..GTCTAAAACATGATT.. ©
..GTCTGAATCATGATT.. 1 ﬁ
..GTCTGAAACATGATT.. ©
..GTCTGAATCATCATT.. 1

S

IVIasswer Parallel Depth-First Search
and It's Applications

Kazuki Yoshizoe (£ —151) ﬁRII’:'N
O —

Search and Parallel Computing Unit, RIKEN AIP _

Jul. 297 2019, 2nd DOML Workshop @RIKEN AIP Nihombashi

Parallel computing lab
at graduate school

Search Algorithms

Game Al algorithms

Parallel Search Algorithms

T
/’E_‘/; tQ\
Q

i _“/)17//, 2 v/
g ff@@s*ﬁﬂ§

AlphaGo (by DeepMind) uses Deep Learning with
Monte-Carlo Tree Search (MCTS)

K. Yoshizoe et al., “Scalable Distributed Monte-Carlo Tree Search”,
Symposium on Combinatorial Search (SoCS), 2011.

| Computer Go book
d (in Japanese)

describing MCTS

bty

Scales up to 3000+ fold speedup

What is Search?

Here Search means
finding node(s) or path(s)
from a given graph

Node or path shows

v’ “shortest path”

v' “optimal combination’
v’ “best play in games”

)

2003 nicolas p. rougier (CC BY-SA 4.0) (

&
- P }__ —Z VN~
g amin. anefaasiianlians. Hlus

——— e m e mm— - - - -

Explicitly given Graph

Trains

Road map social
network

Rule Based Graph

Combinatorial Games
optimization

SAT, CSP

Parallelizing Search Algorithms

Parallel Depth-First Search
(DFS) and applications

DFS is simple but has many
important applications

——————————————————————————————————————

Therefore, simply splitting ' - Frequent Itemset Mining
search spaces cause highly ' - Statistical Pattern Mining
unbalanced workloads | [Yoshizoe, Terada, Tsuda 2018] !

Practical search algorithms

prune” search spaces 1o - Constraints Satisfaction

focus on promising part. [Ishii, Yoshizoe, Suzumura 2014]
Continuous Optimizations
[lzumi, Yoshizoe, Ishii 2018]

Depth-First Search Applications

. —
f& items -
1
X

database 2 3 4 5 6
A X X X X X
B X X X

(V5]
[
o C X X
5]
® D| x X X X X
C
S E X X
F | x X X
G X X X

Frequent Itemset Mining
or Association Rule Mining

ex1. Market Basket Analysis
items: products

trans.: customers

X: purchased items

Fundamental problem in data mining

Statistical Pattern Mining

Counting / Enumerating
Frequent itemsets
from a given database

ex. itemsets with freq. 3 or higher

U, 125, 135, 143, 153, 16}, 11,45,
{196}’ {294}’ {295}’ {496}’ {19496}

ex2. Genomics (GWAS)

. .GTCTAAAACATGAYE
items: SNPs .GTCTGAATCATGATT...
trans.: human .GTCTGAAACATGATT...
xX: SNP

..GTCTGAATCATCATT..
SNP: Single Nucleotide Polymorphism

Example. Finding cause of genetic disease from DNA

[Yoshizoe, Terada, Tsuda 2018] Bioinformatics

Improving GWAS

Genome Wide Association Studies

SNP
1 2 3 4 5 6

Al x X X x X X |+

B X X X +
v C X X -
C
L D|x x X X X |+
o

E X X -

F | x X X | -

G X X X | +

Example, Early-onset Alzheimer SNP database

nu. SNP 380,157

nu. patients 364

nu. Positive 176
%a

\

Finding Statistically Significant SNPs

Existing GWAS: Finds one or two SNPs
Our tool : Finds any number of SNPs

A genetic disease can be caused by a combination of
multiple SNPs (not by just one or two SNPs)

A naive approach requires testing all possible
2380157 combinations of SNPs.

We make it possible with

- a smart pruning of the search space

- large scale parallelization

[Alzheimer] J. A. Webster, J. R. Gibbs, J. Clarke et al., “Genetic control of human brain transcript expression in Alzheimer disease.” Am J Hum Genet., vol. 84, no. 4, pp. 445-58, 2009.

Depth First Search (w/o threshold)

Back tracking DFS

DFS() {
Recur(r)
}
Recur(node n) {
foreach (child ¢ of n) {
// do something for ¢
Recur(c)
}
}

back tracking can be naturally
implemented with recursive call

Simply traverses Depth-First Search is
all nodes in the tree

- suitable for trees
- require small memory
- Parallelization friendly

Memory usage O(d)
Only current path is needed

Frequent Itemset Mining can be solved using DFS w/o threshold

Depth First Search with threshold update

: Update threshold during search.
DFS with threshold More branches in the right are pruned.
DFS() { (Search progresses from left to right.)
Recur(r)

}

Recur(node n) {
foreach (child ¢ of n) {
// do something for ¢
if (¢ 1s within threshold) Recur(c)

With threshold,
more difficult to
parallelize, but possible

UpdateThreshold) without large overhead
} [Yoshizoe, Terada, Tsuda 2018]
Prune search space by Ex. finding top—k nodes [Ishii, Yoshizoe, Suzumura 2014]

dynamically updating threshold

Statistical Patten Mining can be implemented in DFS with threshold.
Significance threshold (P-Value lower bound) is updated and propagated.

Original Search space of

|

Depth-First Search
Example for Data Mining

|

Al
@
m

.l

g

N

\

\

X2 4 5, ¢
.\\0@“.

st
X\ S
e

By

4
/

‘\

(/

B ey E
20\ =
£ ﬁﬂ«» =,

:

<
[o0)
(@)}
)
N
(@)}

:
, \,..,,,%@
X

N/ X
/v‘.

@

(5
WA

A
i

)

ﬁ‘

A\
(=
; ‘%\ow‘\@&

A‘é
N

\
(A DX
ﬁ“;?

(/
Nz \:\
[
5 WK

i

W
PN
A
U
i

‘

\>/

. ..Am«»
LK

i
e
n \ / 4&\“\«

5 ??&» =
,O X/ Vm

N

/]

)
{

6

3 4 5

; N ;
A

/3

é a@ :

_

©
(o]

<
(o]

\«\

IN'E
003
il

)
[e)]
(o]
(o]
(=)
(o]

)

\%

(919295 94 95)(91 92 95 9e 96)(9+ G 95 95 96)(91 92 9e Os 96)(91 95 9 G5 96)(92 9 Ga 95 T)

(91 9293 94 95 96)

Needs pruning!

item
1 2 3 4 5 6
Al x X X X X X
B X X X
[
© C X X
5]
S D | x X X X X
C
S E X X
F | x X X
G X X X

Enumeration of itemsets (freq. >=3)

U, 125, 135, 145, 155, 16}, 11,45,
11,6}, 12,45, {2,5}, 14,6}, {1,4,6}

Enumeration of closed itemsets (freq. >=3)
2}, {3}, {4}, {24}, {2,5}, {4,6}, {1.4,6}

closed itemset is a compressed
way of enumeration

10
[Pasquier, Bastide, Taouil, Lakhal 1999]

Closed Itemset

— def: Closed Itemset —

An itemset [is a closed itemset
if there is no item j such that

j&1Afreq(I U {j}) = freq(l)

(frequency decreases by adding
any other item to a closed itemset)

{1, 4, 6} is a closed itemset

implicitly includes {1}, {1, 4}, {1, 6}

freq{1,4,6}=freq{1,4}=freq{1,6}=freq{1}=3

Note: freq{4, 6}=4, so {4,6} is not included

Depth-First Search
Example for Data Mining

5

def: Closed Itemset

g O3 J4

3 5
N
(‘92 94) igz 95)
3 4

———

J1 94 Je J2 93 Os

An itemset [is a closed itemset
if there is no item j such that
j&IAfreq(I U {j}) = freq(l)

(frequency decreases by adding any
other item to a closed itemset)

C91 9294 Qs 96)
a

1(91 9> 9364 Os 96)

\\
jory

Pruned Search Space
Using Closed Itemset

J3

94 g

Closed Itemsets (red nodes)

describe all frequent itemsets
[Pasquier, Bastide, Taouil, Lakhal 1999]

6 mMm m O O W >
P
P
P
P
P

Depth-First Search
Example for Data Mining

Enumerate statistically significant
nodes from the search space.

919294 95 Js

7
9192939495 96

[Terada, Okada-Hatakeyama, Tsuda, Sese, 2013]
[Minato, Uno, Tsuda, Terada, Sese 2014]

93 94 Je

Pruned Pattern Mining with
Statistical Significance threshold

1 Search space can be
' pruned using the lower

bound of Fisher P-Value

(nodes below this line will
never be significant)

6 mMm m O O W >
P
P
P
P
P

. Massive Parallel Statistical Pattern Mining
f.& For solving GWAS and others

Frequent Itemset Mining based on
Closed Itemset Parallelization Method
[Pasquier, Bastide, Taouil, Lakhal 1999]

Aol techni Reformulate algorithm hardware/middleware
L%Fl)\lly rleveI:sE search technique | from recursive call aware algorithm
(LCM algorithm) [Avis, Fukuda 1396] to stack + loop and implementation

[Uno, Kiyomi, Arimura 2004]

Applied to Statistical Pattern Mining Work stealing and broadcast/reduce

LAMP algorithm request
[Terada, Okada-Hatakeyama, Tsuda, Sese, 2014]

Faster LAMP using DFS with threshold
[Minato, Uno, Tsuda, Terada, Sese 2014]

Massive Parallel LAMP (MP-LAMP)
[Yoshizoe, Terada, Tsuda 2018]

recursive function call (original)

DFS() {
Recur(r)
}
Recur(node n) {
foreach (child ¢ of n) {

// do something for ¢
if (¢ 1s within threshold) Recur(c)
UpdateThreshold()

}
}

Pros: O(d) memory
Cons: difficult to parallelize

reformulate

Preparation for Parallelization: Reformulate the Algorithm

implementation using stack and loop

StackDFS() {
push(r)
Loop()

}

Loop() {
while(stack not empty) {

pop 7 from stack
foreach (child ¢ of n) {
// do something for ¢
if (¢ 1s within threshold) push(c)
UpdateThreshold()

Cons: O(d b) memory
Pros: easy to parallelize

DFS() {
Recur(r)
}
Recur(node n) {
foreach (child ¢ of n) {
// do something for ¢
if (¢ 1s within threshold) Recur(c)
UpdateThreshold()

}
}

recursion to stack + loop

StackDFS() {
push(r)
Loop()

}

Loop() {
while(stack not empty) {

pop » from stack
foreach (child ¢ of n) {

// do something for ¢

if (¢ 1s within threshold) push(c)

UpdateThreshold()
}
}
}

foreach in
reverse order

c

b

(on

b

e

Qi |T|o

C
b

v

a

v
d

| |T|o

o [S<olo
>

u:

C
b
e

v

g

Note: if pushed in the normal order, it will be breadth-first search

_,,
< [0 [|6

which requires large amount of memory

child nodes are pushed in the reverse order for DFS behavior

15

16

Parallelization Method

work stealing

If the stack is empty, find a victim
and steal workloads from it

workload request is sent to neighbor
process in a virtual Hypercube based
communication graph

[Saraswat et al. 2011] Hypercube + random edge

Broadcast

Threshold info is sent
on a spanning tree

Termination Detection

It is not straight forward in a distributed
environment. Correctly detect the
termination of all processes.

Work Stealing based parallelization

Receiver initiated Work stealing

Compute nodes with empty stack (empty job)
1, select a victim node
2, send job request to the victim

the victim will either
1, give half of the stack (if has enough job)
2, reject the request

victims are Virtual graph based on

- randomly selected once, then Hypercube and random edges

- selected from neighbors in communication graph Lifeline graph [Saraswat et al. 2011]

DTD Distributed Termination Detection

X

If all stacks are empty, terminate the algorithm
|:> There might be unfinished communication

x If number of send and recv are equal, terminate the algorithm
Counting is not synchronized so
:> same number of send and recv can be overlooked

O If any node received a message, restart counting send/recv

It is proved to be correct

A famous token based algorithm by [Dijkstra and Scholten 1980]
Much improved DTD on spanning tree [Mattern 1990] (not well known)

18

Using two communication patterns

@ _ (1) request (c)

J! : master

a

Work stealing between stacks DTD and threshold broadcast/reduce

Distributed Termination Detection

Additional technique
Combine with Static load balancing

OOO0O0OOOO0OO00

distribute depth 1 nodes at the initialization

r

Original algorithm starts with only If initialized like this, load balancing
the root node pushed can be easier

20

item:11914, trans:697, dens:1.9%

Statistical Pattern Mining: Speedup

JPN dom. 10%

item: 11253, trans:697, dens:1.0%

1200
1100
1000
900
800
700
600
500
400
300
200
100
0

0 200 400 600 800 10001200

Nu. Process

JPN dom. 20%

1[ime I(s) I I |
speedup —=—

126s

1200
1100
1000
900
800
700
600
500
400
300
- 200
<4 100
| | | | | O

0 200 400 600 80010001200

Nu. Process

1[ime I(s.) —
speedup —>—

Alz. dom. 5%

item:44052, trans:364, dens:5.4%

1200
1100
1000
900
800
700
600
500
400
300
- 200
100
0

0 200 400 600 800 10001200

Nu. Process

Alz. dom. 10%

item: 91126, trans: 364, dens:9.8%
time (s) —+— 1100
speedup —>— 1000
900
17646s 800
700
600
500
400
300
200
L 100
0
0 200 400 600 800 10001200

Nu. Process

![ime I(s) I I |
speedup —>—

258s

Alz. rec. 30%

item: 250120, trans:364, dens:2.9%

Speedup
Time (s)

Speedup

Speedup for

fme () —— '] 1100 Finding combination
speedup —*— -4 1000
] 00 of SNPs related to
4361s] 700 S Alz. orJapanese
50 & from subset of SNPs
-4 300
=4 200
= 100
0
200 400 600 800 10001200
Nu. Process
1,000 Gen JPN dom. 15%
SNP:11676, dens:1.5%
amazon 80
webservices time (s) —+— 1 70
speedup —x—
10% | - 60
EC2 c4.8xlarge z 1800s 15 o
Xeon E5-2666v3 7;; : 140 8
(2.9GHz, 18cores) -;ng 31.0s % o
10G ethernet, 1 20
using cfncluster \ 1 10
10" & 0

Breakdown of Execution time (Search, Communication, Idle)

Total time (s)

item:

700
600
500
400
300
200
100

Total time (s)

JPN dom. 10%

11253, trans:697, dens:1.0%

nnnnnac

I I I T T I I I
probe

idle ——
preprocess
main C——

12 24 48 96 1923006001200

HapMap dom. 20%
item:11914, trans:697, dens:1.9%

60000
50000

40000
30000
20000
10000 H

0

1

12 24 48 96 1923006001200
Nu. Proc.

Alz. dom. 5%

item:44052, trans:364, dens:5.4%

600

500 |
400
300 |
200
100

I I I T T I I I
probe I

idle ——
preprocess
main C——

0
1

item: 91126, trans: 364, dens:9.8%

25000

12 24 48 96 1923006001200

Alz. dom. 10%

20000

15000

10000

5000

0

1

12 24 48 96 1923006001200
Nu. Proc.

Alz. rec.30%
item: 250120, trans:364, dens:2.9%

14000 T T T T T T T T T
probe =]
12000 [idle ——
preprocess [|
10000 ~ main
8000
]
6000 H
=
4000 H
2000
0

12 24 48 96 1923006001200

For more difficult problems,
communication delay is hidden

23

Efficient Speedup on K-Computer

Used up to 140K CPU cores on K-computer,

- achieved estimated speed up of 110-120K fold.
. (collaboration with RIKEN R-CCS, unpublished)

Other existing work for parallel pattern mining,
speedups are limited to 30-fold or less.

One of the discovered SNP combinations
from a subset of SNPs for Alzheimer

rs1057079 mTOR, mTOR-AS1 We are also working on
rs1064261 mTOR - Parallel Itemset Mining Library

52075800 HSPALL (Hsp70) - Algorithms for other mining problems
rs429358 APOE

. (includes continuous feature data)
P-value after correction for

these 4 SNPs was 0.00031777

[Alzheimer] J. A. Webster, J. R. Gibbs, J. Clarke et al., “Genetic control of human brain transcript expression in Alzheimer disease.” Am J Hum Genet., vol. 84, no. 4, pp. 445-58, 2009.

Statistical Pattern Mining and Feature Selection

database

nu. of features roughly 10K to 1M

3 4 5 6

nu. of data
roughly 1000

A m m O O ™ >

4
v

X

X X X X

X X
X
X X X
X
X X
X X X

relatively small
nu. of samples

X X X

High dimensional

(binary) features
@ rrarnnnnnnnnnnsp

X

..GTCTAAAACATGATT...
..GTCTGAATCATGATT...

..GTCTGAAACATGATT...
..GTCTGAATCATCATT...

Our method finds
statistically significant
combinations of features

We have methods both for
binary and continuous
features (some limitations).

Conclusions

Parallel Search Algorithms are not straight forward but possible.
— Depth-First Search algorithms are relatively easy to parallelize.
We parallelized DFS based Pattern mining and observed highly
efficient parallel speedup.
— speedup measured on a real application for GWAS
— Run on K-computer (in RIKEN R-CCS), achieved 110K+ speedup
We can apply this approach to other DFS based mining algorithms
(and hopefully to other DFS in general)
— We implemented a parallel pattern mining library
(preparing to make it public)

Looking for collaboration with ML people in high dimensional
feature selection

