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The class of MINLP problems

min ∑
j∈N

Cjxj

fi(x) + ∑
k∈Hi

gik (xk )≤ 0 ∀i ∈M

Lj ≤ xj ≤ Uj ∀j ∈ N
xj integer ∀j ∈ I

where:
fi : Rn→ R are convex functions ∀i ∈M,
gik : R→ R are non convex univariate function ∀i ∈M,∀k ∈ Hi ,
Hi ⊆ N ∀i ∈M,
I ⊆ N, and
Lj and Uj are finite ∀i ∈M, j ∈ Hi
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Example of application in Machine Learning

Model trained neural networks with sigmoid activation function

A number of nonlinear separable knapsack problems has been
considered in the literature. In most cases the proposed algorithms
are specifically tailored to the case of convex or concave functions
(see, e.g., the recent article by Zhang and Hua [12], who consider a
minimization case in which both the fj(xj) and the gj(xj) functions are
convex). In our model neither convexity nor concavity is assumed, a
situation rarely treated in the literature (apart from contributions on
the general global optimization, see Horst and Tuy [5]).

A special case, in which N ¼N and the xj variables can only take a
limited set of prefixed feasible values, was considered by Ohtagaki
et al. [11], who developed dominance criteria aimed at reducing the
number of feasible values, and a specifically tailored greedy
algorithm that recursively allocates capacity units to nondominated
items and updates the set of dominated items. Another special case,
in which N ¼N, the fj(xj) functions are piecewise linear and the gj(xj)
functions are linear, was recently considered by Kameshwaran and
Narahari [8], who developed polynomial and pseudo-polynomial
time approximation algorithms.

In Section 2 we present a constructive heuristic algorithm for
NLK based on a discretization of the solution space. In Section 3 we
describe post-processing improvement heuristics based on local
search procedures that operate on pairs of variables. The resulting
approach is experimentally compared with open source nonlinear
programming solvers [1,7] which provide heuristic solutions to
nonconvex problems. The quality of the solutions is experimentally
evaluated by comparison with the upper bounds produced by
general global optimization solvers (Couenne [3] and SC-MINLP,
developed by D’Ambrosio et al. [4]). The computational results,
reported in Section 4, show that the proposed approach provides
high-quality solutions within very small CPU times comparing to
the other solvers used for the comparisons, even for large-size
instances of the problem. Conclusions follow in Section 5.

2. Constructive heuristic

Before giving a detailed statement (see Algorithm 1) of the
heuristic, we describe its main steps. The algorithm starts by
computing profit and weight values over a discretized solution
space. Let s denote the number of samplings (identical for all
functions), so dj ¼ uj=s is the sampling step, and define

fjk ¼ fjðkdjÞ and gjk ¼ gjðkdjÞ ðjAN; k¼ 1, . . . ,sÞ: ð8Þ

We then obtain the profit-to-weight ratios as

rjk ¼
fjk

gjk
ðjAN,k¼ 1, . . . ,sÞ ð9Þ

and we can compute, for each item j, the maximum ratio

rj,mðjÞ ¼ max
k ¼ 1,...,s

frjkg: ð10Þ

Assume by simplicity that the items are sorted according to
nonincreasing rj,m(j) values, so, with respect to the current sampling
step, r1,m(1) is the best available ratio and mð1Þd1 is the value of
variable x1 that produces the best filling of the first g1,m(1) capacity
units. Consider now the second best item 2, and its best ratio r2,m(2)

ðrr1,mð1ÞÞ, and observe that item 1 could have a better ratio than
item 2 also for a higher x1 value. Specifically, we can find the highest
muð1Þ value (with muð1ÞAfmð1Þ, . . . ,sg) such that r1,muð1ÞZr2,mð2Þ.

Algorithm 1. Heurðs,n_ref ,sÞ.

1: dj :¼ uj=s for all jAN; dj :¼maxð1,bdjcÞ for all jAN;
2: for each jAN and kAf1, . . . ,sg do compute rjk according to

(9);
3: for each jAN do compute m(j) according to (10);
4: c :¼ c; ~N :¼ N {comment: unscanned items}; z :¼ 0

{comment: incumbent solution value};
5: while c40 do
6: find the best item a, i.e., ra,mðaÞ ¼maxjA ~N frj,mðjÞg; set

xa :¼ damðaÞ; ~N :¼ ~N\fag;
7: update rjk and m(j) for all jA ~N by considering c$ga,mðaÞ

as the current capacity;
8: if gj14c$ga,mðaÞ for all jA ~N then mðjÞ :¼ 1 for all jA ~N;
9: find the next best item b, i.e., rb,mðbÞ ¼maxjA ~N frj,mðjÞg;
10: ref :¼ 0; r :¼ ra,mðaÞ þ 1; w :¼ ga,mðaÞ þ 1;
11: while ref rn_ref do {comment: main loop}
12: while ðr Zrb,mðbÞÞ&&ðxa þ daruaÞ&&ðwrcÞ do
13: xa :¼ xa þ da; w :¼ gaðxa þ daÞ; r :¼ faðxa þ daÞ=w;
14: end while;
15: if xa ¼ ua then break;
16: else
17: ref¼ref+1; da ¼ da=s (and set da :¼ bdac if aAN);
18: if da ¼ 0 then break else w :¼ gaðxa þ daÞ;

r :¼ faðxa þ daÞ=w;
19: end if;
20: end while;
21: z :¼ z þ faðxaÞ; c :¼ c$gaðxaÞ; update rjk and m(j) for all

jA ~N;
22: if j ~N j¼ 1 (say, ~N ¼ fjg) then {comment: final step, case

(1)}
23: if gjs rc then xj :¼ uj;else find xj such that gjðxjÞ ¼ c;

24: c :¼ c$gjðxjÞ; z :¼ z þ fjðxjÞ;
25: break;
26: end if;
27: if gj14c for all jA ~N then {comment: final step, case

(2)}
28: find db such that gbðdbÞ ¼ c (and set db :¼ bdbc if

bAN); ~N :¼ ~N\fbg;
29: if gas rc þ gaðxaÞ then da :¼ ua$xa;
30: else
31: find da such that gaðxa þ daÞ ¼ c þ gaðxaÞ (and set da :
¼ bdac if aAN);

32: end if;
33: if gaðxa þ daÞ ¼ c then dub :¼ 0; else find dub such that

gbðd
u
bÞ ¼ c$ðgaðxa þ daÞ$gaðxaÞÞ;

34: if bAN then dub :¼ bd
u
bc;

35: if faðxa þ daÞþ fbðd
u
bÞo faðxaÞþ fbðdbÞ then {comment:

final step, option (2)(a)}
36: z :¼ z þ fbðdbÞ; c :¼ c$gbðdbÞ; xb :¼ db;
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Fig. 1. Example of profit function.
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General Framework

Global optimization algorithm proposed in
D’A., Lee, and Wächter (2009, 2012).

Init
Lower bounding

relaxation Q
Upper bounding

restriction R

Refinement

MATLAB MINLP solver NLP solver

AMPL
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The Upper Bounding problem

Upper Bound of the original problem:
1 The integer variables are fixed;
2 We solve the resulting non convex NLP problem to local optimality;

min ∑
j∈N

Cjxj

fi(x) + ∑
k∈Hi

gik (xk )≤ 0 ∀i ∈M

Lj ≤ xj ≤ Uj ∀j ∈ N
xj = x j ∀j ∈ I
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The Lower Bounding problem: step 1

For simplicity, let us consider a term of the form g(xk ) := gik (xk ):
g : R→ R is a univariate non convex function of xk , for some k
(1≤ k ≤ n).
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Automatically detect the concavity/convexity intervals or piecewise
definition:
[Pp−1,Pp] := the p-th subinterval of the domain of g (p ∈ {1 . . .p});
Ȟ := the set of indices of subintervals on which g is convex;
Ĥ := the set of indices of subintervals on which g is concave.
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The Lower Bounding problem: step 2

Introduction of additional variables δp ∈ [0,Pp−Pp−1] such that
xk = P0 + ∑

p̄
p=1 δp
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The Lower Bounding problem: step 2

Introduction of additional variables δp ∈ [0,Pp−Pp−1] such that
xk = P0 + ∑

p̄
p=1 δp = 0 + 1 + 0.75 + 0
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The Lower Bounding problem: step 2

All the δ ’s but at most 1 take either the lower or the upper bound
value
To model such behavior additional binary variables are needed:
zp ∈ {0,1} ∀p
z1 ≥ z2 ≥ ·· · ≥ zp

δp =


0 zp−1 = 0
[0,Pp−Pp−1] zp−1 = 1 and zp = 0
Pp−Pp−1 zp = 1

δ P1−P0 P2−P1 . . . Pp−1−Pp−2 [0,Pp−Pp−1] 0 . . . 0
z 1 1 . . . 1 0 0 . . . 0
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The Lower Bounding problem: step 2

Replace the term g(xk ) with:

∑
p
p=1 g(Pp−1 + δp)−∑

p−1
p=1 g(Pp) ,

and we include the following set of new constraints:

xk = P0 + ∑
p
p=1 δp ;

δp ≥ (Pp−Pp−1)zp , ∀p ∈ Ȟ ∪ Ĥ ;

δp ≤ (Pp−Pp−1)zp−1 , ∀p ∈ Ȟ ∪ Ĥ ;

0≤ δp ≤ Pp−Pp−1, ∀p ∈ {1, . . . , p̄};

with two dummy variables z0 := 1 and zp := 0 and two new sets of
variables zp (binary) and δp (continuous).
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The Lower Bounding problem: step 3

Still non convex;

Use piece-wise linear approximation for the concave intervals:
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The Lower Bounding problem: the convex MINLP
model
Replace the term g(xk ) with:

∑p∈Ȟ g(Pp−1 + δp) + ∑p∈Ĥ ∑b∈Bp g(Xp,b) αp,b−∑
p−1
p=1 g(Pp) ,

and we include the following set of new constraints:

P0 + ∑
p
p=1 δp−xk = 0 ;

δp− (Pp−Pp−1)zp ≥ 0 , ∀p ∈ Ȟ ∪ Ĥ ;

δp− (Pp−Pp−1)zp−1 ≤ 0 , ∀p ∈ Ȟ ∪ Ĥ ;

Pp−1 + δp−∑b∈Bp Xp,b αp,b = 0 , ∀p ∈ Ĥ ;

∑b∈Bp αp,b = 1 , ∀p ∈ Ĥ ;

{αp,b : b ∈ Bp} := SOS2 , ∀p ∈ Ĥ .

with two dummy variables z0 := 1, zp := 0 and the new set of variables
αp,b.
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Refining the Lower Bounding problem
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Add a breakpoint where the solution of problem Q of the previous
iteration lies (global convergence);
Add a breakpoint where the solution of problem R of the previous
iteration lies (speed up the convergence).
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Limits

Solving the Lower Bounding problem can be time consuming

At each iteration we solve the Lower Bounding problem from
scratch

Large number of iterations needed to converge
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Lower Bounding problem tightening

Let us consider the convex pieces:

g(Pp−1 + δp)−g(Pp−1)

with
0≤ δp ≤ (Pp−Pp−1)zp−1

zp−1 ∈ {0,1}

Its convex envelope is:

zp−1(g(Pp−1 + δp/zp−1)−g(Pp−1))
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Perspective function
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Where can we exploit it?

Use it to solve the Lower Bounding problem:

Reformulate the convex MINLP
Stronger the convex continuous relaxation
Generate stronger linear cuts
Solve the convex MINLP with cutting plane
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Computational Results

PC: linearization of PR of LB problem
STD: linearization of original LB problem
Bonmin

Minotaur

SCIP

Tests on non linear knapsack problem and uncapacitated facility
location problem.

10,000 seconds time limit.
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The non linear knapsack problem

(NCK)

max ∑j∈N pj

pj −
cj

1+bj exp(−aj (xj +dj )) ≤ 0 j ∈ N

∑j∈N xj ≤ C

0≤ xj ≤ U j ∈ N

|N| ∈ {10,20,50,100,200,500} (10 instances for each)
Random Uniformly:
aj ∈ [0.1 , 0.2 ], bj ∈ [0 , 100 ], cj ∈ [0 , 100 ], and dj ∈ [−100 , 0 ].
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Results on the non linear knapsack problem

Bonmin Minotaur
size B-BB B-OA B-Hyb B-OA-C BNB-I QG-I QPD-I

time gap time gap time gap time time gap time gap time gap
10 1.06 - 0.25 - 0.59 - 0.27 0.22 - 0.11 - 0.09 -
20 2.99 - 0.34 - 2.12 - 0.32 0.53 - 0.22 - 0.16 -
50 13.8 - 0.65 - 8.05 - 0.62 2.97 - 1.07 - 0.63 -

100 78.9 - 9.16 - 7936 1.00 1.07 13.0 - 4.25 - 3.44 -
200 1000 - 5035 0.62 4019 0.88 2.24 88.5 - 37.8 - 28.6 -
500 tl 0.12 8035 0.62 9027 1.49 8.41 8621 0.07 7080 0.15 7692 0.16

Table: NCK: Bonmin and Minotaur options comparison
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Results on the non linear knapsack problem

size PC STD Bonmin MINOTAUR SCIP
time cuts time cuts time time gap bgap time

10 0.014 96 0.015 102 0.267 0.09 - - 0.07
20 0.021 155 0.019 195 0.324 0.16 - - 0.10
50 0.048 431 0.085 678 0.617 0.63 - - 0.21

100 0.072 947 0.183 1182 1.067 3.44 - - 0.66
200 0.105 1780 0.565 2461 2.237 28.6 - - 131.2
500 0.380 4681 3.593 7821 8.406 7080 0.15 0.05 181.4

Table: NCK: comparison among the different algorithms
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The uncapacitated facility location problem

(UFL)

min ∑k∈K Ckyk + ∑t∈T ∑k∈K skt

gkt (wkt )−skt ≤ 0 t ∈ T , k ∈ K

∑k∈K wkt = 1 t ∈ T
0≤ wkt ≤ yk t ∈ T , k ∈ K
yk ∈ {0,1} k ∈ K

For each combination (|K |, |T |) ∈ {(6,12) , (12,24) , (24,48)} we
generated 3 instances of increasing difficulty.
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Results on the uncapacitated facility location problem

Bonmin Minotaur
instance B-BB B-OA-C B-Hy-C BNB QPD QG-I

time gap time gap time gap time gap time gap time gap
6x12x1 176 - 1.76 - 1.37 - 538 - 24.8 - 4.66 -
6x12x2 tl 1.16 7.25 - 5.64 - tl 29.17 tl 51.08 65.5 -
6x12x3 tl 657.6 tl ∞ tl ∞ tl ∞ tl 315.5 tl 260.3
12x24x1 1592 - 9.68 - 7.14 - tl 8.07 tl 66.57 57.4 -
12x24x2 tl 18.77 93.8 - 57.9 - tl ∞ tl ∞ tl 17.40
12x24x3 tl ∞ tl ∞ tl ∞ tl ∞ tl ∞ tl 271.6
24x48x1 tl 84.70 116 - 132 - tl ∞ tl ∞ 2844 -
24x48x2 tl 73.44 tl ∞ tl ∞ tl ∞ tl ∞ tl 31.49

Table: UFL: Comparison among Bonmin and Minotaur options
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Results on the uncapacitated facility location problem

instance PC STD Bonmin Minotaur
time gap bgap cuts time gap bgap cuts time gap bgap time gap bgap

6x12x1 0.35 - - 1673 0.26 - - 1531 1.37 - - 4.66 - -
6x12x2 0.45 - - 1842 0.42 - - 1796 5.64 - - 65.6 - -
6x12x3 7921 - - 33417 tl 54.3 52.4 180561 tl 657 796 tl 260 615
12x24x1 3.36 - - 9565 2.55 - - 8971 7.14 - - 57.4 - -
12x24x2 46.1 - - 19653 27.3 - - 17384 57.9 - - tl 17.4 10.5
12x24x3 tl 23.9 23.9 127380 tl 121 134 284557 tl ∞ 1524 tl 272 1447
24x48x1 261 - - 81372 316 - - 102160 116 - - 2844 - -
24x48x2 tl 5.93 5.67 164809 tl 9.66 9.66 409177 tl 73.4 26.4 tl 31.5 24.6

Table: UFL: Comparison among different algorithms
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Future Directions

With J. Lee, D. Skipper, D. Thomopulos
Use disjunctive cuts to tighten the formulation instead of adding
breakpoints

With C. Artigues, A. Frangioni, C. Gentile, R. Trindade, S. Ulrich
Ngueveu

Is the LB problem formulation the tightest?
Use the “Piecewise linear bounding of univariate functions” for
the concave part

Thanks!
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