Fair dimensionality reduction
and iterative rounding for SDPs

UTHAIPON (TAO) TANTIPONGPIPAT

GEORGIA INSTITUTE OF TECHNOLOGY

JOINT WORK WITH

JAMIE MORGERNSTERN, SAMIRA SAMADI, MOHIT SINGH, AND
SANTOSH VEMPALA




The problem

e Motivation = Define fair PCA and fair dimensional reduction (fair DM)

The method

e Two of our algorithms (focus on one) and their analysis

Conclusion

Outline



Curse of Dimensionality
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Curse of Dimensionality
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Dimensionality Reduction - PCA
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Data D € R™*";
m datapoints in n dimensions

Low-rank data U € R™*™:
m datapoints spanning d dimensions
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Dimensionality Reduction - PCA

Data D € R™*";
m datapoints in n dimensions

Low-rank data U € R™*™:
m datapoints spanning d dimensions

Reconstruction error (norm squared)

. _ 2= . _ 2= 2_ T .
vralin, D = Ul Igrelg;HD DP||z = |D|F max DD - P

Py = {P € R™™: P symmetric,rank(P) = d, P* = P}

Easily solved (0 (n3) time) by SVD (Singular Value Decomposition):
-U = DLLT for some orthonormal L. € R™*%, (Hence the 1%t equality above)

- Columns of L are the top d-singular vectors of D.



Variance (dot
Reconstruction error product)
(norm squared

min_ ||[D — U||& = ;2%!;”9 — DP||2 =|D|2 —maxD™D - P

U nfa i r. PCA U:rank(U)=d PEP4

P,; = {P € R™™: P symmetric,rank(P) = d,P?> = P}
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Unfair PCA rank(®)=a

P,; = {P € R™™: P symmetric,rank(P) = d,P?> = P}

Standard PCA on face data LFW of male and
female.

Average reconstruction error (RE) of PCA on LFW
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ID — U||% = min||D — DP||2 = |D|2 — max DTD - P
F PEP 4 F F

PEPq4

Unfair PCA rank(®)=a

P,; = {P € R™™: P symmetric,rank(P) = d,P?> = P}

Standard PCA on face data LFW of male and Equalizing male and female weight before PCA
female.
Average reconstruction error (RE) of PCA on LFW Average reconstruction error (RE) of PCA on LFW
(resampled)
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Fair PCA

 Given data matrices D; € R™*™ for i = 1, ..., k and a projection matrix P € R™"*",
* Err(D;,P) = |D; — D;P|3 = Tr(D/D;) — D/ D; - P
* Given target dimension d < n.

e Fair PCA’s task: Find a projection matrix P of rank at most d that minimizes the

maximum €rror. Fair PCA as rank constrained SDP:

Fair PCA:= min max Err(D;, P)
PeP, i€[k] min Z s.t.

> Tp.) — pI'D. . -
Py = {P € R™™: P symmetric,rank(P) £ = Tr(Dl Dl) DiD;-P Vi=1,..,k
=d,P? =P} rank(P) = d
O0<P<I




Fair PCA

 Given data matrices D; € R™*™ for i = 1, ..., k and a projection matrix P € R™"*",
* Err(D;,P) = |D; — D;P|3 = Tr(D/D;) — D/ D; - P
e Given target dimension d < n.

e Fair PCA’s task: Find a projection matrix P of rank at most d that minimizes the
maximum error.

Fair PCA as rank constrained SDP:

Fair PCA:= min max Err(D;, P)
PEPq L€[K] min Z s.t.
> n.Y —pIp. . :
Py = {P € R™™: P symmetric,rank(P) £ = Tr(Dl Dl) DiD;-P Vi=1,..,k
=d,P? =P} rank(P) = d
0<xP<I

 Note: standard SVD won’t work



Fair Dimensionality Reduction

* More generally, we are given utility functions u;: P; — R that measure the
utility of each group.

 Moreover, we are given a function g: R* — R that combines these utilities to
the “social utility”.

Fair PCA:= min max Err(D;, P)
Fair DR:=Ir3ré;§1)x g(u1 (P),u,(P), ..., uk(P)) PEPq i€[K]

d
P,; = {P € R™"™: P symmetric, rank(P)
P; = {P € R P symmetric,rank(P) = d, P? = P} =d,P?2 =P}

Fair PCA: Special case with u;(P) = —Err(D;, P) and g(.) = min

Loss;(P) = ||D; — D;P||5 — ||D; — D;P;
where P;" is the best rank d projection for group i.
* Loss for being part of the other groups.

2
2




Fair Dimensionality Reduction

* More generally, we are given utility functions u;: P; — R that measure the
utility of each group.

 Moreover, we are given a function g: R* — R that combines these utilities to
the “social utility”.

AIF i Average Loss of PCA/Fair PCA on LFW
al
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Fair Dimensionality Reduction

Average reconstruction error (RE) of PCA on LFW
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Related work to fair DM formulation

* Rank Constrained SDPs are widely used.

» Signal processing[Davies and Eldar’12, Ahmed and Romberg’15]

» Distance Matrices: Localization sensors [So and Ye’07], nuclear magnetic resonance
spectroscopy [Singer’08]

* Item Response Data, Recommendation Systems[Goldberg et al’93]

* Machine Learning: Multi-task Learning [Obozinski, Taskar, Jordan’10], Natural Language
Processing[Blei’12]

* Survey by [Davenport, Romberg’2016]

* Work by Barvinok’95, Pataki’98 on characterizations of extreme points of SDPs.
* Algorithmic work by [Burer, Monteiro’03].
* Related to S-Lemma [Yakubovich’71].
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H - 1 . '— R . 2
Fair PCA: Igrelg:l grel[z}g]( Err(D;, P) = |D; — D;P|%

Main result | 5, - (P € R™™: P symmetric, rank(P) = d, P? = P}

* There is a polynomial time algorithm for the Fair PCA problem that returns a

rank at most d + /Zk + % — % whose objective is better than the optimum.

2 groups =2 solved exactly
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H - 1 . '— R . 2
Fair PCA: Igrelgpr; grel[e}g]( Err(D;, P) = |D; — D;P|%

Ma I N resu ‘t P, = {P € R™™: P symmetric,rank(P) = d, P?* = P}

* There is a polynomial time algorithm for the Fair PCA problem that returns a

rank at most d + /Zk + % — % whose objective is better than the optimum.

2 groups =2 solved exactly

* Also generalize to fair DM when u; is linear and g is concave

Fair DR:=max g(u1 (P),u,(P), ..., ug (P))
PEP 4

P,; = {P € R™™: P symmetric,rank(P) = d, P? = P}

*Note: convertible to approximation ratio guarantee (no rank violation)



SDP relaxation

Rank-Constrained SDP SDP-Relaxation
minC - X minC - X
A - X<b;Vi=1,.. m A - X<b;Vi=1,..,m
rank(X) <d trace(X) <d
0<X<I 0<X=<I

Fair PCA as rank constrained SDP:

min z s.t.

z> Tr(D/D;)—D/D;-P vi=1,..,k
rank(P) = d
0<P=<I




SDP extreme points

Rank-Constrained SDP SDP-Relaxation
minC - X minC - X
A - X<b;Vi=1,.. m A - X<b;Vi=1,..,m
rank(X) <d trace(X) <d
0<X=<I 0<X<I
Our key theorem: Every extreme point of the SDP-Relaxation has rank at

most d + /2m + 9/4 — 3/2.

Our main result follows: There is a polynomial time algorithm for the Fair PCA problem that returns a

rank at most d + /Zk + % — % whose objective is better than the optimum.



minC - X

Proof A;-X<b; Vi=1,..m.

Tr(X) <d
0<X<I

Theorem 2: Every extreme point of the SDP-Relaxation has rank at most d + \/Zm +9/4 —3/2.

Proof: Let X be an extreme point with r fractional eigenvalues.
X = [U, Uy Up] [diag(1) D 0][U, Us Uy = ULUT + UDUT

D is r X r diagonal matrix with 0 < D;; < 1 and [U1 Ur UO] is a orthogonal matrix of eigenvectors.

r(r+1)
2

Claim: If

> m + 1 then there exists a r X r symmetric matrix I #+ 0 such that
Y = U,U{ + Up(D + F)Ug and Z = U, U{ + Up(D — F)U; are feasible.

Assuming the claim, we get a contradiction to the definition of the extreme point.

The proof is then finished (r < /2m + 9/4 — 3/2).

Fact: Eigenvalues of Y are same as eigenvalues of [diag(1); D + F; 0] and eigenvalues of Z are same as
eigenvalues of [diag(1); D — F; 0] (useful for checking 0 < X < I condition).



r(r+1)

Claim: If 5 > m + 1 then there exists a r X r symmetric matrix ' #+ 0 such that
T T T T -
UiUy + Us(D + F)Uf and U Uy + Us(D — F)Uy are feasible. i C X
Proof: Consider the linear system: A; - X <b; Vi=1,.. m.
Ai-UsGUI =0Vi=1,..,m. Ir(X) <d
0<X<I

Tr(UsGUf) =0
Gij — G]l Vl :/:j

r(r—1)

°  Number of equationsm + 1 + . Number of variables 2.

-1 . - . .
o fr2>m+1+ rir-1) (more freedom than constraints), then there is a line of solutions, i.e., G # 0 such

2
that {1 G: A € R} all satisfy the above constraints.
o Consider F = €G for small enough € > 0.

Check feasibility:
- U U + Ur(D F)U]T keeps the same dot product and trace.
o Eigenvalues of [diag(1); D + F; 0] = [diag(1); D + €G; 0] remain bounded away from 0 and 1



SDP extreme points summary

Theorem: Every extreme point of the SDP
minC - X

A;-X<b, Vi=1,..,m
Tr(X) <d
0<X<I

has rank at most d + \/Zm + 9/4 —%.

Generalizes Barvinok’95, Pataki’98 (similar result, without < I and
trace constraints)



'terative Rounding

Theorem: There is an iterative rounding algorithm that given
minC - X
A; - X < by Vi=1,..,m
Tr(X) <d
0<X<I

with optimal solution X~ returns a feasible solution Y s.t.
1. rank(Y) <d.

2 C-YLSC-X".

3 A;rY=A - X"—A

Sc[m]

Where A = max Z” o, (|S| 2jes A ) where ¢;(B) is the it" largest singular value of B.

[More details in the paper]

|Idea: Fix eigenvalues to 0 and 1.

Fix two subspaces F, and F; for corresponding eigenfaces.

Update SDP to work only in the orthogonal space F.

Show a constraint can be removed or one of the eigenvalues is 0 or 1.



Other results

* The Fair PCA problem is polynomial time solvable for constant k and d.
* Algorithmic theory of quadratic maps. [Grigoriev and Pasechnik '05]

* Problem is NP-hard for general k, d=1.

* Experiments
* SDP relaxation performs optimally (exact rank) almost always in practice

* Runtime of SDP works up to n = 75 but alternative (multiplicative weight) works in practice
equally wellup ton = 1500

* All publicly available (Github)



Conclusion

*Formulating the fairness in dimensionality reduction

*Propose two new algorithms (SDP extreme points and SDP rounding)

*Their analysis uses low-rank property of SDP extreme point and by
itself maybe of interest for optimization community

*Open question: more application of low-rank properties?

Thanks!




