

Strong mixed-integer programming formulations for trained neural networks

Joey Huchette¹

with Ross Anderson², Will Ma⁴, Christian Tjandraatmadja², and Juan Pablo Vielma^{2,3}

¹Rice University, Computational and Applied Mathematics
²Google Research, Operations Research Team
³MIT, Sloan School of Management
⁴Columbia University, Columbia Business School

Strong mixed-integer programming formulations for trained neural networks

Joey Huchette¹

with Ross Anderson², Will Ma⁴, Christian Tjandraatmadja², and Juan Pablo Vielma^{2,3} and Yeesian Ng⁵ and Ondrej Sykora²

¹Rice University, Computational and Applied Mathematics
²Google Research, Operations Research Team
³MIT, Sloan School of Management
⁴Columbia University, Columbia Business School
⁵MIT, Operations Research Center

Strong mixed-integer programming formulations for trained neural networks

Joey Huchette¹

with Ross Anderson², Will Ma⁴, Christian Tjandraatmadja², and Juan Pablo Vielma^{2,3} and Yeesian Ng⁵ and Ondrej Sykora² and Craig Boutilier⁶, Martin Mladenov⁶, and Moonkyung Ryu⁶

¹Rice University, Computational and Applied Mathematics
²Google Research, Operations Research Team
³MIT, Sloan School of Management
⁴Columbia University, Columbia Business School
⁵MIT, Operations Research Center
⁶Google Research, MudCats

The Problem

Optimize

End goal is *optimization*: Make the best possible decision $x^* \in \Omega$

Predict,

Supervised learning: Learn a function using historical input/output data

End goal is *generalization*: Given "reasonable" unseen point (x^*, y^*) , want $y^* \approx NN(x^*)$

Optimize

End goal is *optimization*: Make the best possible decision $x^* \in \Omega$

Predict, then Optimize

Application: Verifying robustness

Adversarial Examples: find small change in the input to change the output

 $\begin{array}{ll} \max & \mathbb{P}[x \text{ is a gibbon}] - \mathbb{P}[x \text{ is a panda}] \\ \text{s.t.} & ||x - (\text{reference panda})||_{\infty} \leq \epsilon \end{array}$

Predict: Classify input image

Optimize: Prove (or disprove) robustness of model to small perturbations

Very popular research topic in ML community right now

Note that "proofs" of robustness (not just feasible solutions) are very useful!

Application: Deep reinforcement learning

Predict: future costs for action *a* in state *x*:

$$Q(x,a) \approx \mathrm{NN}(x,a)$$

Optimize: to pick the lowest cost action:

$$\min_{a} c(x,a) + \alpha \cdot \text{NN}(x,a)$$

In a combinatorial or continuous action space, optimization can be hard!

Teach a cheetah to run (without falling over)

Application: Designing DNA for protein binding

Predict: probability/strength of DNA sequence binding to a given protein

Optimize: find the best/many binding sequences (potentially with side constraints)

A typical architecture for predicting protein binding, e.g. (Alipanahi et al 2015, Zeng et al 2016)

Application: Bayesian optimization

- Goal: Minimize black-box function
 - "Neural architecture search"
 - Drug design
- Sequential experimentation, each sample is costly

Predict: Amount new point improves model

Optimize: Choose best point to sample

- Pros of Gaussian process:
 - Bayesian calculations are straightforward
- (Potential) pros of neural network:
 - Incremental training; handles discontinuities
 + high dims ("model-free"), input constraints
 - Uncertainty models: dropout, ensembling, Thompson sampling, etc.

The Solution

How to "Optimize" in "Predict, then Optimize"

A (not comprehensive) Literature Sampling

- Gradient descent on continuous problems (e.g. deep dream, style transfer, adversarial examples)
- Cross Entropy Method (importance sampling based guesses, brain robotics)
- Input Convex Neural Networks + LP (Amos 2016)
- The big-M MIP (too many authors to list all)
 - Tightening big-Ms: (Tjeng 2017, Fischetti 2018)
- CP/SAT/SMT (often from the "verifiability" community)
 - Reluplex (Katz 2017), Planet (Elhers 2017)
- Lagrangian Relaxation (Dvijotham 2018)
- Abstract Domains/Zonotopes (Singh 2019)
- Nice recent survey (Bunel 2017)

- 1. MIP formulations for popular neural network building blocks Stronger than existing approaches (theoretically and empirically)
 - \circ Most common case: Affine function on box domain \rightarrow ReLU nonlinearity
 - Other nonlinearities: max-pooling, reduce max, clipped ReLU, ...
 - Other domains: Product of simplices (*one-hot encodings*)
 - Structure: Tight big-M formulation + efficiently separable cuts
- 2. General machinery

Recipes for strong MIP formulations for the maximum of d affine functions

- One for ideal formulations, another for hereditarily sharp ones
- Efficiently separable via subgradient-method
- A series of simplifications under common setting
- 3. tf.opt: Software with TensorFlow-like modeling, multiple backends
- 4. Computational results on verification and reinforcement learning problems

MIP Formulations for Neural Networks

MIP formulations in one slide

- A MIP formulation for some set $S \subseteq \mathbb{R}^n$ is:
 - A polyhedra $Q \subseteq R^{n+r}$, where
 - $Proj_x(\{ (x,z) \in Q \mid z \in Z^r \}) = S$
- What makes a MIP formulation good?
 - Size: r is small, Q is "simple"
 - Sharp: Proj_x(Q) = Conv(S)
 - Hereditarily sharp: Sharp after any fixings of binary variables z
 - Ideal (perfect): $ext(Q) \subseteq R^n \times Z^r$
- Ideal \Rightarrow sharp, so...

Ideal formulations = Best possible = Our goal

Neural networks = Piecewise linear functions

- Standard ReLU-based network: $x^r = NN(x^0)$, where $x_i^j = \max\left\{0, w^{j,i} \cdot x_i^{j-1} + b^{j,i}\right\} \quad \forall j = 1, \dots, r, i = 1, \dots, m_j$
- Big-M formulation for single ReLU neuron

$$egin{cases} L \leq x \leq U \ y = \max\{0, w \cdot x + b\} \ y \geq 0 \ y \geq w \cdot x + b \ y \leq M^+ z \end{cases}$$

$$y \le w \cdot x + b - M^{-}(1 - z)$$
$$(x, y, z) \in [L, U] \times \mathbb{R} \times \{0, 1\}$$

• How strong is it?

is

MIP formulation strength

• How strong is it? *Not very!*

Can be arbitrarily bad, even in fixed input dimension

big-M formulation

• How to close the gap?

tightest possible formulation

An ideal formulation for ReLU neurons

Theorem (Anderson, H., Tjandraatmadja, Vielma 2018)

An ideal formulation for $\{(x, y = \max\{0, w \cdot x + b\}) : L \le x \le U\}$ is

$$y \ge w \cdot x + b \tag{1a}$$

$$y \le \sum_{i \in I} w_i \left(x_i - L_i (1 - z) \right) + \left(b + \sum_{i \notin I} w_i U_i \right) z \quad \forall I \subseteq [n]$$
(1b)
$$y_i(z) \in [L, U] \times \mathbb{R}_{\ge 0} \times \{0, 1\}.$$
(1c)

 $(x, y, z) \in [L, U] \times \mathbb{R}_{>0} \times \{0, 1\}.$

- Each inequality in (1b) is facet-defining (under very mild conditions).
- Moreover, we can identify the most violated constraint in (1b) in O(n) time.

Big-M formulation = (1a), (1c), and two constraints from (1b)

Idea: Start with big-M formulation, use cut callbacks to separate (1b) as-needed

$$\left\{ (x,y) \in D \times \mathbb{R} : y = \max_{k=1}^d w^k \cdot x + b^k \right\}$$

Step 1: Write down ideal "multiple choice" formulation (i.e. the "Balas" formulation):

$$egin{aligned} &(x,y) = \sum_{k=1}^d (ilde{x}^k, w^k \cdot ilde{x}^k + b^k z_k) \ &w^k \cdot ilde{x}^k + b^k z_k \geq w^\ell \cdot ilde{x}^k + b^\ell z_k & orall k, \ell \in [d]: \ k
eq \ell \ & ilde{x}^k \in z_k \cdot D & orall k \in [d] \ &z \in \Delta^d. \end{aligned}$$

$$\left\{ (x,y) \in D \times \mathbb{R} : y = \max_{k=1}^d w^k \cdot x + b^k \right\}$$

Step 2: Re-write constraints in "set" form:

$$egin{aligned} & (x,y) = \sum_{k=1}^d (ilde{x}^k, w^k \cdot ilde{x}^k + b^k z_k) \ & ilde{x}^k \in z_k \cdot D_{|k} & orall k \in [d] \ & z \in \Delta^d, \end{aligned}$$

where

$$D_{|k} \equiv \left\{ x \in D : k \in \arg \max_{\ell=1}^{d} w^{\ell} \cdot x + b^{\ell} \right\}$$
$$= \left\{ x \in D : w^{k} \cdot x + b^{k} \ge w^{\ell} \cdot x + b^{\ell} \quad \forall \ell \neq k \right\}$$

$$\left\{ (x,y) \in D \times \mathbb{R} : y = \max_{k=1}^d w^k \cdot x + b^k \right\}$$

Step 3: Rewrite all logic as bounds on output y (a *primal* characterization):

$$\begin{split} y &\leq \overline{g}(x,z) \equiv \max_{\tilde{x}^1,\dots,\tilde{x}^d} \left\{ \sum_{k=1}^d w^k \cdot \tilde{x}^k + b^k z_k : \begin{array}{c} x = \sum_k \tilde{x}^k \\ \tilde{x}^k \in z_k \cdot D_{|k} \quad \forall k \end{array} \right\} \\ y &\geq \underline{g}(x,z) \equiv \min_{\tilde{x}^1,\dots,\tilde{x}^d} \left\{ \sum_{k=1}^d w^k \cdot \tilde{x}^k + b^k z_k : \begin{array}{c} x = \sum_k \tilde{x}^k \\ \tilde{x}^k \in z_k \cdot D_{|k} \quad \forall k \end{array} \right\} \\ x,z) \in D \times \Delta^d, \end{split}$$

where

$$D_{|k} \equiv \left\{ x \in D : k \in \arg \max_{\ell=1}^{d} w^{\ell} \cdot x + b^{\ell} \right\}$$
$$= \left\{ x \in D : w^{k} \cdot x + b^{k} \ge w^{\ell} \cdot x + b^{\ell} \quad \forall \ell \neq k \right\}$$

$$\left\{ (x,y) \in D \times \mathbb{R} : y = \max_{k=1}^d w^k \cdot x + b^k \right\}$$

Step 4: Apply Lagrangian relaxation to aggregation constraints (a dual characterization)

$$y \leq \overline{\alpha} \cdot x + \sum_{k=1}^{d} \left(\max_{x^k \in D_{|k}} \{ (w^k - \overline{\alpha}) \cdot x^k \} + b^k \right) z_k \quad \forall \overline{\alpha} \in \mathbb{R}^{\eta}$$
$$y \geq \underline{\alpha} \cdot x + \sum_{k=1}^{d} \left(\min_{x^k \in D_{|k}} \{ (w^k - \underline{\alpha}) \cdot x^k \} + b^k \right) z_k \quad \forall \underline{\alpha} \in \mathbb{R}^{\eta}$$
$$(x, z) \in D \times \Delta^d.$$

End of analysis: in general, $D_{|k|}$ is complicated.

Can separate over via subgradient method, or...

$$\left\{ (x,y) \in D \times \mathbb{R} : y = \max_{k=1}^d w^k \cdot x + b^k \right\}$$

Step 1: Write down ideal "multiple choice" formulation (i.e. the "Balas" formulation):

$$egin{aligned} &(x,y) = \sum_{k=1}^d (ilde{x}^k, w^k \cdot ilde{x}^k + b^k z_k) \ &w^k \cdot ilde{x}^k + b^k z_k \geq w^\ell \cdot ilde{x}^k + b^\ell z_k & orall k, \ell \in [d]: \ k
eq \ell \ & ilde{x}^k \in z_k \cdot D & orall k \in [d] \ &z \in \Delta^d. \end{aligned}$$

$$\left\{ (x,y) \in D \times \mathbb{R} : y = \max_{k=1}^d w^k \cdot x + b^k \right\}$$

Step 2: Re-write constraints in "set" form:

$$egin{aligned} & (x,y) = \sum_{k=1}^d (ilde{x}^k, w^k \cdot ilde{x}^k + b^k z_k) \ & ilde{x}^k \in z_k \cdot D_{|k} & orall k \in [d] \ & z \in \Delta^d, \end{aligned}$$

where

$$D_{|k} \equiv \left\{ x \in D : k \in \arg \max_{\ell=1}^{d} w^{\ell} \cdot x + b^{\ell} \right\}$$
$$= \left\{ x \in D : w^{k} \cdot x + b^{k} \ge w^{\ell} \cdot x + b^{\ell} \quad \forall \ell \neq k \right\}$$

$$\left\{ (x,y) \in D \times \mathbb{R} : y = \max_{k=1}^d w^k \cdot x + b^k \right\}$$

Step 3: Relax domain constraint:

$$egin{aligned} &(x,y) = \sum_{k=1}^d (ilde{x}^k, w^k \cdot ilde{x}^k + b^k z_k) \ & ilde{x}^k \in z_k \cdot D & orall k \in [d] \ &z \in \Delta^d. \end{aligned}$$

Still a valid formulation.

$$\left\{ (x,y) \in D \times \mathbb{R} : y = \max_{k=1}^d w^k \cdot x + b^k \right\}$$

Step 4: Rewrite all logic as bounds on output y (a *primal* characterization):

$$\begin{split} y &\leq \overline{h}(x,z) \equiv \max_{\tilde{x}^1,\dots,\tilde{x}^d} \left\{ \sum_{k=1}^d w^k \cdot \tilde{x}^k + b^k z_k : \begin{array}{c} x = \sum_k \tilde{x}^k \\ \tilde{x}^k \in z_k \cdot D \quad \forall k \end{array} \right\} \\ y &\geq \underline{h}(x,z) \equiv \min_{\tilde{x}^1,\dots,\tilde{x}^d} \left\{ \sum_{k=1}^d w^k \cdot \tilde{x}^k + b^k z_k : \begin{array}{c} x = \sum_k \tilde{x}^k \\ \tilde{x}^k \in z_k \cdot D \quad \forall k \end{array} \right\} \\ x,z) \in D \times \Delta^d. \end{split}$$

$$\left\{ (x,y) \in D \times \mathbb{R} : y = \max_{k=1}^d w^k \cdot x + b^k \right\}$$

Step 5: Replace lower bounds for a *hereditarily sharp* formulation:

$$\begin{split} y &\leq \overline{h}(x,z) \equiv \max_{\tilde{x}^1, \dots, \tilde{x}^d} \left\{ \sum_{k=1}^d w^k \cdot \tilde{x}^k + b^k z_k : \begin{array}{l} x = \sum_k \tilde{x}^k \\ \tilde{x}^k \in z_k \cdot D \quad \forall k \end{array} \right\} \\ y &\geq w^k \cdot x + b^k \quad \forall k \in [d] \\ (x,z) \in D \times \Delta^d. \end{split}$$

$$\left\{ (x,y) \in D \times \mathbb{R} : y = \max_{k=1}^d w^k \cdot x + b^k \right\}$$

Step 6: Apply Lagrangian relaxation to aggregation constraints:

$$\begin{split} y &\leq \overline{\alpha} \cdot x + \sum_{k=1}^{d} \left(\max_{x^k \in D} \{ (w^k - \overline{\alpha}) \cdot x^k \} + b^k \right) z_k \qquad \quad \forall \overline{\alpha} \in \mathbb{R}^{\eta} \\ y &\geq w^k \cdot x + b^k \quad \forall k \in [d] \\ (x, z) \in D \times \Delta^d. \end{split}$$

$$\left\{ (x,y) \in D \times \mathbb{R} : y = \max_{k=1}^d w^k \cdot x + b^k \right\}$$

Step 7: Analyze further:

- **Proposition** If d=2, then the hereditarily sharp formulation is ideal.
- **Proposition** If the domain is a product of simplices, separation over hereditarily sharp formulation reduces to a transportation problem.
- **Proposition** If d=2 and the domain is a product of simplices, the transportation problem has a closed form solution and efficient separation.

An ideal formulation for ReLU neurons

Theorem (Anderson, H., Tjandraatmadja, Vielma 2018)

An ideal formulation for $\{(x, y = \max\{0, w \cdot x + b\}) : L \le x \le U\}$ is

$$y \ge w \cdot x + b \tag{1a}$$

$$y \le \sum_{i \in I} w_i \left(x_i - L_i (1 - z) \right) + \left(b + \sum_{i \notin I} w_i U_i \right) z \quad \forall I \subseteq [n]$$
(1b)
$$y_i(z) \in [L, U] \times \mathbb{R}_{\ge 0} \times \{0, 1\}.$$
(1c)

 $(x, y, z) \in [L, U] \times \mathbb{R}_{>0} \times \{0, 1\}.$

- Each inequality in (1b) is facet-defining (under very mild conditions).
- Moreover, we can identify the most violated constraint in (1b) in O(n) time.

Big-M formulation = (1a), (1c), and two constraints from (1b)

Idea: Start with big-M formulation, use cut callbacks to separate (1b) as-needed

Hereditarily sharp formulation for max-of-d affine functions

- Max-of-d affine functions ≡
 - Max pooling (small d)
 - Reduce max (large d)

12	20	30	0			
8	12	2	0	2×2 Max-Pool	20	30
34	70	37	4		112	37
112	100	25	12			

Proposition (Anderson, H., Ma, Tjandraatmadja, Vielma 2019)

• A hereditarily sharp MIP formulation for $\left\{ \left(x, y = \max\left\{w^k \cdot x + b^k\right\}_{k=1}^d\right) : L \le x \le U \right\}$ is:

$$\begin{split} y &\leq \sum_{i=1}^{\eta} \left(w_i^{I(i)} x_i + \sum_{k=1}^d \max\{(w_i^k - w_i^{I(i)}) L_i, (w_i^k - w^{I(i)}) U_i\} z_k \right) + \sum_{k=1}^d b^k z_k \quad \forall I : [\eta] \to [d] \\ y &\geq w^k \cdot x + b^k \quad \forall k \in [d] \\ x, z) \in D \times \Delta^d \\ z \in \{0, 1\}^d. \end{split}$$

• The most violated inequality can be identified in time linear in O(dn) time.

Computational Results

Network 1: Small network with standard training

Network 2: Small network with L1 regularization (Xiao et al. 2019)

Q-learning: Are optimal actions tractable?

MIP Action Selection Performance h256-128

Ongoing joint work with Craig Boutilier, Martin Mladenov, and Moonkyung Ryu (Google Research)

Q-learning: Are optimal actions better?

Cheetah Reward by Policy Iteration

- Gradient Descent h32-16 - MIP h32-16

Policy Iterations

Ongoing joint work with Craig Boutilier, Martin Mladenov, and Moonkyung Ryu (Google Research)

Q-learning: Are optimal actions better?

Cheetah Reward by Policy Iteration

Policy Iterations

Ongoing joint work with Craig Boutilier, Martin Mladenov, and Moonkyung Ryu (Google Research)

Conclusion

- Strong MIP formulations for optimizing over trained neural networks
- Applications abound: verification, drug design, reinforcement learning, etc.
- Framework of independent interest:

Recipes for strong formulations for the max of d affine functions

- Questions going forward:
 - Separation-based algorithm and implementation
 - How to train the network for optimization in a *principled* way
 - How best to formulate entire network (not just individual neurons)

