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Introduction

Global Optimization in High Dimension

Increasingly complex problems are being researched in many
domains

Large scale production of individualized cancer therapy;
Control of distributed robots;
Self driven cars.

Increase in complexity (and parameterization) of novel algorithms
developed to address these problems;

Translation of hyper-parameter optimization problem to
non-convex black-box optimization.
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Introduction

Non-linear Non-convex Black-box Optimization

Assume there exists f (x) : X→ R, where X ⊂ Rd.
We want to find and optimal solution x∗:

x∗ ∈ arg min
x∈X

f (x)

We are specifically interested in high values of d.
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Introduction

Bayesian Optimization

State-of-the-art family within black-box optimization when
function evaluations are costly and number of allowed function
evaluations is low
Surrogate model search, often Gaussian process
Derivative free method of global optimization

Figure: Peter I. Frazier. Bayesian Optimization. In INFORMS TutORials in
Operations Research. Published online: 19 Oct 2018; 255-278.
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Introduction

Challenges with Bayesian Optimiation

Performance is not satisfactory after 10 dimensions;

Three key and intertwined reasons for this:

1 Gaussian process learning effort grows cubically with number of
observations, O(n3)

2 To ensure reasonable closeness to x∗ substantial coverage of X is
required, number of observations needed for coverage exponentially
increases with dimension

3 Maximizing the acquisition function generally scales exponentially
with the number of dimensions
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Background

Embedding

Assumption of “low effective dimensionality” or “approximate low
effective dimensionality”

Dimensions do not impact objective function
Definition: ε-effective subspace (Vε)
A function f : Rd → R, has a valid Vε if ∃ linear subspace Vε ⊆ Rd
s.t., for all x ∈ Rd, |f(x)− f(xε)| ≤ ε. Where xε ∈ Vε is the
orthogonal projection of x onto Vε

REMBO (Random EMbedding Bayesian Optimization)

SRE (Sequential Random Embeddings)

SI-BO (Subspace Identification – Bayesian Optimization) Random
Sampling

Wang, Z., Hutter, F., Zoghi, M., Matheson, D., & de Feitas, N. (2016). Bayesian optimization in a billion
dimensions via random embeddings. Journal of Artificial Intelligence Research, 55, 361-387.
Qian, H., Hu, Y. Q., & Yu, Y. (2016, July). Derivative-Free Optimization of High-Dimensional
Non-Convex Functions by Sequential Random Embeddings. In IJCAI (pp. 1946-1952).
Djolonga, J., Krause, A., & Cevher, V. (2013). High-dimensional gaussian process bandits. In Advances
in Neural Information Processing Systems (pp. 1025-1033).
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Background

Additive Modeling

structural assumption: f (·) decomposes as:

f (x) = f1
(
x1
)

+ f2
(
x2
)

+ . . .+ fm (xm)

where each xj ∈ Xj =
∏dj

i [0, 1]j represents a “group” constituting
the decomposition.

Each f j
(
xj
)

is then independently modeled as a Gaussian process,
and when added together recover the full dimensional model

Additive kernel based acquisition functions assessed over X can be
optimized by maximizing over each component Xj to reproduce
sampling in X.

Kandasamy, K., Schneider, J., & Pǒczos, B. (2015, June). High dimensional Bayesian optimisation and
bandits via additive models. In International Conference on Machine Learning (pp. 295-304).
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Background

Work in selection of appropriate xj “groups” include

MCMC methods;
Factor graph methods;
Gibbs sampling based structural kernel learning;
Gibbs sampling based graph learning;
Fourier Feature approximation.

Gardner, J., C. Guo, K. Weinberger, R. Garnett, and R. Grosse. 2017. “Discovering and exploiting
additivestructure for Bayesian optimization”. InArtificial Intelligence and Statistics, 1311–1319.
Trong Nghia Hoang and Quang Minh Hoang and Ruofei Ouyang and Kian Hsiang Low 2018.
“Decentral-ized High-Dimensional Bayesian Optimization With Factor Graphs”.
Wang, Z., C. Li, S. Jegelka, and P. Kohli. 2017. “Batched High-dimensional Bayesian Optimization
viaStructural Kernel Learning”. InInternational Conference on Machine Learning (ICML).
Rolland, P., J. Scarlett, I. Bogunovic, and V. Cevher. 2018. “High-Dimensional Bayesian Optimization
viaAdditive Models with Overlapping Groups”. InInternational Conference on Artificial Intelligence
andStatistics, 298–307.
Mutny, M., and A. Krause. 2018. “Efficient High Dimensional Bayesian Optimization with Additivity
andQuadrature Fourier Features”. InAdvances in Neural Information Processing Systems, 9005–9016.
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Proposed Method

Our Problem

We aim at finding the global minimum x∗ such that:

x∗ ∈ arg min
x∈X

f (x)

f is non-linear and non-convex

X is continuous

No low dimensional structures can be easily learned about:

the changes of f (·) in X (embedding);
f (·) modeled as a realization of an additive structure.

f is smooth (implied assumption from algorithm implementation)

We propose the Subspace COmmunication based OPtimization
(SCOOP) algorithm for efficient optimization.
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Proposed Method

SCOOP Algorithm Overview

Consider the original space to be separated into k subspaces
X1,X2, . . . ,Xk each with dimensionality dj = d− nj , j = 1, . . . , k;

The subspace generation has to consider that all the dimensions of
the original space X need to be considered in at least one of the
decompositions

In each subspace we use Bayesian optimization to yield subspace
optimizers, however, any optimization technique could be used.

The key is the information sharing mechanism. In fact, every
“batch” of iterations, the subspaces need to somewhat
communicate the current state of the local optimization in order
to change the value of the “currently fixed” variables.
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Proposed Method

SCOOP Algorithm Overview

Figure: Basic Idea of SCOOP.
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Proposed Method

SCOOP Visualization in R3
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Proposed Method
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Proposed Method
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Proposed Method

SCOOP Visualization in R3
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Proposed Method

SCOOP Visualization in R3
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Proposed Method

SCOOP Visualization in R3
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Proposed Method

SCOOP Visualization in R3
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Proposed Method

SCOOP Overview
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Proposed Method
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Proposed Method

Information Sharing

Best Observed Sample Sharing (SCOOP-B)

xshare
j ∈ arg min

x∈XSSj

f (x)

Marginalized Expected Improvement (SCOOP-E)

xshare
j ∈ arg min

x∈XSSj

EIM

where

EIM (x|SSj) =

∫
xi

E

[
∆f (x) Φ

(
∆f (x)

s (x)

)
+ s (x)φ

(
∆f (x)

s (x)

)]
dxi

Link Failure

xshare
ij = (1− ξ) x̂share

ij + ξη ∀i, ξ ∼ Ber (α) , η ∼ Beta (b1, b2)
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Empirical Analysis

Sharing Strategy Testing in R3

(a) Rosenbrock. (b) Rosenbrock
Results.

(c) Ackley. (d) Ackley Results.

Figure: Performance of SCOOP in 2-d under several sharing strategies.

It appears that SCOOP-BL is the best performer under the different
set-ups.
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Empirical Analysis

Algorithm Parametrization Testing in R50

Experimentation executed to test 3 algorithm parameters:

SSdim – number of dimensions active in each subspaces

SSdim = 2, yielding 25 subspaces
SSdim = 5, yielding 10 subspaces

binit : bopt – ratio of initializing to optimizing samples

binit : bopt = 1 : 1
binit : bopt = 1 : 5

% Link Fail – % hidden dimension value updates that fail

0% Link Fail
10% Link Fail
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Empirical Analysis

Algorithm Parametrization Testing in R50

Figure: Alternative SCOOP formulations tested on 50 dimensional Ackley
function, results presented are over 50 algorithm execution replications.

Better optimization at each iteration provides higher quality shared
information, yielding better overall algorithm performance.
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Empirical Analysis

State-of-the-Art Comparison

SCOOP against REMBO and an Additive Gaussian process approach
over a 20, 50, and 100 dimensional Rosenbrock function.
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Figure: Average best function value achieved by SCOOP, ADD GP, and
REMBO (with varying embedding dimension, de).

Wang, Z., Hutter, F., Zoghi, M., Matheson, D., & de Feitas, N. (2016). Bayesian optimization in a billion
dimensions via random embeddings. Journal of Artificial Intelligence Research, 55, 361-387.
Wang, Z., C. Li, S. Jegelka, and P. Kohli. 2017. “Batched High-dimensional Bayesian Optimization
viaStructural Kernel Learning”. InInternational Conference on Machine Learning (ICML).
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Figure: Average Euclidean error between identified minimum and true
optimum for SCOOP, ADD GP, and REMBO (with varying de).

Wang, Z., Hutter, F., Zoghi, M., Matheson, D., & de Feitas, N. (2016). Bayesian optimization in a billion
dimensions via random embeddings. Journal of Artificial Intelligence Research, 55, 361-387.
Wang, Z., C. Li, S. Jegelka, and P. Kohli. 2017. “Batched High-dimensional Bayesian Optimization
viaStructural Kernel Learning”. InInternational Conference on Machine Learning (ICML).

07/29/2019, L. Mathesen School of CIDSE 18 / 20



Conclusion

Conclusions and Future Work

SCOOP directly optimizes over multiple low dimensional
subspaces, leveraging information communication among these
easy optimizations to navigate the hard to search full dimensional
space.

Further efforts are undergoing on tests in 1000 active dimensions
environments and alternative information sharing strategies

Optimal selection of active subspace dimensions and
communication patterns/network amongst subspaces
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Conclusion

Thanks for Listening!
lmathese@asu.edu
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Conclusion

Ackley function

f(xxx) = −a exp

−b
√√√√1

d

d∑
i=1

x2i

− exp

(
1

d

d∑
i=1

cos(cxi)

)
+ a+ exp(1)

Rosenbrock function

f(xxx) =

d−1∑
i=1

[100(xi+1 − x2i )2 + (xi − 1)2]
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Conclusion

Configuring neural net topology with 6, 9, and 15 layers. Wall-clock
time constrained optimization, accounting for both neural net selection
and training.

Figure: Neural net prediction accuracy results across nets with differing
number of layers (dimension).

07/29/2019, L. Mathesen School of CIDSE 20 / 20



Conclusion

Efficient Global Optimization
(EGO), Batched Additive Bayesian
Optimization via Structured Kernel
Learning (Add-GP)

Figure: Combined Function

(a) Evaluations
required to optimize.

(b) Time required to
optimize.

Figure: Performance of SCOOP.

Jones, D. R., Schonlau, M., & Welch, W. J. (1998). Efficient global optimization of expensive black-box
functions. Journal of Global optimization, 13(4), 455-492.
Wang, Z., Li, C., Jegelka, S., & Kohli, P. (2017). Batched high-dimensional bayesian optimization via
structural kernel learning. arXiv preprint arXiv:1703.01973.
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Conclusion

Figure: Higher Dimensional Results
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