

Mathematical Modelling, Simulation and Optimization Using the Example of Gas Networks

Simulation based mixed integer programming

Alexander Martin

jointly with B. Geißler, G. Leugering, A. Morsi, L. Schewe, M. Schmidt, M. Sirvent 29-31 July 2019, Second Conference on Discrete Optimization and Machine Learning, RIKEN Center for Advanced Intelligence Project Tokyo, Japan

Open-Minded

A typical network flow problem • 661 vertices • 689 arcs • 32 sources • 142 sinks

Gas networks

• Physics are inherently continuous

$$\frac{\partial \rho}{\partial t} + \frac{\partial (\rho \mathbf{v})}{\partial x} = \mathbf{0}$$
$$\frac{\partial (\rho \mathbf{v})}{\partial t} + \frac{\partial (\rho \mathbf{v}^2 + \rho)}{\partial x} + \hat{g}\rho \frac{\partial h}{\partial x} + \frac{\hat{\lambda}}{2\hat{D}}\rho |\mathbf{v}|\mathbf{v} = \mathbf{0}$$
$$\frac{\partial E}{\partial t} + \frac{\partial (E\mathbf{v} + \rho \mathbf{v})}{\partial x} + \hat{A}\rho \mathbf{v}\hat{g}\frac{\partial h}{\partial x} + \pi \hat{D}\hat{k}(T - T_{\text{soil}}) = \mathbf{0}.$$

• Networks are inherently discrete with edges that can be switched on or off

Valve *a* with switching variable $s_a \in \{0, 1\}$

Gas networks

• Physics are inherently continuous

$$\frac{\partial \rho}{\partial t} + \frac{\partial (\rho \mathbf{v})}{\partial x} = \mathbf{0}$$
$$\frac{\partial (\rho \mathbf{v})}{\partial t} + \frac{\partial (\rho \mathbf{v}^2 + p)}{\partial x} + \hat{g}\rho \frac{\partial h}{\partial x} + \frac{\hat{\lambda}}{2\hat{D}}\rho |\mathbf{v}|\mathbf{v} = \mathbf{0}$$
$$\frac{\partial E}{\partial t} + \frac{\partial (E\mathbf{v} + p\mathbf{v})}{\partial x} + \hat{A}\rho \mathbf{v}\hat{g}\frac{\partial h}{\partial x} + \pi \hat{D}\hat{k}(T - T_{\text{soil}}) = \mathbf{0}.$$

• Networks are inherently discrete with edges that can be switched on or off

Valve *a* with switching variable $s_a \in \{0, 1\}$

Gas networks

• Physics are inherently continuous

$$\frac{\partial \rho}{\partial t} + \frac{\partial (\rho \mathbf{v})}{\partial x} = \mathbf{0}$$
$$\frac{\partial (\rho \mathbf{v})}{\partial t} + \frac{\partial (\rho \mathbf{v}^2 + p)}{\partial x} + \hat{g}\rho \frac{\partial h}{\partial x} + \frac{\hat{\lambda}}{2\hat{D}}\rho |\mathbf{v}|\mathbf{v} = \mathbf{0}$$
$$\frac{\partial E}{\partial t} + \frac{\partial (E\mathbf{v} + p\mathbf{v})}{\partial x} + \hat{A}\rho \mathbf{v}\hat{g}\frac{\partial h}{\partial x} + \pi \hat{D}\hat{k}(T - T_{\text{soil}}) = \mathbf{0}.$$

• Networks are inherently discrete with edges that can be switched on or off

Valve *a* with switching variable $s_a \in \{0, 1\}$

A typical network flow problem (2)

- 188 vertices
- 225 arcs
- 15 suppliers
- 21 consumers

A typical network flow problem (2)

- 188 vertices
- 225 arcs
- 15 suppliers
- 21 consumers
- except that the "flow" is water

Water networks

• Networks are inherently discrete/switching Valve *a* with switching variable $s_a \in \{0, 1\}$

• Physics are inherently continuous/switching

$$\frac{\partial h}{\partial t} + \frac{a^2}{gA}\frac{\partial q}{\partial x} = 0$$
$$\frac{\partial q}{\partial t} + gA\frac{\partial h}{\partial x} = -\lambda \frac{q|q|}{2DA}$$

Model hierarchy for pipes

MINLP model

• Variables:

- Pressure p_i for nodes $i \in \mathbb{V}$
- Standard volumetric flow q_a for arcs $a \in \mathbb{A}$
- Compressor power P_a for compressors $a \in \mathbb{A}$
- Nonlinear constraints:
 - Pressure loss over a pipe a = (i, j): $p_j^2 = \left(p_i^2 \Lambda_a |q_a| q_a \frac{e^{S_a} 1}{S_a}\right) e^{-S_a}$
 - Pressure loss over a resistor a = (i, j):

 $p_{i}^{2} - p_{j}^{2} + |\Delta_{ij}|\Delta_{ij} = \frac{16\rho_{0}p_{0}z_{m}\xi_{a}T}{\pi^{2}z_{0}T_{0}}|q_{a}|q_{a}, \ \Delta_{ij} = p_{i} - p_{j}$

• Power consumption of a compressor unit a = (i, j):

$$P_{a} = \frac{\kappa}{\kappa-1} \frac{\rho_{0} R T_{i} Z_{i}}{\eta_{ad,a} m} \left(\left(\frac{p_{j}}{p_{i}} \right)^{\frac{\kappa-1}{\kappa}} - 1 \right) q_{a}$$

MINLP model

- Switching variables $s_a \in \{0, 1\}$ for active elements $a \in A$
- Combinatorial constraints:
 - Valve: $s_a = 0 \rightarrow q_a = 0, \ s_a = 1 \rightarrow p_i = p_j$
 - Control valves: $s_a = 0 \rightarrow q_a = 0$, $s_a = 1 \rightarrow p_i p_j \in [\Delta_a^-, \Delta_a^+]$
 - Compressors: $s_a = 0 \rightarrow q_a = 0$, $s_a = 1 \rightarrow p_j = f(P_a, q_a, p_i)$
 - Configurations: $\sum_{c \in C} s_c + s_{bypass} \leq 1$

Solution methods for MINLPs

1. Approaches using outer approximation and spatial branching

- Baron (Tawarmalani, Sahinidis 2005)
- Couenne (Belotti, Lee, Liberti, Margot, Wächter 2009)
- SCIP (Vigerske 2013)
- alphaECP (Westerlund, Lindquist 2003)
- Bonmin (Bonami, Biegler, Conn, Cornuejols, Grossmann, Laird, Lee, Lodi, Margot, Sawaya, Wächter 2005)

• ...

- 2. Approaches using piecewise linear approximation and relaxtion
 - Lots of branching experiences for (M)IPs
 - · Polyhedral combinatorics help to avoid parts of branching

Consistent hierarchical modeling approach

- (1) Determine relaxation error ϵ
- (2) Set up the MIP relaxation with accuracy ϵ
- (3) Solve the MIP relaxation
- (4) If MIP is infeasible \rightarrow STOP (MINLP is infeasible)
- (5) Fix the discrete decision variables in the MINLP model according to the MIP solution
- (6) Solve the remaining NLP model
- (7) If NLP is feasible \rightarrow STOP

(feasible MINLP solution found; solution quality within ϵ)

(8) Reduce ϵ , goto (2)

Consistent hierarchical modeling approach

- (1) Determine relaxation error ϵ
- (2) Set up the MIP relaxation with accuracy ϵ
- (3) Solve the MIP relaxation
- (4) If MIP is infeasible \rightarrow STOP (MINLP is infeasible)
- (5) Fix the discrete decision variables in the MINLP model according to the MIP solution
- (6) Solve the remaining NLP model
- (7) If NLP is feasible \rightarrow STOP

(feasible MINLP solution found; solution quality within ϵ)

(8) Reduce ϵ , goto (2)

Consistent hierarchical modeling approach

- (1) Determine relaxation error ϵ
- (2) Set up the MIP relaxation with accuracy ϵ
- (3) Solve the MIP relaxation
- (4) If MIP is infeasible \rightarrow STOP (MINLP is infeasible)
- (5) Fix the discrete decision variables in the MINLP model according to the MIP solution
- (6) Solve the remaining NLP model
- (7) If NLP is feasible \rightarrow STOP

(feasible MINLP solution found; solution quality within ϵ)

(8) Reduce ϵ , goto (2)

Burlacu and Schewe (2018)

An adaptive version of this algorithm together with a so-called ϵ -precise refinement procedure is correct and terminates after a finite number of steps.

MIP models for piecewise linear functions

- (linear) convex combination models
 - Linear number of cont. variables
 - Linear number of binaries
 - Linear number of constraints
- (logarithmic) convex combination models (Nemhauser, Vielma 2008)
 - Linear number of cont. variables
 - Logarithmic number of binaries
 - Logarithmic number of constraints
 - Locally ideal formulation
- incremental model (Markowitz, Manne 1957)
 - Linear number of cont. variables
 - Linear number of binaries
 - Linear number of constraints
 - Locally ideal formulation
- Also possible: SOS branching (Beale, Tomlin 1970)

Incremental model for piecewise linear functions

1

$$x = x_0 + \sum_{i=1}^{k} (x_i - x_{i-1})\delta_i$$

$$y = y_0 + \sum_{i=1}^{k} (y_i - y_{i-1})\delta_i$$

$$\delta_{i+1} \le z_i \le \delta_i \quad i = 1, \dots, k - 1$$

$$0 \le \delta_i \le 1 \quad i = 1, \dots, k$$

$$z_i \in \{0, 1\} \quad i = 1, \dots, k - 1$$

Incremental model for piecewise linear relaxations

$$x = x_{0} + \sum_{i=1}^{k} (x_{i} - x_{i-1})\delta_{i}$$

$$y = y_{0} + \sum_{i=1}^{k} (y_{i} - y_{i-1})\delta_{i} + e$$

$$\delta_{i+1} \le z_{i} \le \delta_{i} \quad i = 1, \dots, k - 1$$

$$0 \le \delta_{i} \le 1 \quad i = 1, \dots, k$$

$$z_{i} \in \{0, 1\} \quad i = 1, \dots, k - 1$$

$$-\epsilon < e < \epsilon$$

Numerical results: Gas networks

Intances I - small test networks

• Net 1:

• Net 2:

Instances II - real gas networks

• Net 3:

Results on small (real) instances

net	ϵ	cont	bin	cons	$t_{ m MIP}$	feas	$t_{ m NLP}$
1	10.0	377	42	685	0.01s	у	0.11s
1	5.0	380	45	694	0.01s	у	0.15s
1	2.5	387	52	714	0.01s	у	0.06s
1	1.0	423	88	823	0.02s	у	0.20s
2	10.0	450	67	859	0.05s	У	0.26s
2	5.0	479	96	946	0.09s	У	0.20s
2	2.5	543	160	1138	0.11s	У	0.09s
2	1.0	816	433	1957	0.13s	у	0.26s
3	10.0	2099	418	3868	1.24s	n	12.94s
3	5.0	2412	713	4807	1.51s	У	1.48s
3	2.5	3058	1377	6745	6.03s	У	1.32s
3	1.0	5185	3504	13126	22.04s	У	1.59s
4	10.0	4825	1663	10994	21.65s	n	41.33s
4	5.0	6012	2850	14555	51.26s	у	30.83s
4	2.5	8433	5217	21818	132.96s	у	36.65s
4	1.0	16343	13181	45548	600.00s	-	-

Results on small (real) instances

net	ϵ	cont	bin	cons	$t_{ m MIP}$	feas	$t_{ m NLP}$
1	10.0	377	42	685	0.01s	у	0.11s
1	5.0	380	45	694	0.01s	у	0.15s
1	2.5	387	52	714	0.01s	у	0.06s
1	1.0	423	88	823	0.02s	у	0.20s
2	10.0	450	67	859	0.05s	у	0.26s
2	5.0	479	96	946	0.09s	у	0.20s
2	2.5	543	160	1138	0.11s	у	0.09s
2	1.0	816	433	1957	0.13s	у	0.26s
3	10.0	2099	418	3868	1.24s	n	12.94s
3	5.0	2412	713	4807	1.51s	у	1.48s
3	2.5	3058	1377	6745	6.03s	у	1.32s
3	1.0	5185	3504	13126	22.04s	у	1.59s
4	10.0	4825	1663	10994	21.65s	n	41.33s
4	5.0	6012	2850	14555	51.26s	у	30.83s
4	2.5	8433	5217	21818	132.96s	У	36.65s
4	1.0	16343	13181	45548	600.00s	-	-

Results on small (real) instances: a comparison

net	Baron (MINLP)	SCIP (MINLP)	MIP	NLP	MIP+NLP
1	<1s	<1s	<1s	<1s	<1s
2	<1s	<1s	<1s	<1s	<1s
3	456s	2s	2s	1s	3s
4	>1h	>1h	51.26s	30.83s	82.09s

L-Gas network of Open Grid Europe, Germany

- 13 entries
- 1,062 exits
- 3,632 pipes
- 26 resistors
- 305 valves
- 120 control valve stations
- 12 compressor stations
- 25,000 variables (5,000 binary)

Computing time for 51 *expert scenarios*:

- 5 min to 70 min
- average: 34 min

H-Gas network of Open Grid Europe, Germany

- 78 entries
- 395 exits
- 1,588 pipes
- 56 resistors
- 264 valves
- 101 control valve stations
- 35 compressor stations
- 35,000 variables (14,000 binary)

Computing time for 29 *expert scenarios*:

- 18 min to 10 hours
- average: 168 min

Numerical results: Water networks

Pipe details – 'Water Hammer Equations'

 Fundamental description by a system of hyperbolic partial differential equations (PDE)

continuity equation

$$\frac{\partial h}{\partial t} + \frac{a^2}{gA}\frac{\partial q}{\partial x} = 0$$

momentum equation

$$\frac{\partial q}{\partial t} + gA\frac{\partial h}{\partial x} = -\lambda \frac{q|q|}{2DA}$$

$$\frac{1}{\sqrt{\lambda}} = -2\log_{10}\left(\frac{k}{3.7D} + \frac{2.51}{\text{Re}\sqrt{\lambda}}\right)$$
$$\text{Re} = \frac{D}{\nu A}|q|$$

h = h(x, t)	(pressure) head
q = q(x, t)	flow
$\lambda = \lambda(q)$	friction factor
Α	cross-sectional area
D	diameter
L	length

Pipe details – 'Water Hammer Equations'

 After applying an implicit box scheme [Wendroff, 1960; Kolb, Lang, Bales, 2010]

$$\frac{h_w^{t+1} + h_v^{t+1}}{2\Delta t} - \frac{h_w^t + h_v^t}{2\Delta t} + \frac{a^2}{gA}\frac{q_w^{t+1} - q_v^{t+1}}{L} = 0$$

discretized momentum equation

$$\frac{q_w^{t+1} + q_v^{t+1}}{2\Delta t} - \frac{q_w^t + q_v^t}{2\Delta t} + gA\frac{h_w^{t+1} - h_v^{t+1}}{L} \\ = -\frac{1}{2DA} \left(\lambda_v^{t+1} \frac{q_v^{t+1} |q_v^{t+1}|}{2} + \lambda_w^{t+1} \frac{q_w^{t+1} |q_w^{t+1}|}{2} \right)$$

h = h(x, t)	(pressure) head
q = q(x, t)	flow
$\lambda = \lambda(q)$	friction factor
A	cross-sectional area
D	diameter
L	length

Energy Efficient Water Supply

Develop local energy management systems to improve energy optimal operating plans using the example of water supply

Results

Optimized Pumping Schedule

Where we are

- The stationary case is "solvable",
 - i.e., the underlying nonlinearities are in closed form
- Purely polyhedral view on (mixed-integer) nonlinear problems
- Convincing computational results, including large-scale real-life instances
- Consistent hierarchy of models from MIP to MINLPs, if the number of variables of each nonlinear function is small

Where to go

- The non-steady case
- Dynamically coupling of time and space is necessary
- Coupling of methods from various disciplines PDE, NLP, MIP necessary
- Remodeling may not be the way to go
- Research Grant: Cooperate Research Center CRC 154
 supported by the German Science Foundation (DFG)

CRC 154: All PIs

CRC 154: All PhDs/PostDocs

Definition (Masterproblem = MIP) min $c^T x + d^T y$ s.t. Ax + Bz < blinearize(\mathcal{X}) $MIP(\mathcal{X})$ $x \in [\underline{x}, \overline{x}]$, $z \in [\underline{z}, \overline{z}]$ $(x,z) \in \mathbb{R}^n \times \mathbb{Z}^m$ Definition (Subproblem $\in \{AE, PDE, \ldots\}$) $F(x, x_i, Dx_i, \ldots, D^{n-1}x_i) = 0$ (\mathcal{X}) $\forall i \in 1, \ldots, n$

 $\mathcal{X} = \{\emptyset\}$

One possible way (without remodeling)

Definition (Masterproblem = MIP) min $c^T x + d^T y$ s.t. Ax + Bz < blinearize(\mathcal{X}) $MIP(\mathcal{X})$ x_i $x \in [\underline{x}, \overline{x}], z \in [\underline{z}, \overline{z}]$ $(x,z) \in \mathbb{R}^n \times \mathbb{Z}^m$ Definition (Subproblem $\in \{AE, PDE, \ldots\}$) $F(x, x_i, Dx_i, \ldots, D^{n-1}x_i) = 0$ (\mathcal{X}) $\forall i \in 1, \ldots, n$

Definition (Masterproblem = MIP) min $c^T x + d^T y$ $\mathcal{X} = \{\emptyset\}$ s.t. Ax + Bz < blinearize(\mathcal{X}) $MIP(\mathcal{X})$ $x \in [\underline{x}, \overline{x}], z \in [\underline{z}, \overline{z}]$ $(x,z) \in \mathbb{R}^n \times \mathbb{Z}^m$ Definition (Subproblem $\in \{AE, PDE, \ldots\}$) $F(x, x_i, Dx_i, \ldots, D^{n-1}x_i) = 0$ (\mathcal{X}) $\forall i \in 1, \ldots, n$

Definition (Masterproblem = MIP) min $c^T x + d^T y$ $\mathcal{X} = \{\bullet\}$ s.t. Ax + Bz < blinearize(\mathcal{X}) $MIP(\mathcal{X})$ $x \in [\underline{x}, \overline{x}], z \in [\underline{z}, \overline{z}]$ $(x,z) \in \mathbb{R}^n \times \mathbb{Z}^m$ Definition (Subproblem $\in \{AE, PDE, \ldots\}$) $F(x, x_i, Dx_i, \ldots, D^{n-1}x_i) = 0$ (\mathcal{X}) $\forall i \in 1, \ldots, n$

Definition (Masterproblem = MIP) min $c^T x + d^T y$ $\mathcal{X} = \{\bullet\}$ s.t. Ax + Bz < blinearize(\mathcal{X}) $MIP(\mathcal{X})$ $x \in [\underline{x}, \overline{x}], z \in [\underline{z}, \overline{z}]$ $(x,z) \in \mathbb{R}^n \times \mathbb{Z}^m$ Definition (Subproblem $\in \{AE, PDE, \ldots\}$) $F(x, x_i, Dx_i, \ldots, D^{n-1}x_i) = 0$ (\mathcal{X}) $\forall i \in 1, \ldots, n$ x

Definition (Masterproblem = MIP) min $c^T x + d^T y$ s.t. Ax + Bz < b $\mathcal{X} = \{ullet, ullet, ullet\}$ linearize(\mathcal{X}) $MIP(\mathcal{X})$ $x \in [\underline{x}, \overline{x}], z \in [\underline{z}, \overline{z}]$ $(x,z) \in \mathbb{R}^n \times \mathbb{Z}^m$ Definition (Subproblem $\in \{AE, PDE, \ldots\}$) $F(x, x_i, Dx_i, \ldots, D^{n-1}x_i) = 0$ (\mathcal{X}) $\forall i \in 1, \ldots, n$

Definition (Masterproblem = MIP) min $c^T x + d^T y$ s.t. Ax + Bz < b $\mathcal{X} = \{ullet, ullet, ullet\}$ linearize(\mathcal{X}) $MIP(\mathcal{X})$ $x \in [\underline{x}, \overline{x}]$, $z \in [\underline{z}, \overline{z}]$ $(x,z) \in \mathbb{R}^n \times \mathbb{Z}^m$ Definition (Subproblem $\in \{AE, PDE, \ldots\}$) $F(x, x_i, Dx_i, \ldots, D^{n-1}x_i) = 0$ (\mathcal{X}) $\forall i \in 1, \ldots, n$

Definition (Masterproblem = MIP) min $c^T x + d^T y$ s.t. Ax + Bz < b $\mathcal{X} = \{ullet, ullet, ullet, ullet\}$ linearize(\mathcal{X}) $MIP(\mathcal{X})$ $x \in [\underline{x}, \overline{x}], z \in [\underline{z}, \overline{z}]$ $(x,z) \in \mathbb{R}^n \times \mathbb{Z}^m$ Definition (Subproblem $\in \{AE, PDE, \ldots\}$) $F(x, x_i, Dx_i, \ldots, D^{n-1}x_i) = 0$ (\mathcal{X}) $\forall i \in 1, \ldots, n$

Definition (Masterproblem = MIP) min $c^T x + d^T y$ s.t. Ax + Bz < b $\mathcal{X} = \{ullet, ullet, ullet, ullet\}$ linearize(\mathcal{X}) $MIP(\mathcal{X})$ $x \in [\underline{x}, \overline{x}], z \in [\underline{z}, \overline{z}]$ $(x,z) \in \mathbb{R}^n \times \mathbb{Z}^m$ Definition (Subproblem $\in \{AE, PDE, \ldots\}$) $F(x, x_i, Dx_i, \ldots, D^{n-1}x_i) = 0$ (\mathcal{X}) $\forall i \in 1, \ldots, n$

Definition (Masterproblem = MIP)

$$\begin{array}{ll} \min c^{\mathsf{T}}x + d^{\mathsf{T}}y \\ \text{s.t. } Ax + Bz \leq b \\ \text{ linearize}(\mathcal{X}) & \mathsf{MIP}(\mathcal{X}) \\ x \in [\underline{x}, \overline{x}], \ z \in [\underline{z}, \overline{z}] \\ (x, z) \in \mathbb{R}^n \times \mathbb{Z}^m \end{array}$$

Definition (Subproblem $\in \{AE, PDE, \ldots\}$)

$$F(x, x_i, Dx_i, \dots, D^{n-1}x_i) = 0$$

 $\forall i \in 1, \dots, n$ (X)

Definition (Masterproblem = MIP)

$$\begin{array}{l} \min c^{T}x + d^{T}y \\ \text{s.t. } Ax + Bz \leq b \\ \text{ linearize}(\mathcal{X}) & \text{MIP}(\mathcal{X}) \\ x \in [\underline{x}, \overline{x}], \ z \in [\underline{z}, \overline{z}] \\ (x, z) \in \mathbb{R}^{n} \times \mathbb{Z}^{m} \end{array}$$

Definition (Subproblem $\in \{AE, PDE, \ldots\}$)

$$F(x, x_i, Dx_i, \dots, D^{n-1}x_i) = 0$$

 $\forall i \in 1, \dots, n$ (X)

Definition (Masterproblem = MIP)

$$\begin{array}{ll} \min c^{\mathsf{T}} x + d^{\mathsf{T}} y \\ \text{s.t. } Ax + Bz \leq b \\ \text{ linearize}(\mathcal{X}) & \text{MIP}(\mathcal{X}) \\ x \in [\underline{x}, \overline{x}], \ z \in [\underline{z}, \overline{z}] \\ (x, z) \in \mathbb{R}^n \times \mathbb{Z}^m \end{array}$$

Definition (Subproblem $\in \{AE, PDE, \ldots\}$)

$$F(x, x_i, Dx_i, \dots, D^{n-1}x_i) = 0$$

 $\forall i \in 1, \dots, n$ (\mathcal{X})

A first step: The 1-dimensional case

r

$$\begin{array}{ll} \min_{x} & c^{\top}x\\ \text{s.t.} & Ax \geq b\\ & x_{i_2} = f_i(x_{i_1}) & \text{for all } i \in [\sigma]\\ & \hat{x} \leq x \leq \bar{x}\\ & x_{\mathcal{C}} \in \mathbb{R}^{|\mathcal{C}|}, \ x_{\mathcal{I}} \in \mathbb{Z}^{|\mathcal{I}|} \end{array}$$

Assumption

The functions f_i are

- not known explicitly
- strictly monotonic
- strictly concave or convex
- differentiable with bounded first derivative

A first step: The 1-dimensional case

r

$$\begin{array}{ll} \min_{x} & c^{\top}x\\ \text{s.t.} & Ax \geq b\\ & x_{i_2} = f_i(x_{i_1}) & \text{for all } i \in [\sigma]\\ & \hat{x} \leq x \leq \bar{x}\\ & x_{\mathcal{C}} \in \mathbb{R}^{|\mathcal{C}|}, \ x_{\mathcal{I}} \in \mathbb{Z}^{|\mathcal{I}|} \end{array}$$

Example

Ordinary differential equation

$$y' = g(x, y(x)), \quad y(0) = y_0, \quad x \in [0, L]$$

- Solution $y = y(x; y_0)$
- f maps y_0 onto solutions of initial value problem, i.e., $f(y_0) = y(L; y_0)$

 $\overline{\text{Set } L_i := \{l_{i_1}, u_{i_1}\}, \, C_i := \{l_{i_2}, u_{i_2}\}, \, \text{and} \, G_i := \{f'(l_{i_1}), f'(u_{i_1})\} \text{ for all } i \in [\sigma].}$

for k = 0, 1, 2, ... do Solve master problem for $P_d(L_i, C_i)$, and G_i .

 $\overline{\text{Set } L_i := \{l_{i_1}, u_{i_1}\}, \, C_i := \{l_{i_2}, u_{i_2}\}, \, \text{and} \, G_i := \{f'(l_{i_1}), f'(u_{i_1})\} \text{ for all } i \in [\sigma].}$

for k = 0, 1, 2, ... do Solve master problem for $P_d(L_i, C_i)$, and G_i .

Set $L_i := \{l_{i_1}, u_{i_1}\}, C_i := \{l_{i_2}, u_{i_2}\}$, and $G_i := \{f'(l_{i_1}), f'(u_{i_1})\}$ for all $i \in [\sigma]$. for k = 0, 1, 2, ... do

Solve master problem for $P_d(L_i, C_i)$, and G_i .

Set $L_i := \{l_{i_1}, u_{i_1}\}, C_i := \{l_{i_2}, u_{i_2}\}$, and $G_i := \{f'(l_{i_1}), f'(u_{i_1})\}$ for all $i \in [\sigma]$. for k = 0, 1, 2, ... do

Solve master problem for $P_d(L_i, C_i)$, and G_i .

Set $L_i := \{I_{i_1}, u_{i_1}\}, C_i := \{I_{i_2}, u_{i_2}\}$, and $G_i := \{f'(I_{i_1}), f'(u_{i_1})\}$ for all $i \in [\sigma]$. for k = 0, 1, 2, ... do Solve master problem for $P_d(L_i, C_i)$, and G_i . if master infeasible return "infeasible".

Set $L_i := \{l_{i_1}, u_{i_1}\}, C_i := \{l_{i_2}, u_{i_2}\}$, and $G_i := \{f'(l_{i_1}), f'(u_{i_1})\}$ for all $i \in [\sigma]$. for k = 0, 1, 2, ... do Solve master problem for $P_d(L_i, C_i)$, and G_i . if master infeasible return "infeasible". Denote solution of master problem by \tilde{x}^k .

Set $L_i := \{l_{i_1}, u_{i_1}\}, C_i := \{l_{i_2}, u_{i_2}\}$, and $G_i := \{f'(l_{i_1}), f'(u_{i_1})\}$ for all $i \in [\sigma]$. for k = 0, 1, 2, ... do Solve master problem for $P_d(L_i, C_i)$, and G_i . if master infeasible **return** "infeasible". Denote solution of master problem by \tilde{x}^k .

Set $L_i := \{l_{i_1}, u_{i_1}\}, C_i := \{l_{i_2}, u_{i_2}\}$, and $G_i := \{f'(l_{i_1}), f'(u_{i_1})\}$ for all $i \in [\sigma]$. for k = 0, 1, 2, ... do Solve master problem for $P_d(L_i, C_i)$, and G_i . if master infeasible return "infeasible". Denote solution of master problem by \widetilde{x}^k . Solve subproblem for all $i \in [\sigma]$ $\psi := \min_{x_i} \{||x_i - \widetilde{x}_i||_2^2 : x_{i_2} = f_i(x_{i_1}), \ \hat{x}_i \le x_i \le \overline{x}_i\}$ yielding solutions \mathring{x}_i^k and objective values $\psi(\widetilde{x}^k)$.

Set $L_i := \{l_{i_1}, u_{i_1}\}, C_i := \{l_{i_2}, u_{i_2}\}$, and $G_i := \{f'(l_{i_1}), f'(u_{i_1})\}$ for all $i \in [\sigma]$. for k = 0, 1, 2, ... do Solve master problem for $P_d(L_i, C_i)$, and G_i . if master infeasible **return** "infeasible". Denote solution of master problem by \tilde{x}^k . Solve subproblem for all $i \in [\sigma]$ $\psi := \min_{x_i} \{||x_i - \tilde{x}_i||_2^2 : x_{i_2} = f_i(x_{i_1}), \ \hat{x}_i \le x_i \le \bar{x}_i\}$ yielding solutions \hat{x}_i^k and objective values $\psi(\tilde{x}^k)$.

Set $L_i := \{l_{i_1}, u_{i_1}\}, C_i := \{l_{i_2}, u_{i_2}\}, \text{ and } G_i := \{f'(l_{i_1}), f'(u_{i_1})\} \text{ for all } i \in [\sigma].$ for k = 0, 1, 2, ... doSolve master problem for $P_d(L_i, C_i)$, and G_i .if master infeasible return "infeasible".Denote solution of master problem by \widetilde{x}^k .Solve subproblem for all $i \in [\sigma]$ $\psi := \min_{x_i} \{||x_i - \widetilde{x}_i||_2^2 : x_{i_2} = f_i(x_{i_1}), \ \hat{x}_i \leq x_i \leq \overline{x}_i\}$ yielding solutions \mathring{x}_i^k and objective values $\psi(\widetilde{x}^k)$.

 I_{d_1}

Algorithm

 $\begin{array}{l} \hline \textbf{Set } L_i := \{l_{i_1}, u_{i_1}\}, \ C_i := \{l_{i_2}, u_{i_2}\}, \ \text{and } G_i := \{f'(l_{i_1}), f'(u_{i_1})\} \ \text{for all } i \in [\sigma]. \\ \hline \textbf{for } k = 0, 1, 2, \dots \ \textbf{do} \\ \text{Solve master problem for } P_d(L_i, C_i), \ \text{and } G_i. \\ \hline \textbf{if master infeasible return "infeasible"}. \\ \text{Denote solution of master problem by } \widetilde{x}^k. \\ \text{Solve subproblem for all } i \in [\sigma] \\ \psi := \min_{x_i} \{||x_i - \widetilde{x}_i||_2^2 : x_{i_2} = f_i(x_{i_1}), \ \hat{x}_i \leq x_i \leq \overline{x}_i\} \\ \text{yielding solutions } \overset{k}{x_i^k} \ \text{and objective values } \psi(\widetilde{x}^k). \\ \hline \textbf{if } \psi(\widetilde{x}^k) \leq \varepsilon \ \text{for all } i \in [\sigma] \ \textbf{then} \\ \hline \textbf{return } \varepsilon \text{-feasible solution } \widetilde{x}^k \end{array}$

 X_{d_1}

 U_{d_1}

 X_{d_2} Set $L_i := \{I_{i_1}, u_{i_1}\}, C_i := \{I_{i_2}, u_{i_2}\}$, and $G_i := \{f'(I_{i_1}), f'(u_{i_1})\}$ for all $i \in [\sigma]$. for k = 0, 1, 2, ... do Id, Solve master problem for $P_d(L_i, C_i)$, and G_i . ∠_d Pollo, Co, Go, if master infeasible return "infeasible". Denote solution of master problem by \tilde{x}^k . Solve subproblem for all $i \in [\sigma]$ $\psi := \min_{\mathbf{x}_i} \left\{ ||\mathbf{x}_i - \widetilde{\mathbf{x}}_i||_2^2 : \mathbf{x}_{i_2} = f_i(\mathbf{x}_{i_1}), \ \hat{\mathbf{x}}_i \le \mathbf{x}_i \le \bar{\mathbf{x}}_i \right\}$ yielding solutions $\overset{\circ}{x_i}^k$ and objective values $\psi(\widetilde{x}^k)$. if $\psi(\tilde{x}^k) \leq \varepsilon$ for all $i \in [\sigma]$ then **return** ε -feasible solution \widetilde{x}^k U_{d_2} else Set $L_i \leftarrow L_i \cup \{\mathring{x}_{i_1}^k\}$, $C_i \leftarrow C_i \cup \{\mathring{x}_{i_2}^k\}$, X_{d_1} $G_i \leftarrow G_i \cup \{f'(\mathring{x}_{i_i}^k)\}$ for all $i \in [\sigma]$ with I_{d_1} U_{d_1} $\psi(\widetilde{\mathbf{x}}^k) > \varepsilon.$

Set $L_i := \{l_{i_1}, u_{i_1}\}, C_i := \{l_{i_2}, u_{i_2}\}, \text{ and } G_i := \{f'(l_{i_1}), f'(u_{i_1})\} \text{ for all } i \in [\sigma].$ for k = 0, 1, 2, ... do Solve master problem for $P_d(L_i, C_i)$, and G_i . if master infeasible return "infeasible". Denote solution of master problem by \tilde{x}^k . Solve subproblem for all $i \in [\sigma]$ $\psi := \min_{x_i} \{||x_i - \tilde{x}_i||_2^2 : x_{i_2} = f_i(x_{i_1}), \hat{x}_i \leq x_i \leq \bar{x}_i\}$ yielding solutions \hat{x}_i^k and objective values $\psi(\tilde{x}^k)$. if $\psi(\tilde{x}^k) \leq \varepsilon$ for all $i \in [\sigma]$ then return ε -feasible solution \tilde{x}^k else Set $L_i \leftarrow L_i \cup \{\hat{x}_{i_1}^k\}, C_i \leftarrow C_i \cup \{\hat{x}_{i_2}^k\},$ $G_i \leftarrow G_i \cup \{f'(\hat{x}_{i_1}^k)\}$ for all $i \in [\sigma]$ with $\psi(\tilde{x}^k) > \varepsilon$.

Algorithm

Set $L_i := \{l_{i_1}, u_{i_1}\}, C_i := \{l_{i_2}, u_{i_2}\}$, and $G_i := \{f'(l_{i_1}), f'(u_{i_1})\}$ for all $i \in [\sigma]$. for k = 0, 1, 2, ... do Solve master problem for $P_d(L_i, C_i)$, and G_i . if master infeasible **return** "infeasible". Denote solution of master problem by \tilde{x}^k . Solve subproblem for all $i \in [\sigma]$ $\psi := \min_{x_i} \{||x_i - \tilde{x}_i||_2^2 : x_{i_2} = f_i(x_{i_1}), \hat{x}_i \le x_i \le \bar{x}_i\}$ yielding solutions \hat{x}_i^k and objective values $\psi(\tilde{x}^k)$. if $\psi(\tilde{x}^k) \le \varepsilon$ for all $i \in [\sigma]$ then return ε -feasible solution \tilde{x}^k else Set $L_i \leftarrow L_i \cup \{\hat{x}_{i_1}^k\}, C_i \leftarrow C_i \cup \{\hat{x}_{i_2}^k\},$ $G_i \leftarrow G_i \cup \{f'(\hat{x}_{i_1}^k)\}$ for all $i \in [\sigma]$ with $\psi(\tilde{x}^k) > \varepsilon$.

Convergence Results

Theorem

Let

- $\widetilde{x}_i \in P_i(L_i, C_i, G_i)$ be solution of the master problem
- $\overset{\circ}{x}_i$ be solution of subproblem with $\psi > \varepsilon > 0$

Then

$$\widetilde{x}_i \notin P_i(L'_i, C'_i, G'_i)$$

with
$$L'_i = L_i \cup \{ \overset{\circ}{x}_{i_1} \}$$
, $C'_i = C_i \cup \{ \overset{\circ}{x}_{i_2} \}$, $G'_i = G_i \cup \{ f'(\overset{\circ}{x}_{i_1}) \}$

Theorem

The algorithm terminates after a finite number of iterations with

- an ε -feasible solution or
- an indication of infeasiblility

Application: Stationary gas transport optimization

Greek Natural Gas Transport Network

Туре	Quantity
Entries	3
Exits	45
Inner nodes	86
Pipes	86
Short pipes	45
Control valves	1
Compressors	1

Application: Stationary gas transport optimization

Instance	Status	Obj.	k	Total	Master	Sub
12/23/2011	opt.	262.91	6	29.15	0.13	29.03
04/19/2012	opt.	0	5	23.50	0.14	23.36
10/08/2012	opt.	248.96	6	27.30	0.22	27.09
03/16/2013	inf.		2	7.75	0.01	7.74
01/25/2014	opt.	311.4	5	23.73	0.09	23.64
07/04/2014	opt.	335.23	5	23.01	0.06	22.95
09/07/2014	opt.	0	6	26.55	0.38	26.17
11/14/2014	opt.	0	6	33.52	0.30	33.22
08/27/2015	opt.	0	5	22.90	0.14	22.76
11/06/2015	inf.		2	8.43	0.01	8.42

Application: Stationary gas transport optimization

Instance	Status	Obj.	k	Total	Master	Sub
12/23/2011	opt.	262.91	6	29.15	0.13	29.03
04/19/2012	opt.	0	5	23.50	0.14	23.36
10/08/2012	opt.	248.96	6	27.30	0.22	27.09
03/16/2013	inf.		2	7.75	0.01	7.74
01/25/2014	opt.	311.4	5	23.73	0.09	23.64
07/04/2014	opt.	335.23	5	23.01	0.06	22.95
09/07/2014	opt.	0	6	26.55	0.38	26.17
11/14/2014	opt.	0	6	33.52	0.30	33.22
08/27/2015	opt.	0	5	22.90	0.14	22.76
11/06/2015	inf.		2	8.43	0.01	8.42

M. Gugat, G. Leugering, A. Martin, M. Schmidt, M. Sirvent, D. Wintergerst: *Towards Simulation Based Mixed-Integer Optimization with Differential Equations*, Networks, 2018, https://doi.org/10.1002/net.21812

Summary

- Mixed integer programs with physical side constraints open great challenges.
- If nonlinearities from physics are given in closed form, piecewise linear relaxations are a promising approach.
 - Consistent hierarchy of models from MIP to MINLPs
 - Convincing computational results, including large-scale real-life instances, if the number of variables of each nonlinear function is small
- In the non-steady case, this approach may have its limits
 - Even a stronger need for a consistent hierarchy of models
 - Simulation based solutions of MIPs (including methods from based PDE, NLP) might be one way to go, see trr154.fau.de
 - Is there some connection to learning based algorithms or something we can learn from?

Summary

- Mixed integer programs with physical side constraints open great challenges.
- If nonlinearities from physics are given in closed form, piecewise linear relaxations are a promising approach.
 - Consistent hierarchy of models from MIP to MINLPs
 - Convincing computational results, including large-scale real-life instances, if the number of variables of each nonlinear function is small
- In the non-steady case, this approach may have its limits
 - Even a stronger need for a consistent hierarchy of models
 - Simulation based solutions of MIPs (including methods from based PDE, NLP) might be one way to go, see trr154.fau.de
 - Is there some connection to learning based algorithms or something we can learn from?

Thanks