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Outline

The problem

• Motivation → Define fair PCA and fair dimensional reduction (fair DM)

The method

• Two of our algorithms (focus on one) and their analysis

Conclusion
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Data 𝐷 ∈ ℝ𝑚×𝑛:
𝑚 datapoints in 𝑛 dimensions  

Low-rank data 𝑈 ∈ ℝ𝑚×𝑛:
𝑚 datapoints spanning 𝑑 dimensions  



Dimensionality Reduction - PCA
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𝑈:rank 𝑈 =𝑑

𝐷 − 𝑈 𝐹
2 = min

𝑃∈𝒫𝑑
𝐷 − 𝐷𝑃 𝐹

2 = 𝐷 𝐹
2 −m𝑎𝑥

𝑃∈𝒫𝑑
𝐷𝑇𝐷 ⋅ 𝑃
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Reconstruction error (norm squared)
Variance (dot product)
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Equalizing male and female weight before PCA



Fair PCA
• Given data matrices 𝐷𝑖 ∈ ℝ𝑚𝑖×𝑛 for 𝑖 = 1,… , 𝑘 and a projection matrix 𝑃 ∈ ℝ𝑛×𝑛.

• 𝐸𝑟𝑟 𝐷𝑖 , 𝑃 = |𝐷𝑖 − 𝐷𝑖𝑃|𝐹
2 = 𝑇𝑟 𝐷𝑖

𝑇𝐷𝑖 − 𝐷𝑖
𝑇𝐷𝑖 ⋅ 𝑃

• Given target dimension 𝑑 < 𝑛.

• Fair PCA’s task: Find a projection matrix 𝑃 of rank at most 𝑑 that minimizes the 
maximum error.  

Fair PCA:= min
𝑃∈𝒫𝑑

max
𝑖∈[𝑘]

𝐸𝑟𝑟 𝐷𝑖 , 𝑃

𝒫𝑑 = {𝑃 ∈ 𝑅𝑛×𝑛: 𝑃 𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐, 𝑟𝑎𝑛𝑘 𝑃
= 𝑑, 𝑃2 = 𝑃}

Fair PCA as rank constrained SDP:

min 𝑧 s.t.

𝑧 ≥ 𝑇𝑟 𝐷𝑖
𝑇𝐷𝑖 − 𝐷𝑖

𝑇𝐷𝑖 ⋅ 𝑃 ∀𝑖 = 1,… , 𝑘

𝑟𝑎𝑛𝑘 𝑃 = 𝑑
0 ≼ 𝑃 ≼ 𝐼
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• Fair PCA’s task: Find a projection matrix 𝑃 of rank at most 𝑑 that minimizes the 
maximum error.

• Note: standard SVD won’t work  
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Fair Dimensionality Reduction
• More generally, we are given utility functions 𝑢𝑖: 𝒫𝑑 → ℝ that measure the 

utility of each group. 

• Moreover, we are given a function 𝑔:ℝ𝑘 → ℝ that combines these utilities to 
the “social utility”.

Fair DR≔max
𝑃∈𝒫𝑑

𝑔 𝑢1 𝑃 , 𝑢2 𝑃 ,… , 𝑢𝑘 𝑃

𝒫𝑑 = {𝑃 ∈ 𝑅𝑛×𝑛: 𝑃 𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐, 𝑟𝑎𝑛𝑘 𝑃 = 𝑑, 𝑃2 = 𝑃}

Fair PCA: Special case with 𝑢𝑖 𝑃 = −𝐸𝑟𝑟 𝐷𝑖 , 𝑃 and 𝑔 . = min

𝐿𝑜𝑠𝑠𝑖 𝑃 = 𝐷𝑖 − 𝐷𝑖𝑃 2
2 − 𝐷𝑖 − 𝐷𝑖𝑃𝑖

∗
2

2

where 𝑃𝑖
∗ is the best rank 𝑑 projection for group 𝑖.

• Loss for being part of the other groups. 
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Related work to fair DM formulation
• Rank Constrained SDPs are widely used.

• Signal processing[Davies and Eldar’12, Ahmed and Romberg’15]

• Distance Matrices:  Localization sensors [So and Ye’07], nuclear magnetic resonance 
spectroscopy [Singer’08] 

• Item Response Data, Recommendation Systems[Goldberg et al’93]

• Machine Learning: Multi-task Learning [Obozinski, Taskar, Jordan’10], Natural Language 

Processing[Blei’12]

• Survey by [Davenport, Romberg’2016]

• Work by Barvinok’95, Pataki’98 on characterizations of extreme points of SDPs.

• Algorithmic work by [Burer, Monteiro’03].

• Related to S-Lemma [Yakubovich’71]. 
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Main result
• There is a polynomial time algorithm for the Fair PCA problem that returns a 

rank at most 𝑑 + 2𝑘 +
1

4
−

3

2
whose objective is better than the optimum.

• 2 groups → solved exactly

Fair PCA:= min
𝑃∈𝒫𝑑

max
𝑖∈[𝑘]

𝐸𝑟𝑟 𝐷𝑖 , 𝑃 ≔ 𝐷𝑖 − 𝐷𝑖𝑃 𝐹
2

𝒫𝑑 = {𝑃 ∈ 𝑅𝑛×𝑛: 𝑃 𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐, 𝑟𝑎𝑛𝑘 𝑃 = 𝑑, 𝑃2 = 𝑃}
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• 2 groups → solved exactly

• Also generalize to fair DM when 𝑢𝑖 is linear and 𝑔 is concave
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Main result
• There is a polynomial time algorithm for the Fair PCA problem that returns a 

rank at most 𝑑 + 2𝑘 +
1

4
−

3

2
whose objective is better than the optimum.

• 2 groups → solved exactly

• Also generalize to fair DM when 𝑢𝑖 is linear and 𝑔 is concave

•Note: convertible to approximation ratio guarantee (no rank violation)
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SDP relaxation
Rank-Constrained SDP 

min𝐶 ⋅ 𝑋
𝐴𝑖 ⋅ 𝑋 ≤ 𝑏𝑖 ∀𝑖 = 1,… ,𝑚

𝑟𝑎𝑛𝑘 𝑋 ≤ 𝑑
0 ≼ 𝑋 ≼ 𝐼

SDP-Relaxation
min𝐶 ⋅ 𝑋
𝐴𝑖 ⋅ 𝑋 ≤ 𝑏𝑖 ∀𝑖 = 1,… ,𝑚

𝑡𝑟𝑎𝑐𝑒 𝑋 ≤ 𝑑
0 ≼ 𝑋 ≼ 𝐼

Fair PCA as rank constrained SDP:
min 𝑧 s.t.

𝑧 ≥ 𝑇𝑟 𝐷𝑖
𝑇𝐷𝑖 − 𝐷𝑖

𝑇𝐷𝑖 ⋅ 𝑃 ∀𝑖 = 1,… , 𝑘

𝑟𝑎𝑛𝑘 𝑃 = 𝑑
0 ≼ 𝑃 ≼ 𝐼



SDP extreme points

Our key theorem: Every extreme point of the SDP-Relaxation has rank at 

most 𝑑 + 2𝑚 + 9/4 − 3/2.

Our main result follows: There is a polynomial time algorithm for the Fair PCA problem that returns a 

rank at most d + 2𝑘 +
1

4
−

3

2
whose objective is better than the optimum.

Rank-Constrained SDP 
min𝐶 ⋅ 𝑋
𝐴𝑖 ⋅ 𝑋 ≤ 𝑏𝑖 ∀𝑖 = 1,… ,𝑚

𝑟𝑎𝑛𝑘 𝑋 ≤ 𝑑
0 ≼ 𝑋 ≼ 𝐼

SDP-Relaxation
min𝐶 ⋅ 𝑋
𝐴𝑖 ⋅ 𝑋 ≤ 𝑏𝑖 ∀𝑖 = 1,… ,𝑚

𝑡𝑟𝑎𝑐𝑒 𝑋 ≤ 𝑑
0 ≼ 𝑋 ≼ 𝐼



Proof

Theorem 2: Every extreme point of the SDP-Relaxation has rank at most 𝑑 + 2𝑚 + 9/4 − 3/2.

Proof: Let 𝑋 be an extreme point with 𝑟 fractional eigenvalues.

𝑋 = 𝑈1 𝑈𝑓 𝑈0 𝑑𝑖𝑎𝑔(1) 𝐷 0 𝑈1 𝑈𝑓 𝑈0
T
= 𝑈1𝑈1

𝑇 + 𝑈𝑓𝐷𝑈𝑓
𝑇

𝐷 is 𝑟 × 𝑟 diagonal matrix with 0 < 𝐷𝑖𝑖 < 1 and 𝑈1 𝑈𝑓 𝑈0 is a orthogonal matrix of eigenvectors.

Claim: If 
𝑟 𝑟+1

2
> 𝑚 + 1 then there exists a 𝑟 × 𝑟 symmetric matrix 𝐹 ≠ 0 such that 

𝑌 = 𝑈1𝑈1
𝑇 + 𝑈𝑓(𝐷 + 𝐹)𝑈𝑓

𝑇 and 𝑍 = 𝑈1𝑈1
𝑇 + 𝑈𝑓(𝐷 − 𝐹)𝑈𝑓

𝑇 are feasible. 

Assuming the claim, we get a contradiction to the definition of the extreme point.

The proof is then finished (𝑟 ≤ 2𝑚 + 9/4 − 3/2). 

Fact: Eigenvalues of 𝑌 are same as eigenvalues of 𝑑𝑖𝑎𝑔 1 ; 𝐷 + 𝐹; 0 and eigenvalues of 𝑍 are same as 
eigenvalues of 𝑑𝑖𝑎𝑔 1 ; 𝐷 − 𝐹; 0 (useful for checking 0 ≼ 𝑋 ≼ 𝐼 condition).

min𝐶 ⋅ 𝑋
𝐴𝑖 ⋅ 𝑋 ≤ 𝑏𝑖 ∀𝑖 = 1,… ,𝑚.
𝑇𝑟 𝑋 ≤ 𝑑

0 ≼ 𝑋 ≼ 𝐼



Claim: If 
𝑟 𝑟+1

2
> 𝑚 + 1 then there exists a 𝑟 × 𝑟 symmetric matrix 𝐹 ≠ 0 such that 

𝑈1𝑈1
𝑇 + 𝑈𝑓(𝐷 + 𝐹)𝑈𝑓

𝑇 and 𝑈1𝑈1
𝑇 + 𝑈𝑓(𝐷 − 𝐹)𝑈𝑓

𝑇 are feasible. 

Proof:  Consider the linear system:

𝐴𝑖 ⋅ 𝑈𝑓𝐺𝑈𝑓
𝑇 = 0 ∀𝑖 = 1,… ,𝑚.

𝑇𝑟 𝑈𝑓𝐺𝑈𝑓
𝑇 = 0

𝐺𝑖𝑗 = 𝐺𝑗𝑖 ∀𝑖 ≠ 𝑗

◦ Number of equations 𝑚+ 1 +
𝑟 𝑟−1

2
.  Number of variables 𝑟2.

◦ If 𝑟2 > 𝑚 + 1 +
𝑟 𝑟−1

2
(more freedom than constraints), then there is a line of solutions, i.e. , 𝐺 ≠ 0 such 

that 𝜆 𝐺: 𝜆 ∈ 𝑅 all satisfy the above constraints.

◦ Consider 𝐹 = 𝜖𝐺 for small enough 𝜖 > 0. 

Check feasibility:
◦ 𝑈1𝑈1

𝑇 + 𝑈𝑓(𝐷 ± 𝐹)𝑈𝑓
𝑇 keeps the same dot product and trace. 

◦ Eigenvalues of  𝑑𝑖𝑎𝑔 1 ; 𝐷 + 𝐹; 0 = 𝑑𝑖𝑎𝑔 1 ; 𝐷 + 𝜖𝐺; 0 remain bounded away from 0 and 1

min𝐶 ⋅ 𝑋
𝐴𝑖 ⋅ 𝑋 ≤ 𝑏𝑖 ∀𝑖 = 1,… ,𝑚.
𝑇𝑟 𝑋 ≤ 𝑑

0 ≼ 𝑋 ≼ 𝐼



SDP extreme points summary
Theorem: Every extreme point of the SDP 

min𝐶 ⋅ 𝑋

𝐴𝑖 ⋅ 𝑋 ≤ 𝑏𝑖 ∀𝑖 = 1,… ,𝑚

𝑇𝑟 𝑋 ≤ 𝑑

0 ≼ 𝑋 ≼ 𝐼

has rank at most 𝑑 + 2𝑚 + 9/4 −
3

2
.

Generalizes Barvinok’95, Pataki’98 (similar result, without ≼ 𝐼 and 
trace constraints)



Iterative Rounding
Theorem: There is an iterative rounding algorithm that given

min𝐶 ⋅ 𝑋
𝐴𝑖 ⋅ 𝑋 ≤ 𝑏𝑖 ∀𝑖 = 1,… ,𝑚
𝑇𝑟 𝑋 ≤ 𝑑
0 ≼ 𝑋 ≼ 𝐼

with optimal solution 𝑋∗ returns a feasible solution 𝑌 s.t.

1. rank 𝑌 ≤ 𝑑.

2. 𝐶 ⋅ 𝑌 ≤ 𝐶 ⋅ 𝑋∗ .

3. 𝐴𝑖 ⋅ 𝑌 ≥ 𝐴𝑖 ⋅ 𝑋
∗ − Δ

Where Δ = max
𝑆⊆[𝑚]

σ
𝑖=1
2 𝑆

𝜎𝑖
1

𝑆
σ𝑗∈𝑆𝐴𝑗 where  𝜎𝑖 𝐵 is the 𝑖𝑡ℎ largest singular value of B.

[More details in the paper]

Idea: Fix eigenvalues to 0 and 1.

Fix two subspaces 𝐹0 and 𝐹1 for corresponding eigenfaces.

Update SDP to work only in the orthogonal space 𝐹. 

Show a constraint can be removed or one of the eigenvalues is 0 or 1.



Other results
• The Fair PCA problem is polynomial time solvable for constant k and d.

• Algorithmic theory of quadratic maps. [Grigoriev and Pasechnik ’05]

• Problem is NP-hard for general k, d=1.

• Experiments
• SDP relaxation performs optimally (exact rank) almost always in practice

• Runtime of SDP works up to 𝑛 ≈ 75 but alternative (multiplicative weight) works in practice 
equally well up to 𝑛 ≈ 1500

• All publicly available (Github)



Conclusion
•Formulating the fairness in dimensionality reduction

•Propose two new algorithms (SDP extreme points and SDP rounding)

•Their analysis uses low-rank property of SDP extreme point and by 
itself maybe of interest for optimization community

•Open question: more application of low-rank properties?

Thanks!


