
Thompson Sampling with Belief Update for

Non-stationary Multi-armed Bandit Problem

Jian Gao, Chi-Guhn Lee

University of Toronto



Table of contents

1. Introduction

2. Thompson sampling with belief update

3. Numerical Studies

4. Conclusions

1



Introduction



Introduction

2



Introduction

3



Introduction

Multi-armed Bandit Problem

Objective is to minimize the regret after n plays

µ⇤
n � µj

KX

j=1

E[Tj(n)] where µ⇤ = max
1iK

µi
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Algorithms for MAB

Upper Confidence Bound (UCB
1
)

An index approach

1
Auer, Cesa-Bianchi & Fischer. “Finite-time analysis of the multiarmed bandit problem,” Machine Learning, 47:235-256, 2002
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Algorithms for MAB

Exponential-weight algorithm (Exp3
2
)

A randomization approach

2
Auer, Cesa-Bianchi, Freund & Schapire. “The nonstochastic multiarmed bandit problem,” SIAM J.Comput., 32:48-77, 2003
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Algorithms for MAB

Thompson Sampling
3

A Bayesian approach

3
Thompson. “On the likelihood that one unknown probability exceeds another in view of the evidence of two samples,” Biometrika,

25:285?294, 1933
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An Extension

Piecewise non-stationary environment

• Unrealistic to assume the static reward distributions

• Di↵erent users with di↵erent preference may access the page

• A piece-wise non-stationary environment

- The preference can be static for some time before change
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Existing Approaches

1. Passive approaches: decay or remove the weights on the rewards
- Discounted UCB (D-UCB) [1]: UCB with a discount factor.

- Sliding-Window UCB (SW-UCB) [2]: UCB with a time window.

- Rexp3[3]: reset the Exp3 every T times.

2. Active approaches: monitor the rewards to detect a change point
- EXP3.R [4]: reset EXP3 algorithm upon detecting a change point

- M-UCB [5] and CUSUM-UCB[6] : reset UCB algorithm upon detecting

a change point

- Global Change-Point Thompson Sampling (Global-CTS) [7] and Global

Switching Thompson Sampling with Bayesian Aggregation

(Global-STS-BA) [8] : Thompson sampling with Bayesian change-point

detection.

Drawbacks of the previous works:

- Passive approaches perform poorly

- Active approaches are expensive in computation & memory use

- Sensitive to hyperparameters
9



Change Point Detection

CUMSUM-UCB

• Change point detected if the cumulative drift (g+

t or g�
t ) �

threshold (h), where

g
+

t = max(0, g+

t�1
+ s

+

t ), and g
�
t = max(0, g�

t�1
+ s

�
t )

(s+t ,s
�
t ) = (yt � µ̂0 � ✏, µ̂0 � yt � ✏)1t>M , µ̂0 =

MX

k=1

yk/M, ✏ > 0

Bayesian Change Detection

• Compute posterior for all possible run lengths rt (# of steps since

the last change point). That is, for each rt and t,

P(rt |xt�1,Dt�2) =
P(rt , xt�1,Dt�2)

P(xt�1,Dt�2)

where xt�1 is the reward at time t � 1, Dt�2 is the reward history up

to time t � 2;

P(rt , xt�1,Dt�2) =
X

rt�1

P(rt |rt�1)P(xt�1|rt�1,Dt�2)P(rt�1,Dt�2)

where P(rt |rt�1) is switching rate and P(xt�1|rt�1,Dt�2) is reward

likelihood (i.e. posterior distribution of reward)
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Thompson Sampling

Thompson Sampling

Initialize D = ;
for i = 1, . . . ,T do

Draw ✓t according to

P(✓|D)

Select

at = argmaxaE(r |a, ✓t)
Observe rt

D = D [ (at , rt)

end

TS for the Bernoulli Bandit

Input: ↵,� prior parameters of a Beta

Initialize Si = 0,Fi = 0 /Counters

for i = 1, . . . ,T do

for i = 1, . . . ,K do

Draw ✓t from Beta(Si + ↵,Fi + �)

end

Select a = argmaxi✓i
Observe r

if r=1 then

Sa = Sa + 1

end

else

Fa = Fa + 1

end

end
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Belief update

Partially Observable Markov Decision Process (POMDP)

- State s(2 S) of the environment is assumed unobservable

- Calculate posterior bt+1(s) given an observation xt and a prior bt(s).

- An observation function O(xt |s, a) is unknown but transition function

P(ss 0) is assumed known.

That is,

b
0
(s

0
) = ⌘O(xt |s

0
, a)

X

s2S

T (s
0
|s, a)b(s)

where ⌘ = 1

Pr(xt |b,a) =
1P

s
02S

O(xt |s0 ,a)
P

s2S
T (s

0 |s,a)b(s)
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Thompson Sampling with Belief Update

TSBU - Finite TSBU-Infinite
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Numerical Studies



Performance Measure and Benchmark

Regret Rt

Instead of maximizing the rewards directly, the common measure of

performance is cumulative regret:

R(T ) =
TX

t=1

µ⇤
t � E (

TX

t=1

xkt )

where µ⇤
t = maxk2{1,...,K} µ

k
t .

TS-oracle

Thompson Sampling Oracle (TS-oracle) [8] knows all the change points

with certainty and resets Thompson sampling at these points.
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Finite state space

Abruptly Varying Environment

- Three states and three arms

a1 a2 a3

s1 0.1 0.9 0.3

s2 0.8 0.2 0.4

s3 0.2 0.1 0.9

- The change point occurs randomly at a given switching rate 10�3

- State after change point is randomly chosen.

- The time horizon is T = 105
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Finite state space
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Finite state space
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Finite state space

Observations:

- Global-STS-BA shows the best performance early (approximately up to

5,000 rounds), but TS-BU-Fin eventually outperforms Global-STS-BA

and all the other algorithms.

- The strong performance of Global-STS-BA at the beginning is possibly

due to active exploration. That is, thanks to the large run-length

support, Global-STS-BA detects new states more quickly.

- Eventually, TS-BU-Fin outperforms even TS-oracle, which does not

memorize state specific information albeit it knows exactly when the

change point occurs.
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Infinite state space

Switching environment

- The switching environment used in this section is adopted from [7]

- Five arms K = 5

- The rewards µk,t (the mean of an arm k) at time t changes abruptly

and globally at a constant switching rate � = 10�5.

- The reward distributions are randomly generated from a uniform

distribution U(0, 1)

- Horizon used is T = 4⇥ 105

19



Experiment: Infinite state space
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Experiment: Infinite state space

The algorithms with relatively strong performance
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Infinite state space

Observations:

- Performance of TS-BU-Inf is between Global-CTS and Global-STS-BA.

- TS-BU-Fin shows comparable performance with TS-BU-Inf.

- Global-CTS has a better performance than Global-STS-BA unlike the

case of finite number of states; The possible reason is that the

sampling step enhances the exploration e↵orts of Global-CTS, while the

exploration of Global-STS-BA is less than Global-CTS due to the

Bayesian aggregation step.

- When the switching rate is small, Global-STS-BA needs more time to

detect change points. TS-BU-Inf, on the other hand, can balance the

trade-o↵ between exploration and exploitation better with less

computation.
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Yahoo! Dataset
4

Set up:

- Binary value representing whether user clicked articles shown on the

front page.

- Our goal is to maximize the click-through rate by selecting which

article to be shown on the front page.

- We randomly choose a 5-day horizon (T = 4.32⇥ 105) and six articles

(K = 6) that were shown the most times during the chosen horizon.

- The click-through rates are computed by taking the average of the

number of clicks on each article in every 5,000 seconds (� = 1/5000).

4Yahoo! Front Page Today Module User Click Log Dataset on

https://webscope.sandbox.yahoo.com
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Experiment Yahoo! Dataset
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Experiment Yahoo! Dataset

Observations:

• We test our algorithm with other 11 algorithms, whose parameters

were set up optimally or according to recommendations.

• TS-BU-Inf has the lowest cumulative regret (better than even

TS-oracle)
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Experiment Yahoo! Dataset

Cumulative regret
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Experiment Yahoo! Dataset

Cumulative regret of the best 3 algorithms
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Conclusions

• We proposed new variants of Thompson sampling by integrating
Bayesian belief updating capability

- Thompson sampling with belief update - Finite (TS-BU-Fin)

• Numerical studies showed that TS-BU-Fin and TS-BU-Inf are

competitive with the state-of-the-art algorithms

• TS-BU-Fin and TS-BU-Inf have significant benefits in computation

and memory requirements.

• Unfortunately, due to the generality of Thompson sampling in the

piece-wise stationary MAB studied in this paper, theoretical results

on performance guarantee is still an open problem.
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