{L-\mu}{\mu}} \left(\frac{D}{\delta}\right)^2 \log \frac{1}{\epsilon}\right)$</td>
<td>$O\left(\sqrt{\frac{L-\mu}{\mu}} \left(\frac{D}{\delta}\right)^2 \log \frac{1}{\epsilon}\right)$</td>
</tr>
<tr>
<td>What we want:</td>
<td>$O\left(\sqrt{\frac{L}{\mu}} \log \frac{1}{\epsilon}\right)$</td>
<td>$O\left(\sqrt{\frac{L}{\mu}} \log \frac{1}{\epsilon}\right)$</td>
</tr>
</tbody>
</table>
Objectives:

- Dimension independent global acceleration.
Objectives:

- Dimension independent global acceleration.
- Dimension independent local acceleration.
Locally Accelerated Conditional Gradients (LaCG).

What do we mean by **local acceleration**?

After a constant number of iterations, accelerate the convergence.
The key ingredients is a *Modified μAGD* algorithm [11].

Theorem (Convergence rate of μAGD.)

Let f be L-smooth and μ-strongly convex and let $\{C_i\}_{i=0}^t$ be a sequence of convex subsets of \mathcal{X} such that $C_i \subseteq C_{i-1}$ for all i and $x^* \in \bigcap_{i=0}^t C_i$, then the μAGD achieves an ϵ-optimal solution in:

$$T = O \left(\sqrt{\frac{L}{\mu}} \log \frac{1}{\epsilon} \right)$$

How do we build $\{C_i\}_{i=0}^t$ in an efficient way?
[12] CG: \(\exists r > 0 \) (that depends only on \(f \) and \(\mathcal{X} \)) s.t. if \(\| x^* - x_K \| \leq r \Rightarrow x^* \in \text{conv} \left(S_t \right) \) for all \(t \geq K \), where \(S_t \) is the active set at iteration \(t \).

So when we are inside the red semicircle and we use \(C_t = S_t \), acceleration is possible.
Naively, what we would like:
Naively, what we would like:

But since the value of r is not known, we don’t know when to switch from CG to μAGD.
Main ideas of LaCG:
Main ideas of LaCG:

- At each iteration perform a CG variant step and a μAGD step over C_{t+1} and select $x_{t+1} = \text{argmin}\{x_{t+1}^{CG}, x_{t+1}^{\mu AGD}\}$.
Main ideas of LaCG:

- At each iteration perform a CG variant step and a μAGD step over C_{t+1} and select $x_{t+1} = \arg\min\{x_{t+1}^{CG}, x_{t+1}^{\mu AGD}\}$.

- Every H iterations restart: use S_t to update C_t if a vertex was added to S_t since the last update.
Main ideas of LaCG:

- At each iteration perform a CG variant step and a μAGD step over C_{t+1} and select $x_{t+1} = \arg\min\{x_{t+1}^{CG}, x_{t+1}^{\mu AGD}\}$.
- Every H iterations restart: use S_t to update C_t if a vertex was added to S_t since the last update.
- After a constant burn-in phase, acceleration will be achieved.
Convergence rate of LaCG.

Theorem (Convergence rate of LaCG.)

Let f be L-smooth and μ-strongly convex and let r be the critical radius, for:

$$t = \min \left\{ O \left(\frac{L}{\mu} \left(\frac{D}{\delta} \right)^2 \log \frac{1}{\epsilon} \right), K + O \left(\sqrt{\frac{L}{\mu} \log \frac{1}{\epsilon}} \right) \right\}$$

and $K = \frac{8L}{\mu} \left(\frac{D}{\delta} \right)^2 \log \left(\frac{2(f(x_0) - f^*)}{\mu r^2} \right)$, then $f(x_t) - f(x^*) \leq \epsilon$
Convergence rate of LaCG.

Theorem (Convergence rate of LaCG.)

Let f be L-smooth and μ-strongly convex and let r be the critical radius, for:

$$t = \min \left\{ \mathcal{O} \left(\frac{L}{\mu} \left(\frac{D}{\delta} \right)^2 \log \frac{1}{\epsilon} \right), K + \mathcal{O} \left(\sqrt{\frac{L}{\mu}} \log \frac{1}{\epsilon} \right) \right\}$$

and $K = \frac{8L}{\mu} \left(\frac{D}{\delta} \right)^2 \log \left(\frac{2(f(x_0) - f^*)}{\mu r^2} \right)$, then $f(x_t) - f(x^*) \leq \epsilon$

In fact, we often observe faster convergence even for $\|x_t - x^*\| \geq r$
If $\|x_T - x^*\| \geq r$

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>LO Calls</th>
<th>FO Calls</th>
</tr>
</thead>
<tbody>
<tr>
<td>CG Variants</td>
<td>$\mathcal{O}\left(\frac{L}{\mu} \left(\frac{D}{\delta}\right)^2 \log \frac{1}{\epsilon}\right)$</td>
<td>$\mathcal{O}\left(\frac{L}{\mu} \left(\frac{D}{\delta}\right)^2 \log \frac{1}{\epsilon}\right)$</td>
</tr>
<tr>
<td>CGS</td>
<td>$\mathcal{O}\left(\frac{LD^2}{\epsilon} + \sqrt{\frac{L}{\mu}} \log \frac{1}{\epsilon}\right)$</td>
<td>$\mathcal{O}\left(\sqrt{\frac{L}{\mu}} \log \frac{1}{\epsilon}\right)$</td>
</tr>
<tr>
<td>Catalyst</td>
<td>$\mathcal{O}\left(\sqrt{\frac{L-\mu}{\mu}} \left(\frac{D}{\delta}\right)^2 \log \frac{1}{\epsilon}\right)$</td>
<td>$\mathcal{O}\left(\sqrt{\frac{L-\mu}{\mu}} \left(\frac{D}{\delta}\right)^2 \log \frac{1}{\epsilon}\right)$</td>
</tr>
<tr>
<td>LaCG</td>
<td>$\mathcal{O}\left(\frac{L}{\mu} \left(\frac{D}{\delta}\right)^2 \log \frac{1}{\epsilon}\right)$</td>
<td>$\mathcal{O}\left(\frac{L}{\mu} \left(\frac{D}{\delta}\right)^2 \log \frac{1}{\epsilon}\right)$</td>
</tr>
</tbody>
</table>

Table: Complexity for L-smooth μ-strongly convex f.

Recap
Recap

If \(\|x_T - x^*\| \leq r \)

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>LO Calls</th>
<th>FO Calls</th>
</tr>
</thead>
<tbody>
<tr>
<td>CG Variants</td>
<td>(\mathcal{O}\left(\frac{L}{\mu} \left(\frac{D}{\delta}\right)^2 \log \frac{1}{\epsilon}\right))</td>
<td>(\mathcal{O}\left(\frac{L}{\mu} \left(\frac{D}{\delta}\right)^2 \log \frac{1}{\epsilon}\right))</td>
</tr>
<tr>
<td>CGS</td>
<td>(\mathcal{O}\left(\frac{LD^2}{\epsilon} + \sqrt{\frac{L}{\mu}} \log \frac{1}{\epsilon}\right))</td>
<td>(\mathcal{O}\left(\sqrt{\frac{L}{\mu}} \log \frac{1}{\epsilon}\right))</td>
</tr>
<tr>
<td>Catalyst</td>
<td>(\mathcal{O}\left(\sqrt{\frac{L-\mu}{\mu}} \left(\frac{D}{\delta}\right)^2 \log \frac{1}{\epsilon}\right))</td>
<td>(\mathcal{O}\left(\sqrt{\frac{L-\mu}{\mu}} \left(\frac{D}{\delta}\right)^2 \log \frac{1}{\epsilon}\right))</td>
</tr>
<tr>
<td>LaCG</td>
<td>(K + \mathcal{O}\left(\sqrt{\frac{L}{\mu}} \log \frac{1}{\epsilon}\right))</td>
<td>(K + \mathcal{O}\left(\sqrt{\frac{L}{\mu}} \log \frac{1}{\epsilon}\right))</td>
</tr>
</tbody>
</table>

Table: Complexity for \(L \)-smooth \(\mu \)-strongly convex \(f \).

\(K \) is independent of \(\epsilon \), so asymptotically optimal.
Computational Results.

Despite the faster convergence rate after the burn-in phase, how does LaCG perform with respect to other projection-free algorithms?
Simplex in \mathbb{R}^{2000} with $L/\mu = 1000$.

Figure: Primal gap vs. iteration

When close enough to x^* (after burn-in phase), there is a significant speedup in the convergence rate.

Figure: Primal gap vs. time
ℓ_1 unit ball in \mathbb{R}^{2000} with $L/\mu = 100$.

Figure: Primal gap vs. iteration

Figure: Primal gap vs. time
Birkhoff polytope in $\mathbb{R}^{40 \times 40}$ with $L/\mu = 100$.

Figure: Primal gap vs. iteration

Figure: Primal gap vs. time
Video co-localization problem over flow polytope [13].

Figure: Primal gap vs. iteration

Figure: Primal gap vs. time
Thank you for your attention.
References I

