Fair dimensionality reduction and iterative rounding for SDPs

UTHAIPON (TAO) TANTIPONGPIPAT

GEORGIA INSTITUTE OF TECHNOLOGY

JOINT WORK WITH

JAMIE MORGERNSTERN, SAMIRA SAMADI, MOHIT SINGH, AND SANTOSH VEMPALA

The problem

• Motivation \rightarrow Define fair PCA and fair dimensional reduction (fair DM)

The method

• Two of our algorithms (focus on one) and their analysis

Conclusion

Curse of Dimensionality

Curse of Dimensionality

$$\min_{U:\operatorname{rank}(U)=d} \|D - U\|_F^2 = \min_{P \in \mathcal{P}_d} \|D - DP\|_F^2 = |D|_F^2 - \max_{P \in \mathcal{P}_d} D^T D \cdot P$$
$$\mathcal{P}_d = \{P \in \mathbb{R}^{n \times n} : P \text{ symmetric, } rank(P) = d, P^2 = P\}$$

$$\begin{array}{c} \begin{array}{c} \text{Reconstruction error}\\ \text{(norm squared)} \end{array} \\ \begin{array}{c} \text{Variance (dot product)} \end{array} \\ \begin{array}{c} \text{Variance (dot product)} \end{array} \\ \begin{array}{c} \text{U:rank}(U) = d \end{array} \| D - U \|_{F}^{2} = \min_{P \in \mathcal{P}_{d}} \| D - DP \|_{F}^{2} = |D|_{F}^{2} - \max_{P \in \mathcal{P}_{d}} D^{T} D \cdot P \\ \begin{array}{c} \mathcal{P}_{d} = \{P \in \mathbb{R}^{n \times n} : P \ symmetric, rank(P) = d, P^{2} = P \} \end{array} \end{array}$$

Unfair PCA

$$\underset{U:rank(U)=d}{\text{Reconstruction error}} P_{d} = \{P \in \mathbb{R}^{n \times n} : P \text{ symmetric, } rank(P) = d, P^{2} = P\}$$

Standard PCA on face data LFW of male and female.

Average reconstruction error (RE) of PCA on LFW

Fair PCA

- Given data matrices $D_i \in \mathbb{R}^{m_i \times n}$ for i = 1, ..., k and a projection matrix $P \in \mathbb{R}^{n \times n}$.
- $Err(D_i, P) = |D_i D_i P|_F^2 = Tr(D_i^T D_i) D_i^T D_i \cdot P$
- Given target dimension d < n.
- Fair PCA's task: Find a projection matrix *P* of rank at most *d* that minimizes the maximum error.

Fair PCA:=
$$\min_{P \in \mathcal{P}_d} \max_{i \in [k]} Err(D_i, P)$$

 $\begin{aligned} \mathcal{P}_d &= \{P \in R^{n \times n} : P \ symmetric, rank(P) \\ &= d, P^2 = P \} \end{aligned}$

Fair PCA as rank constrained SDP:

min z s.t.

$$z \ge Tr(D_i^T D_i) - D_i^T D_i \cdot P \quad \forall i = 1, ..., k$$

$$rank(P) = d$$

$$0 \le P \le I$$

Fair PCA

- Given data matrices $D_i \in \mathbb{R}^{m_i \times n}$ for i = 1, ..., k and a projection matrix $P \in \mathbb{R}^{n \times n}$.
- $Err(D_i, P) = |D_i D_i P|_F^2 = Tr(D_i^T D_i) D_i^T D_i \cdot P$
- Given target dimension d < n.
- Fair PCA's task: Find a projection matrix *P* of rank at most *d* that minimizes the maximum error.

Fair PCA:=
$$\min_{P \in \mathcal{P}_d} \max_{i \in [k]} Err(D_i, P)$$

 $\begin{aligned} \mathcal{P}_d &= \{ P \in R^{n \times n} : P \ symmetric, rank(P) \\ &= d, P^2 = P \} \end{aligned}$

min z s.t. $z \ge Tr(D_i^T D_i) - D_i^T D_i \cdot P \quad \forall i = 1, ..., k$ rank(P) = d $0 \le P \le I$

Fair PCA as rank constrained SDP:

• Note: standard SVD won't work

Fair Dimensionality Reduction

- More generally, we are given utility functions $u_i: \mathcal{P}_d \to \mathbb{R}$ that measure the utility of each group.
- Moreover, we are given a function $g: \mathbb{R}^k \to \mathbb{R}$ that combines these utilities to the "social utility".

Fair DR:=
$$\max_{P \in \mathcal{P}_d} g(u_1(P), u_2(P), \dots, u_k(P))$$

 $\mathcal{P}_d = \{ P \in R^{n \times n} : P \text{ symmetric, } rank(P) = d, P^2 = P \}$

Fair PCA: Special case with $u_i(P) = -Err(D_i, P)$ and $g(.) = \min$

 $Loss_i(P) = \|D_i - D_i P\|_2^2 - \|D_i - D_i P_i^*\|_2^2$

where P_i^* is the best rank d projection for group i.

• Loss for being part of the other groups.

Fair PCA:= $\min_{P \in \mathcal{P}_d} \max_{i \in [k]} Err(D_i, P)$

$$\mathcal{P}_{d} = \{ P \in \mathbb{R}^{n \times n} : P \text{ symmetric, } rank(P) \\ = d, P^{2} = P \}$$

Fair Dimensionality Reduction

- More generally, we are given utility functions $u_i\colon \mathcal{P}_d\to \mathbb{R}$ that measure the utility of each group.
- Moreover, we are given a function $g: \mathbb{R}^k \to \mathbb{R}$ that combines these utilities to the "social utility".

Fair DR:=max
$$g(u_1(P), u_2(P), ..., u_k(P))$$

 $\mathcal{P}_d = \{P \in R^{n \times n} : P \ symmetric, rank(P) = d, P^2 = P\}$
Fair PCA: Special case with $u_i(P) = -Err(D_i, P)$ and $g(.) = \min$
 $Loss_i(P) = ||D_i - D_iP||_2^2 - ||D_i - D_iP_i^*||_2^2$
where P_i^* is the best rank d projection for group i .
• Loss for being part of the other groups.

Related work to fair DM formulation

- Rank Constrained SDPs are widely used.
 - Signal processing[Davies and Eldar'12, Ahmed and Romberg'15]
 - Distance Matrices: Localization sensors [So and Ye'07], nuclear magnetic resonance spectroscopy [Singer'08]
 - Item Response Data, Recommendation Systems[Goldberg et al'93]
 - Machine Learning: Multi-task Learning [Obozinski, Taskar, Jordan'10], Natural Language Processing[Blei'12]
 - Survey by [Davenport, Romberg'2016]
- Work by Barvinok'95, Pataki'98 on characterizations of extreme points of SDPs.
 - Algorithmic work by [Burer, Monteiro'03].
 - Related to S-Lemma [Yakubovich'71].

The problem

• Motivation \rightarrow Define fair PCA and fair dimensional reduction (fair DM)

The method

• Two of our algorithms (focus on one) and their analysis

Conclusion

Main result
$$\mathcal{P}_d = \{P \in \mathbb{R}^{n \times n} : P \text{ symmetric}, rank(P) = d, P^2 = P\}$$

Fair PCA:= min max $Err(D_i, P) \coloneqq |D_i - D_i P|_F^2$

• There is a polynomial time algorithm for the Fair PCA problem that returns a rank at most $d + \sqrt{2k + \frac{1}{4}} - \frac{3}{2}$ whose objective is better than the optimum. • 2 groups \rightarrow solved exactly

Main result
$$\mathcal{P}_d = \{P \in \mathbb{R}^{n \times n} : P \text{ symmetric}, rank(P) = d, P^2 = P\}$$

Fair PCA:= $\min_{P \in \mathcal{D}_i} \max_{i \in [D_i]} Err(D_i, P) \coloneqq |D_i - D_i P|_F^2$

- There is a polynomial time algorithm for the Fair PCA problem that returns a rank at most $d + \sqrt{2k + \frac{1}{4}} \frac{3}{2}$ whose objective is better than the optimum.
 - 2 groups \rightarrow solved exactly
- Also generalize to fair DM when u_i is linear and g is concave

Fair DR:=
$$\max_{P \in \mathcal{P}_d} g(u_1(P), u_2(P), \dots, u_k(P))$$

 $\mathcal{P}_d = \{P \in \mathbb{R}^{n \times n} : P \ symmetric, rank(P) = d, P^2 = P\}$

Main result
$$\mathcal{P}_d = \{P \in \mathbb{R}^{n \times n} : P \text{ symmetric}, rank(P) = d, P^2 = P\}$$

Fair PCA:= min max $Err(D_i, P) \coloneqq |D_i - D_i P|_F^2$

- There is a polynomial time algorithm for the Fair PCA problem that returns a rank at most $d + \sqrt{2k + \frac{1}{4}} \frac{3}{2}$ whose objective is better than the optimum.
 - 2 groups \rightarrow solved exactly
- Also generalize to fair DM when u_i is linear and g is concave

Fair DR:=
$$\max_{P \in \mathcal{P}_d} g(u_1(P), u_2(P), \dots, u_k(P))$$

 $\mathcal{P}_d = \{P \in R^{n \times n} : P \ symmetric, rank(P) = d, P^2 = P\}$

•Note: convertible to approximation ratio guarantee (no rank violation)

SDP relaxation

Rank-Constrained SDP

 $\min C \cdot X$ $A_i \cdot X \leq b_i \ \forall i = 1, \dots, m$ $rank(X) \leq d$ $0 \leq X \leq I$

SDP-Relaxation min $C \cdot X$

$$\begin{array}{l} A_i \cdot X \leq b_i \; \forall i = 1, \dots, m \\ trace(X) \leq d \\ 0 \leqslant X \leqslant I \end{array}$$

Fair PCA as rank constrained SDP: min z s.t. $z \ge Tr(D_i^T D_i) - D_i^T D_i \cdot P \quad \forall i = 1, ..., k$ rank(P) = d $0 \le P \le I$

SDP extreme points

Rank-Constrained SDP

 $\min C \cdot X$ $A_i \cdot X \leq b_i \ \forall i = 1, \dots, m$ $rank(X) \leq d$ $0 \leq X \leq I$

SDP-Relaxation $\min C \cdot X$ $A_i \cdot X \le b_i \ \forall i = 1, ..., m$ $trace(X) \le d$ $0 \le X \le I$

Our key theorem: Every extreme point of the SDP-Relaxation has rank at most $d + \sqrt{2m + 9/4} - 3/2$.

Our main result follows: There is a polynomial time algorithm for the Fair PCA problem that returns a rank at most $d + \sqrt{2k + \frac{1}{4} - \frac{3}{2}}$ whose objective is better than the optimum.

Proof

$$\min C \cdot X$$

$$A_i \cdot X \le b_i \quad \forall i = 1, ..., m.$$

$$Tr(X) \le d$$

$$0 \le X \le I$$

Theorem 2: Every extreme point of the SDP-Relaxation has rank at most $d + \sqrt{2m + 9/4} - 3/2$.

Proof: Let X be an extreme point with r fractional eigenvalues.

$$X = [U_1 \ U_f \ U_0] [diag(1) \ D \ 0] [U_1 \ U_f \ U_0]^{\mathrm{T}} = U_1 U_1^{\mathrm{T}} + U_f D U_f^{\mathrm{T}}$$

D is $r \times r$ diagonal matrix with $0 < D_{ii} < 1$ and $[U_1 \ U_f \ U_0]$ is a orthogonal matrix of eigenvectors.

Claim: If
$$\frac{r(r+1)}{2} > m+1$$
 then there exists a $r \times r$ symmetric matrix $F \neq 0$ such that
 $Y = U_1 U_1^T + U_f (D+F) U_f^T$ and $Z = U_1 U_1^T + U_f (D-F) U_f^T$ are feasible.

Assuming the claim, we get a contradiction to the definition of the extreme point.

The proof is then finished ($r \le \sqrt{2m + 9/4} - 3/2$).

Fact: Eigenvalues of Y are same as eigenvalues of [diag(1); D + F; 0] and eigenvalues of Z are same as eigenvalues of [diag(1); D - F; 0] (useful for checking $0 \le X \le I$ condition).

Proof: Consider the linear system:

$$A_i \cdot U_f G U_f^T = 0 \ \forall i = 1, \dots, m.$$
$$Tr(U_f G U_f^T) = 0$$
$$G_{ij} = G_{ji} \quad \forall i \neq j$$

$$\min C \cdot X$$

$$A_i \cdot X \le b_i \quad \forall i = 1, \dots, m.$$

$$Tr(X) \le d$$

$$0 \le X \le I$$

• Number of equations $m + 1 + \frac{r(r-1)}{2}$. Number of variables r^2 .

- If $r^2 > m + 1 + \frac{r(r-1)}{2}$ (more freedom than constraints), then there is a line of solutions, i.e., $G \neq 0$ such that $\{\lambda G : \lambda \in R\}$ all satisfy the above constraints.
- Consider $F = \epsilon G$ for small enough $\epsilon > 0$.

Check feasibility:

- $U_1 U_1^T + U_f (D \pm F) U_f^T$ keeps the same dot product and trace.
- Eigenvalues of $[diag(1); D + F; 0] = [diag(1); D + \epsilon G; 0]$ remain bounded away from 0 and 1

SDP extreme points summary

Theorem: Every extreme point of the SDP $\min C \cdot X$ $A_i \cdot X \leq b_i \quad \forall i = 1, \dots, m$ $Tr(X) \leq d$ $0 \leq X \leq I$ has rank at most $d + \sqrt{2m + 9/4} - \frac{3}{2}$. Generalizes Barvinok'95, Pataki'98 (similar result, without $\leq I$ and trace constraints)

Iterative Rounding

Theorem: There is an iterative rounding algorithm that given

$$\min C \cdot X A_i \cdot X \le b_i \qquad \forall i = 1, ..., m Tr(X) \le d 0 \le X \le I$$

with optimal solution X^* returns a feasible solution Y s.t.

- 1. $\operatorname{rank}(Y) \leq d$.
- $2. \quad C \cdot Y \leq C \cdot X^* \, .$
- $3. \quad A_i \cdot Y \ge A_i \cdot X^* \Delta$

Where $\Delta = \max_{S \subseteq [m]} \sum_{i=1}^{\sqrt{2|S|}} \sigma_i \left(\frac{1}{|S|} \sum_{j \in S} A_j \right)$ where $\sigma_i(B)$ is the i^{th} largest singular value of B.

[More details in the paper]

Idea: Fix eigenvalues to 0 and 1.

- Fix two subspaces F_0 and F_1 for corresponding eigenfaces.
- Update SDP to work only in the orthogonal space F.
- Show a constraint can be removed or one of the eigenvalues is 0 or 1.

Other results

- The Fair PCA problem is polynomial time solvable for constant k and d.
 - Algorithmic theory of quadratic maps. [Grigoriev and Pasechnik '05]
- Problem is NP-hard for general k, d=1.

• Experiments

- SDP relaxation performs optimally (exact rank) almost always in practice
- Runtime of SDP works up to $n \approx 75$ but alternative (multiplicative weight) works in practice equally well up to $n \approx 1500$
- All publicly available (Github)

Conclusion

- •Formulating the fairness in dimensionality reduction
- Propose two new algorithms (SDP extreme points and SDP rounding)
- •Their analysis uses low-rank property of SDP extreme point and by itself maybe of interest for optimization community
- •Open question: more application of low-rank properties?