
Strong mixed-integer programming
formulations for trained neural networks

Joey Huchette1

with Ross Anderson2, Will Ma4, Christian Tjandraatmadja2, and Juan Pablo Vielma2,3

1Rice University, Computational and Applied Mathematics
2Google Research, Operations Research Team
3MIT, Sloan School of Management
4Columbia University, Columbia Business School

Strong mixed-integer programming
formulations for trained neural networks

Joey Huchette1

with Ross Anderson2, Will Ma4, Christian Tjandraatmadja2, and Juan Pablo Vielma2,3

and Yeesian Ng5 and Ondrej Sykora2

1Rice University, Computational and Applied Mathematics
2Google Research, Operations Research Team
3MIT, Sloan School of Management
4Columbia University, Columbia Business School
5MIT, Operations Research Center

Strong mixed-integer programming
formulations for trained neural networks

Joey Huchette1

with Ross Anderson2, Will Ma4, Christian Tjandraatmadja2, and Juan Pablo Vielma2,3

and Yeesian Ng5 and Ondrej Sykora2

and Craig Boutilier6, Martin Mladenov6, and Moonkyung Ryu6

1Rice University, Computational and Applied Mathematics
2Google Research, Operations Research Team
3MIT, Sloan School of Management
4Columbia University, Columbia Business School
5MIT, Operations Research Center
6Google Research, MudCats

The Problem

 Optimize

End goal is optimization: Make the best possible decision

Unknown

Predict,

Data
Learning

End goal is generalization: Given “reasonable” unseen point , want

 y

Supervised learning: Learn a function using historical input/output data

x2
2

x2
1

x2
3

x1

x2

 Optimize

End goal is optimization: Make the best possible decision

Unknown

Predict, then Optimize

End goal is optimization: Make the best possible decision

Complex?
Combinatorial?

Nonconvex

Application: Verifying robustness

Adversarial Examples: find small change in the input to change the output

Predict: Classify input image

Optimize: Prove (or disprove) robustness of model to small perturbations

Very popular research topic in ML community right now

Note that “proofs” of robustness (not just feasible solutions) are very useful!

Application: Deep reinforcement learning

Predict: future costs for action a in state x:

Optimize: to pick the lowest cost action:

In a combinatorial or continuous action
space, optimization can be hard! Teach a cheetah to run (without falling over)

Application: Designing DNA for protein binding

Predict: probability/strength of DNA sequence binding to
a given protein

Optimize: find the best/many binding sequences
(potentially with side constraints)

x (n, 4) h1 (n, 6)

conv1d reduce
max

h2 (1,6) h3 (1,32)

ReLU linear

prediction

A typical architecture for predicting protein binding, e.g. (Alipanahi et al 2015,
Zeng et al 2016)

● Goal: Minimize black-box function
○ “Neural architecture search”
○ Drug design

● Sequential experimentation, each sample is costly

Application: Bayesian optimization

Predict: Amount new point improves model
Optimize: Choose best point to sample
● Pros of Gaussian process:

○ Bayesian calculations are straightforward
● (Potential) pros of neural network:

○ Incremental training; handles discontinuities
+ high dims (“model-free”), input constraints

● Uncertainty models: dropout,
ensembling, Thompson sampling, etc.

The Solution

How to “Optimize” in “Predict, then Optimize”

Heuristic/Primal
● Gradient Descent

(Projected/Conditional)
● Local Search

○ Over input domain
○ Over neuron activity

● Cross Entropy Method
● Genetic Algorithms
● (Quasi-)Second Order Methods

Bounds/Dual
● Interval Arithmetic
● Abstract Domains
● Lagrangian Relaxation
● Linear Programming
● Semidefinite Programming

Exact Methods
● Mixed Integer Programming
● SAT/SMT

Exploit
Problem-Specific
Methods within
Generic Solvers

A (not comprehensive) Literature Sampling

● Gradient descent on continuous problems (e.g. deep dream, style transfer,

adversarial examples)

● Cross Entropy Method (importance sampling based guesses, brain robotics)

● Input Convex Neural Networks + LP (Amos 2016)

● The big-M MIP (too many authors to list all)

○ Tightening big-Ms: (Tjeng 2017, Fischetti 2018)

● CP/SAT/SMT (often from the “verifiability” community)

○ Reluplex (Katz 2017), Planet (Elhers 2017)

● Lagrangian Relaxation (Dvijotham 2018)

● Abstract Domains/Zonotopes (Singh 2019)

● Nice recent survey (Bunel 2017)

Contributions and Outline

1. MIP formulations for popular neural network building blocks
Stronger than existing approaches (theoretically and empirically)
○ Most common case: Affine function on box domain → ReLU

nonlinearity
○ Other nonlinearities: max-pooling, reduce max, clipped ReLU, …
○ Other domains: Product of simplices (one-hot encodings)
○ Structure: Tight big-M formulation + efficiently separable cuts

2. General machinery
Recipes for strong MIP formulations for the maximum of d affine functions
○ One for ideal formulations, another for hereditarily sharp ones
○ Efficiently separable via subgradient-method
○ A series of simplifications under common setting

3. tf.opt: Software with TensorFlow-like modeling, multiple backends
4. Computational results on verification and reinforcement learning problems

MIP Formulations for Neural
Networks

MIP formulations in one slide

● A MIP formulation for some set S⊆Rn is:
○ A polyhedra Q⊆Rn+r, where
○ Projx({ (x,z) ∈ Q | z ∈ Zr }) = S

● What makes a MIP formulation good?
○ Size: r is small, Q is “simple”
○ Sharp: Projx(Q) = Conv(S)
○ Hereditarily sharp: Sharp after any fixings of binary variables z
○ Ideal (perfect): ext(Q) ⊆ Rn ⨉ Zr

● Ideal ⇒ sharp, so...

Ideal formulations = Best possible = Our goal

Neural networks = Piecewise linear functions

● Standard ReLU-based network: , where

● Big-M formulation for single ReLU neuron

is x2
2

x2
1

x2
3

x1
2

x1
1

x3

● How strong is it?

MIP formulation strength

● How strong is it? Not very!
Can be arbitrarily bad, even in fixed input dimension

big-M formulation tightest possible formulation

● How to close the gap?

An ideal formulation for ReLU neurons

Theorem (Anderson, H., Tjandraatmadja, Vielma 2018)
● An ideal formulation for is

● Each inequality in (1b) is facet-defining (under very mild conditions).
● Moreover, we can identify the most violated constraint in (1b) in O(n) time.

 Big-M formulation = (1a), (1c), and two constraints from (1b)
Idea: Start with big-M formulation, use cut callbacks to separate (1b) as-needed

How do we get here?

Modeling the maximum of d affine functions over shared input domain D:

Step 1: Write down ideal “multiple choice” formulation (i.e. the “Balas” formulation):

How do we get here?

Modeling the maximum of d affine functions over shared input domain D:

Step 2: Re-write constraints in “set” form:

where

How do we get here?

Modeling the maximum of d affine functions over shared input domain D:

Step 3: Rewrite all logic as bounds on output y (a primal characterization):

where

How do we get here?

Modeling the maximum of d affine functions over shared input domain D:

Step 4: Apply Lagrangian relaxation to aggregation constraints (a dual characterization)

End of analysis: in general, is complicated.
Can separate over via subgradient method, or...

How do we get here?

Modeling the maximum of d affine functions over shared input domain D:

Step 1: Write down ideal “multiple choice” formulation (i.e. the “Balas” formulation):

How do we get here?

Modeling the maximum of d affine functions over shared input domain D:

Step 2: Re-write constraints in “set” form:

where

How do we get here?

Modeling the maximum of d affine functions over shared input domain D:

Step 3: Relax domain constraint:

Still a valid formulation.

How do we get here?

Modeling the maximum of d affine functions over shared input domain D:

Step 4: Rewrite all logic as bounds on output y (a primal characterization):

How do we get here?

Modeling the maximum of d affine functions over shared input domain D:

Step 5: Replace lower bounds for a hereditarily sharp formulation:

How do we get here?

Modeling the maximum of d affine functions over shared input domain D:

Step 6: Apply Lagrangian relaxation to aggregation constraints:

How do we get here?

Modeling the maximum of d affine functions over shared input domain D:

Step 7: Analyze further:
● Proposition If d=2, then the hereditarily sharp formulation is ideal.

● Proposition If the domain is a product of simplices, separation over hereditarily
sharp formulation reduces to a transportation problem.

● Proposition If d=2 and the domain is a product of simplices, the transportation
problem has a closed form solution and efficient separation.

An ideal formulation for ReLU neurons

Theorem (Anderson, H., Tjandraatmadja, Vielma 2018)
● An ideal formulation for is

● Each inequality in (1b) is facet-defining (under very mild conditions).
● Moreover, we can identify the most violated constraint in (1b) in O(n) time.

 Big-M formulation = (1a), (1c), and two constraints from (1b)
Idea: Start with big-M formulation, use cut callbacks to separate (1b) as-needed

Hereditarily sharp formulation for max-of-d affine functions

● Max-of-d affine functions ≣
○ Max pooling (small d)
○ Reduce max (large d)

Proposition (Anderson, H., Ma, Tjandraatmadja, Vielma 2019)
● A hereditarily sharp MIP formulation for is:

 .
● The most violated inequality can be identified in time linear in O(dn) time.

Computational Results

Network 1: Small network with standard training

Network is (almost) completely dense

Network 2: Small network with L1 regularization (Xiao et al. 2019)

Weight sparsity makes cuts much
more effective

Q-learning: Are optimal actions tractable?

MIP is very slow for early
Policy Iterations

Active Index Local Search
and Gradient Descent solves
take ~100ms

Hybrid approach:
1. Run local search to

produce decent
solutions quickly

2. Feed into MIP with
small time budget

Ongoing joint work with Craig Boutilier, Martin Mladenov, and Moonkyung Ryu (Google Research)

Q-learning: Are optimal actions better?

Ongoing joint work with Craig Boutilier, Martin Mladenov, and Moonkyung Ryu (Google Research)

Q-learning: Are optimal actions better?

Ongoing joint work with Craig Boutilier, Martin Mladenov, and Moonkyung Ryu (Google Research)

Conclusion

● Strong MIP formulations for optimizing over trained neural networks
● Applications abound: verification, drug design, reinforcement learning, etc.
● Framework of independent interest:

Recipes for strong formulations for the max of d affine functions

● Questions going forward:
○ Separation-based algorithm and implementation
○ How to train the network for optimization in a principled way
○ How best to formulate entire network (not just individual neurons)

